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ABSTRACT

With the huge volumes of spatial data coming from different
sources, there is an increasing demand to exploit the eféigiof
Hadoop MapReduce framework in spatial data processing.-How
ever, Hadoop falls short in supporting spatial data effityess the
core is unaware of spatial data properties. This paper itbescr
SpatialHadoop; a full-fledged MapReduce framework withveat
support for spatial data. SpatialHadoop is a compreheresiien-
sion to Hadoop that injects spatial data awareness in the lagrs

of Hadoop. It ships with a simple high level language withtgpa
datatypes and operations. The core contains traditioraaiasn-
dexes, Grid, R-tree and R+-tree, which are adapted to theRigtap
duce environment. SpatialHadoop is already equipped vdtizan

of operations, including standard operations, computatigeom-
etry and data mining operations. SpatialHadoop is already u
as a main component in three live systems MNTG, TAREEG and
SHAHED. For efficient processing of spatio-temporal dapgt®-
temporal Hadoop is proposed as an extension to Spatiallpadoo

Categories and Subject Descriptors

H.2.8 [Database Management]:
Databases and GIS

Database ApplicationsSpatial
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1. INTRODUCTION

The recent explosion in the amounts of spatial data urged re-
searchers and practitioners worldwide to take advantagtheof
MapReduce environment in supporting large-scale spatih.d
Most notably, in industry, ESRI has released a suite of Gifisto
on Hadoop [1] that work with their flagship ArcGIS product.
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Meanwhile, in academia, three system prototypes were geabo
(1) Parallel-Secondo [12] as a parallel spatial DBMS thasus
Hadoop as a distributed task scheduler, A2)D-HBase [14] ex-
tends HBase [2], a non-relational database runs on top obéiad
to support multidimensional indexes, and (3) Hadoop-G[%{6
tends Hive [16], a data warehouse infrastructure built gn dd
Hadoop with a uniform grid index for range queries and gailf-j

A main drawback in the systems discussed above is the lack of
integration with the core of Hadoop. For example, HadoopiSIS
built on Hive, a data warehousing system for Hadoop, renderi
it unuseful for traditional MapReduce programs runningedity
in Hadoop. On the other hand, SpatialHadoopudt-in Hadoop
which pushes spatial constructs inside the core of Hadodginga
it more efficient with query processing. More importantlpafial-
Hadoop introduces standard spatial indexes and MapReduae ¢
ponents that allow researchers and developers to implensmt
spatial operations efficiently in the system. This is in casit to
Hadoop-GIS and other systems that cannot support such kind o
flexibility, and hence they are limited to the functions thehyip
with. Finally, indexing options in previous systems areited,
e.g., uniform grid index in HadoopGIS, while SpatialHadgup-
vides more options including Grid File, R-tree and R+-trghich
makes it more useful with skewed data.

SpatialHadoop is available as open source [3] and has been al
ready downloaded more than 75,000 times. SpatialHadoog-is a
cessible through a high level language, named Pigeon [1ighw
extends Pig Latin with OGC-standard [4] data types and tioais
In the core of SpatialHadoop, Grid File, R-tree and R+-tnelekes
are adapted to the Hadoop file system (HDFS) by building them a
a global index which partition data across nodes and maltgaal
indexes to organize records inside each node. The new indege
made accessible to MapReduce programs by introducing two ne
components, SpatialFileSplitter and SpatialRecordReadech
are used to access the global and local indexes, respgctivie
new design of spatial indexes allows a myriad spatial ofmrat
to be implemented efficiently in SpatialHadoop. We show how t
implement three basic operations, range query, KNN andaspat
join [10]. In addition, we build CG_Hadoop [9], a suite of cpm
tational geometry operations, in SpatialHadoop which malse
of spatial indexes to provide orders of magnitude speedyma- S
tialHadoop is also used in three live systems, MNTG [13] a web
service for generating traffic data, TAREEG [7], a web-based
traction tool for OpenStreetMap data, and SHAHED, a systam f
analyzing satellite data from NASA. In order to support gpat
temporal data processing, we propose Spatio-temporal ¢teds
an extension that takes the time dimension into account.
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Figure 1: Overview of SpatialHadoop

2. OVERVIEW OF SpatialHadoop

Figure 1 gives an overview of SpatialHadoop. A SpatialHadoo
cluster contains one master node that breaks a MapReduaggob
smaller tasks, carried out by slave nodes. There are thpes tyf
users who interact with SpatialHadodpasual usersleal with the
system through the available applicatiori3evelopersare able to
create new operations via MapRedu&@ystem adminsave deep
understanding of system issues and can tune up the systeuagkhr
the configuration files. The core of SpatialHadoop consistsuy
layers described briefly below.

(1) TheLanguage layer containdigeon [11], a high level lan-
guage with OGC-compliant spatial data types and functidpis.
geon is discussed in Section 3. (2) Tdterage layer contains three
spatial indexes, Grid File, R-tree and R+-tree, all impletad in-
side the Hadoop Distributed File System (HDFS) allowingtispha
operations to run much faster as opposed to heap files in fadoo
Indexes are organized in two-layers, one global index thgitjpns
data across nodes, and multiple local indexes to organineds in-
side each node. (3) We enrich thapReduce layer with two new
components, namely, SpatialFileSplitter and SpatialR#teader,
that allow spatial operations to access the constructezkesd The
spatial indexes and new MapReduce components are desanibed
Section 4. (4) Théperations layer encapsulates the spatial op-
erations supported by SpatialHadooPasic operationsontains
three standard spatial operations, range query, KNN artidkjoén.
CG_Hadoof?9] is a suite of fundamental computational geometry
operations. More advanced spatial data mining technioueeslso
available for scalable spatial analysis of big data. Thepsttpd
operations are discussed in Section 5.

3. LANGUAGE LAYER: PIGEON

As map-reduce-like paradigms require huge coding eff8rtsT,
17], a set of declarative SQL-like languages have been gexho
e.g., HiveQL [16], Pig Latin [15], and SCOPE [8, 17]. Spatial
Hadoop does not provide a completely new language. Instead,
provides, Pigeon [11], an extension to Pig Latin languad#g ¥/
adding spatial data types, functions, and operations thrdbom to
the Open Geospatial Consortium (OGC) standard [4]. In@aletr,
we add the following:
1. Pigeon adds support for OGC-compliant spadiafa types in-
cluding, Poi nt , Li neSt ri ng, andPol ygon. Since Pig Latin
does not allow defining new data types, Pigeon overrides the
byt ear r ay data type to define spatial data types. Conversion be-
tweenbyt ear r ay andgeonet ry is done automatically on the
fly which makes it transparent to end users.
2. We addbasic spatial functionswhich are used to extract useful
information from a single shape; e.gv; ea calculates the area of
a polygonal shape.
3. Pigeon supports OGC standamtial predicateswhich return a
Boolean value based on a test on the input polygon(s). Fongbea
| sCl osed testsif a linestring is closed whileouches checks if
two geometries touch each other.
4. Spatial analysis functions perform some spatial transforma-
tions on input objects such as calculating tBentroi d or
I nt er secti on. These functions are usually used to performs a
series of transformations on input records to produce fimgahar.
5. Spatial aggregate functionstake a set of spatial objects and re-
turn a single value which summarizes all input objects;, el
ConvexHul | returns one polygon that represents the minimal
convex polygon that contains all input objects.

In addition to the functions in Pigeon, we do the following
changes to the language.
1. KNN Keyword. A new keywordKNN is added to perform a
k-nearest neighbor query.
2. FILTER. To support a range query, we override the Pig Latin se-
lection statemerfl LTERto accept a spatial predicate as an input
and calls the corresponding procedure for range queries.
3. JOIN. To support spatial joins, we override the Pig Latin join
statemend O Nto take two spatial files as input. The processing of
theJO Nstatement is then forwarded to the corresponding spatial
join procedure.

4. SPATIAL INDEXING

SpatialHadoop adds new spatial indexes that are adaptée to t
MapReduce environment. These indexes overcome a limitatio
in Hadoop, which supports only non-indexed heap files. There

The core of SpatialHadoop is designed to serve as a backboneare two challenges when using traditional spatial indexets &

for applications that deal with large scale data processinghis
paper, we show three case studies of real systems that usalSpa
Hadoop as a main component. (1) MNTG [13], a web-based traffic
generator for road networks. (2) TAREEG [7], aweb servicefo
tracting spatial datasets from OpenStreetMap. (3) SHAHEDOI
for analyzing and processing large scale remote sensimagficah
NASA. The three applications are briefly reviewed in Secon
Motivated by the increased importance of the time dimension
the applications supported by SpatialHadoop, we pro[Spsio-
temporal Hadoopas an extension which adds efficient support of
temporal data by following a similar approach. It adds aispat
temporal index in the storage layer which partitions the detsed
on both space and time. It goes all the way up through therdiffe
ent layers to support efficient spatio-temporal functigpab end
users. Section 7 provides a discussion of spatio-tempuataking.

Hadoop. First, traditional indexes are designed for thegularal
programming paradigm while SpatialHadoop uses the Map&sedu
programming paradigm. Second, traditional indexes areyded
for local file systems while SpatialHadoop uses the Hadodp Fi
System (HDFS), which is inherently limited as files can bettemi

in an append only manner, and once written, they cannot be mod
ified. To overcome these challenges, SpatialHadoop oresuiig
index in two layersglobal andlocal indexing. Theglobal index
partitions data across nodes in the cluster whileltioal indexes
organize data within each node. The separation of global@nd
cal indexes lends itself to the MapReduce programming jigrad
where the global index is used for preparing the MapReduoe jo
while the local indexes are used for processing map taskealkBr
ing the file into smaller partitions allows indexing eachtjtimn
separately in memory and writing it to a file in a sequentiahne.
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Figure2: R+-treeindex of a 400 GB OpenStreetM ap dataset representing all map objects (Best viewed in color)

Figure 2 shows an example of an R+-tree index built in Spa- 5. OPERATIONS

tialHadoop for a 400 GB dataset of all map objects in the world

extracted from OpenStreetMap. Blue lines represent daite wh
black rectangles represent partition boundaries of thieaglimdex.
As shown in this example, SpatialHadoop adjusts the sizadf e
partition based on data distribution such that the conteh&ach
partition are 64MB which ensures load balancing. Recor@saoh
partition are stored together as one HDFS block in one machin
This design is used to support three classes of indexes tieSpa
Hadoop, namely, Grid File, R-tree and R+-tree. Grid Filededi
for uniformly distributed data while R-tree and R+-tree ased
for skewed data. In R-tree, records are not replicated wtacises
partitions to overlap. This makes it more efficient for rangeries
where partitions that are completely contained in quergeacan

be copied to output and no deduplication step is required- R+

tree ensures that partitions are disjoint but some recardd to be
replicated. R+-tree is more efficient with spatial join wheisjoint
partitions allow each one to be processed independently.

The combination of the spatial indexing with the new spatial
functionality in the MapReduce layer gives the core of Spati
Hadoop that enables the possibility of efficient realizatd many
spatial operations. In this section, we describe how deestocan
use the core of SpatialHadoop to implement basic spatiahtipas
and computational geometry operations. This shows the pamc
flexibility of SpatialHadoop for support spatial operason

5.1 Basic Operations

Among the available spatial operations available, we chiuge
basic operations, namely, range query, k-nearest neigirizbspa-
tial join, to implement in SpatialHadoop due to their wide ugve
describe range query and spatial join in this section.

5.1.1 Range Query
A range query takes a set of spatial recoftland a query area

The proposed index is constructed using a MapReduce job thatA as input, and returns the records that overlap within Spa-

runs in three steps. (1) The partitioning step uses ourapatiare
partitioner which distributes the data among computatiodes
such that each partition fits within a 64MB HDFS block. For-uni
formly distributed data a uniform grid is used while for sleslv
data an R-tree-based partitioning is used. A record (eodygpn)
may be replicated if it overlaps multiple partitions whitetreplica-
tion is handled in the operations layer to produce a cormesivar.
(2) In the local indexing step, each patrtition is locally éndd as
an R-tree and stored in a separate file. (3) The global indestep
combines all files in one file and creates a global index foiptre
titions which is kept in the main memory of the master node.

This index is made accessible to MapReduce programs by intro

ducing two new components in the MapReduce layer, narSely;
tialFileSplitter and SpatialRecordReaderThe SpatialFileSplitter
takes a spatially indexed input file and a user-deffilest function
and it exploits the global index in the input file to prune fiams
that do not contribute to answer. The SpatialRecordReattesta
locally indexed partition returned by the filter functiondeexploits
its local index to retrieve the records that match the usemqu

These two components allow developers to implement many spa

tial operations efficiently as shown in the next section.

tialHadoop, the SpatialFileSplitter reads the global inded uses
a filter function to select the partitions that overlap thermyuarea.
Partitions that are completely outside the query area aneegras
they do not contribute to answer. Each matching partitioprds
cessed in a map task, where the SpatialRecordReader extsact
local index and processes it with a range query to returnrdsco
matching the query area. Finally, a duplicate avoidange fiiters
out duplicate results caused by replication in the index.

5.1.2 Spatial Join

A spatial join takes two sets of spatial recofglend.S and a spa-
tial join predicated (e.g.,t ouches, over | aps, orcont ai ns)
as input, and returns the set of all pafrss) wherer € R, s € S,
and the join predicat@ is true for(r, s). To implement this oper-
ation in SpatialHadoop, we feed the SpatialFileSplittethvei fil-
ter function that selects every pair of overlapping pams. The
SpatialRecordReader processes every pair of overlappirigipns
and exploit their local indexes with a traditional spat@@hjopera-
tion to return all overlapping pairs. Finally, a duplicate@ance
step uses the reference point technique to eliminate djitin
answer caused by replication in the index.
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Figure 4: Applications built on-top of SpatialHadoop

5.2 CG_Hadoop

CG_Hadoop [9] is a suite of computational geometry opera-
tions for MapReduce. As illustrated in Figure 3, it suppdite
fundamental computational geometry operations, namelygpn
union, skyline, convex hull, farthest pair, and closest,zdliimple-
mented as MapReduce. Each operation has two implemergation
one for Hadoop which deals with heap files and a more efficient i
plementation for SpatialHadoop which utilizes the spatidéx. In
this section, we give the general scheme of how the opesation
implemented in both Hadoop and SpatialHadoop while inteces
readers can refer to [9] for more details.

In Hadoop, a computational geometry operation runs in three
steps. (1) Theartition step randomly partitions input records
across nodes using the default Hadoop non-location-awnante p
tioner. (2) Thdocal process step processes each partition indepen-
dently and produces a partial answer stored as intermemisits.

For example in skyline, this step extracts the points on kiyére

of each partition and produces them as a partial answern (Bl
global process step, the partial answers are collected in one ma-
chine which computes the final answer and writes it outputt Fo
example in skyline, the points returned by all machines ate ¢
lected in one machine which computes the skyline for them and
returns the answer.

The drawback of Hadoop algorithms is that they need to scan
the whole dataset. In SpatialHadoop, we make two modifica-
tions to overcome this limitation. (1) we use tloeation-aware
partitioner provided by SpatialHadoop in the partitionpsteéhich
groups nearby points in one partition. This allows us to nuea
trapruning step before the local process step. In the pruning step,
partitions that do not contribute to answer are early prumigiciout
processing. For example in skyline, we prune partitionshictvall
points are guaranteed to be not on the skyline. Only the m@ngai
non-pruned partitions are processed by the local procepsdtich
makes it much faster as the input size decreases significéutt-
thermore, the global process step also becomes more effasen
the size of its input (i.e., intermediate partial resuliirdases.

6. APPLICATIONS

The core of SpatialHadoop can be used to build scalable-appli
cations which deal with tons of spatial datasets. This spalie-
scribes three key examples of systems that use Spatialidadoa
powerful backend to handle spatial data processing. (1) GINA
web-based traffic generator for road networks, (2) TAREEGeh
service for extracting spatial datasets from OpenStreptlsliad (3)
SHAHED: a tool for analyzing and processing large scale temo
sensing data from NASA.

6.1 MNTG

MNTG [13], available at http://mntg.cs.umn.edu/, is a web-
based traffic generator based on a real road network for tlewh
world. Figure 4(a) shows the interface of MNTG where users se
lect an area on the map, specify a generation model and its pa-
rameters then the system generates the traffic data on tkerfzhc
and email back the user when the job is done. One challenge tha
MNTG faces is extracting the road network of the selectea are
before sending it to the generator. As the total size of the reet-
work dataset is around 100 GB, a full scan would be tediousto d
with every request. To overcome this problem, SpatialHpdso
used to construct an R+-tree index and use this index to seed
range queries on selected areas. In MNTG, we construct @&x ind
of around 10,000 partitions with an average partition sfZ2dviB.

This was experimentally found to be the best based on typézal
quest sizes.

6.2 TAREEG

TAREEG [7] is a web service for extracting spatial datasetsnf
OpenStreetMap, available online at http://tareeg.orgiceenshot
of TAREEG is depicted in Figure 4(b). The interface is simita
MNTG where a user selects an area on the map, chooses a dataset
on the left and submits an extraction request. On the backbad
server performs a range query on the selected dataset amdsret
the extracted data in several formats including Google Kistiofat
and ESRI Shapefile. All the available datasets are extrdovea
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Figure5: Spatio-temporal index

OpenStreetMap using a MapReduce extractor that runs inabpat
Hadoop. A Pigeon script is used to create points and conhewt t
to form lines which form the shapes of the data (e.g., lakeb an
roads). After generating the datasets, SpatialHadooped ts
build R+-tree indexes, one per dataset, in order to speednger
queries. Total size of all datasets is around 400 GB.

6.3 SHAHED

SHAHED is a tool for analyzing and exploring remote sensing
data publicly available by NASA in a 500 TB archive [5]. SHA-
HED provides a web interface where users navigate through th
map and the system displays satellite data for the seleotad Bor
example, Figure 4(c) displays the heat map of temperatutben
night of the selected date. In addition, users can selectesnamd
ask the system to display the change of temperature oveectse!
time period as a vided. A user can also select an area and per-
form an analysis task on that area. For example, find anommalou
patterns of vegetation in the selected area. This system Sjsa-
tialHadoop to pre-compute the heat maps for available degtasnd
makes them available to the web browser for map navigatitwe. T
data mining module in the operations layer is also used topar
data analysis tasks issued by user.

7. SPATIO-TEMPORAL HADOOP

As we are working on the applications and datasets discussed
earlier, we had an increased need for efficient support ofihe
domain. For example in SHAHED, we need to run analysis tasks
on a specific time range. To support this kind of queries, vegine
add a spatio-temporal index which can be used to filter uyitherl
data by both time and space. In the first prototype, we build a
temporal index on top of the spatial index. In other words, we
first partition the data using the the temporal dimensioantive
build a spatial index inside each partition. As the numbetirné
partitions increase, we consolidate some old partitiots lerger
ones in order to decrease the number of partitions that reebd t
processed by a query.

Figure 5 illustrates how a spatio-temporal index looks bike
time point on March 3rd, 2014. Asillustrated, the most repeanti-
tion corresponds to the current date where all new data israjgal
to that partition. Older partitions have been consolidatedonths
and even older partitions have been grouped by year. Eatitiqrar
is associated with an R-tree index to speed up spatial quiesae
each partition. Most recent partitions are stored as ndexed
heap files as they are too small and an index would be too much
overhead.

There are three advantages to this design of spatio-teiripera
dex. (1) It allows us to reuse existing spatial indexes wimthi-
mizes the work effort. (2) It gives the flexibility to choodeettime
and spatial partitioning separately based on the undegrlgaiaset.
For example, we can use a grid index for uniform data and ae&-t
index for skewed data. (3) It allows data to be added increatign
to the index in a simple way as new records can be appended to th
most recent partition.

2Please refer to an example at http://youtu.be/hHrOSVAaak8

Spatio-temporal operations can employ this index by firsigis
the temporal partitioning then the spatial indexes. Fongia, a
range query would run in three steps. First, a temporal Bkégcts
the partitions that overlap the time range. Second, a 3$fiia
works on the matched partitions and uses their spatial asléx
select spatial partitions matching the spatial range. IFina re-
fine step scans all records in matched partitions and retanwsds
matching the spatio-temporal range.

8. CONCLUSION

This paper introduces SpatialHadoop, a full-fledged MapiRed
framework with native support of spatial data available & f
open-source. It enriches the core of Hadoop with nativaamta
support including a spatial high level language, spatid¢ies, spa-
tial MapReduce components, and a dozen of spatial opesatWa
showed that many spatial operations can be realized effigies-
ing the built-in components. Three live applications arespnted
as examples of how SpatialHadoop can be used by end users. Fi-
nally, we proposed Spatio-temporal Hadoop as an extendchw
adds temporal support to the core of SpatialHadoop.
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