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ABSTRACT
With the huge volumes of spatial data coming from different
sources, there is an increasing demand to exploit the efficiency of
Hadoop MapReduce framework in spatial data processing. How-
ever, Hadoop falls short in supporting spatial data efficiently as the
core is unaware of spatial data properties. This paper describes
SpatialHadoop; a full-fledged MapReduce framework with native
support for spatial data. SpatialHadoop is a comprehensiveexten-
sion to Hadoop that injects spatial data awareness in the main layers
of Hadoop. It ships with a simple high level language with spatial
datatypes and operations. The core contains traditional spatial in-
dexes, Grid, R-tree and R+-tree, which are adapted to the MapRe-
duce environment. SpatialHadoop is already equipped with adozen
of operations, including standard operations, computational geom-
etry and data mining operations. SpatialHadoop is already used
as a main component in three live systems MNTG, TAREEG and
SHAHED. For efficient processing of spatio-temporal data, Spatio-
temporal Hadoop is proposed as an extension to SpatialHadoop.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database ApplicationsSpatial
Databases and GIS
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1. INTRODUCTION
The recent explosion in the amounts of spatial data urged re-

searchers and practitioners worldwide to take advantage ofthe
MapReduce environment in supporting large-scale spatial data.
Most notably, in industry, ESRI has released a suite of GIS tools
on Hadoop [1] that work with their flagship ArcGIS product.
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Meanwhile, in academia, three system prototypes were proposed:
(1) Parallel-Secondo [12] as a parallel spatial DBMS that uses
Hadoop as a distributed task scheduler, (2)MD-HBase [14] ex-
tends HBase [2], a non-relational database runs on top of Hadoop,
to support multidimensional indexes, and (3) Hadoop-GIS [6] ex-
tends Hive [16], a data warehouse infrastructure built on top of
Hadoop with a uniform grid index for range queries and self-join.

A main drawback in the systems discussed above is the lack of
integration with the core of Hadoop. For example, HadoopGISis
built on Hive, a data warehousing system for Hadoop, rendering
it unuseful for traditional MapReduce programs running directly
in Hadoop. On the other hand, SpatialHadoop isbuilt-in Hadoop
which pushes spatial constructs inside the core of Hadoop making
it more efficient with query processing. More importantly, Spatial-
Hadoop introduces standard spatial indexes and MapReduce com-
ponents that allow researchers and developers to implementnew
spatial operations efficiently in the system. This is in contrast to
Hadoop-GIS and other systems that cannot support such kind of
flexibility, and hence they are limited to the functions theyship
with. Finally, indexing options in previous systems are limited,
e.g., uniform grid index in HadoopGIS, while SpatialHadooppro-
vides more options including Grid File, R-tree and R+-tree,which
makes it more useful with skewed data.

SpatialHadoop is available as open source [3] and has been al-
ready downloaded more than 75,000 times. SpatialHadoop is ac-
cessible through a high level language, named Pigeon [11], which
extends Pig Latin with OGC-standard [4] data types and operations.
In the core of SpatialHadoop, Grid File, R-tree and R+-tree indexes
are adapted to the Hadoop file system (HDFS) by building them as
a global index which partition data across nodes and multiple local
indexes to organize records inside each node. The new indexes are
made accessible to MapReduce programs by introducing two new
components, SpatialFileSplitter and SpatialRecordReader which
are used to access the global and local indexes, respectively. The
new design of spatial indexes allows a myriad spatial operations
to be implemented efficiently in SpatialHadoop. We show how to
implement three basic operations, range query, kNN and spatial
join [10]. In addition, we build CG_Hadoop [9], a suite of compu-
tational geometry operations, in SpatialHadoop which makes use
of spatial indexes to provide orders of magnitude speedup. Spa-
tialHadoop is also used in three live systems, MNTG [13] a web
service for generating traffic data, TAREEG [7], a web-basedex-
traction tool for OpenStreetMap data, and SHAHED, a system for
analyzing satellite data from NASA. In order to support spatio-
temporal data processing, we propose Spatio-temporal Hadoop as
an extension that takes the time dimension into account.
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Figure 1: Overview of SpatialHadoop

2. OVERVIEW OF SpatialHadoop
Figure 1 gives an overview of SpatialHadoop. A SpatialHadoop

cluster contains one master node that breaks a MapReduce jobinto
smaller tasks, carried out by slave nodes. There are three types of
users who interact with SpatialHadoop.Casual usersdeal with the
system through the available applications.Developersare able to
create new operations via MapReduce.System adminshave deep
understanding of system issues and can tune up the system through
the configuration files. The core of SpatialHadoop consists of four
layers described briefly below.

(1) TheLanguage layer containsPigeon [11], a high level lan-
guage with OGC-compliant spatial data types and functions.Pi-
geon is discussed in Section 3. (2) TheStorage layer contains three
spatial indexes, Grid File, R-tree and R+-tree, all implemented in-
side the Hadoop Distributed File System (HDFS) allowing spatial
operations to run much faster as opposed to heap files in Hadoop.
Indexes are organized in two-layers, one global index that partitions
data across nodes, and multiple local indexes to organize records in-
side each node. (3) We enrich theMapReduce layer with two new
components, namely, SpatialFileSplitter and SpatialRecordReader,
that allow spatial operations to access the constructed indexes. The
spatial indexes and new MapReduce components are describedin
Section 4. (4) TheOperations layer encapsulates the spatial op-
erations supported by SpatialHadoop.Basic operationscontains
three standard spatial operations, range query, kNN and spatial join.
CG_Hadoop[9] is a suite of fundamental computational geometry
operations. More advanced spatial data mining techniques are also
available for scalable spatial analysis of big data. The supported
operations are discussed in Section 5.

The core of SpatialHadoop is designed to serve as a backbone
for applications that deal with large scale data processing. In this
paper, we show three case studies of real systems that use Spatial-
Hadoop as a main component. (1) MNTG [13], a web-based traffic
generator for road networks. (2) TAREEG [7], a web service for ex-
tracting spatial datasets from OpenStreetMap. (3) SHAHED,a tool
for analyzing and processing large scale remote sensing data from
NASA. The three applications are briefly reviewed in Section6.

Motivated by the increased importance of the time dimensionin
the applications supported by SpatialHadoop, we proposeSpatio-
temporal Hadoopas an extension which adds efficient support of
temporal data by following a similar approach. It adds a spatio-
temporal index in the storage layer which partitions the data based
on both space and time. It goes all the way up through the differ-
ent layers to support efficient spatio-temporal functionality to end
users. Section 7 provides a discussion of spatio-temporal indexing.

3. LANGUAGE LAYER: PIGEON
As map-reduce-like paradigms require huge coding efforts [8,15,

17], a set of declarative SQL-like languages have been proposed,
e.g., HiveQL [16], Pig Latin [15], and SCOPE [8, 17]. Spatial-
Hadoop does not provide a completely new language. Instead,it
provides, Pigeon [11], an extension to Pig Latin language [15] by
adding spatial data types, functions, and operations that conform to
the Open Geospatial Consortium (OGC) standard [4]. In particular,
we add the following:
1. Pigeon adds support for OGC-compliant spatialdata types in-
cluding,Point, LineString, andPolygon. Since Pig Latin
does not allow defining new data types, Pigeon overrides the
bytearray data type to define spatial data types. Conversion be-
tweenbytearray andgeometry is done automatically on the
fly which makes it transparent to end users.
2. We addbasic spatial functions which are used to extract useful
information from a single shape; e.g.,Area calculates the area of
a polygonal shape.
3. Pigeon supports OGC standardspatial predicates which return a
Boolean value based on a test on the input polygon(s). For example,
IsClosed tests if a linestring is closed whileTouches checks if
two geometries touch each other.
4. Spatial analysis functions perform some spatial transforma-
tions on input objects such as calculating theCentroid or
Intersection. These functions are usually used to performs a
series of transformations on input records to produce final answer.
5. Spatial aggregate functions take a set of spatial objects and re-
turn a single value which summarizes all input objects; e.g., the
ConvexHull returns one polygon that represents the minimal
convex polygon that contains all input objects.

In addition to the functions in Pigeon, we do the following
changes to the language.
1. KNN Keyword. A new keywordKNN is added to perform a
k-nearest neighbor query.
2. FILTER. To support a range query, we override the Pig Latin se-
lection statementFILTER to accept a spatial predicate as an input
and calls the corresponding procedure for range queries.
3. JOIN. To support spatial joins, we override the Pig Latin join
statementJOIN to take two spatial files as input. The processing of
theJOIN statement is then forwarded to the corresponding spatial
join procedure.

4. SPATIAL INDEXING
SpatialHadoop adds new spatial indexes that are adapted to the

MapReduce environment. These indexes overcome a limitation
in Hadoop, which supports only non-indexed heap files. There
are two challenges when using traditional spatial indexes as-is in
Hadoop. First, traditional indexes are designed for the procedural
programming paradigm while SpatialHadoop uses the MapReduce
programming paradigm. Second, traditional indexes are designed
for local file systems while SpatialHadoop uses the Hadoop File
System (HDFS), which is inherently limited as files can be written
in an append only manner, and once written, they cannot be mod-
ified. To overcome these challenges, SpatialHadoop organizes its
index in two layers,global and local indexing. Theglobal index
partitions data across nodes in the cluster while thelocal indexes
organize data within each node. The separation of global andlo-
cal indexes lends itself to the MapReduce programming paradigm
where the global index is used for preparing the MapReduce job
while the local indexes are used for processing map tasks. Break-
ing the file into smaller partitions allows indexing each partition
separately in memory and writing it to a file in a sequential manner.



Figure 2: R+-tree index of a 400 GB OpenStreetMap dataset representing all map objects (Best viewed in color)

Figure 2 shows an example of an R+-tree index built in Spa-
tialHadoop for a 400 GB dataset of all map objects in the world
extracted from OpenStreetMap. Blue lines represent data while
black rectangles represent partition boundaries of the global index.
As shown in this example, SpatialHadoop adjusts the size of each
partition based on data distribution such that the contentsof each
partition are 64MB which ensures load balancing. Records ineach
partition are stored together as one HDFS block in one machine.

This design is used to support three classes of indexes in Spatial-
Hadoop, namely, Grid File, R-tree and R+-tree. Grid File is used
for uniformly distributed data while R-tree and R+-tree areused
for skewed data. In R-tree, records are not replicated whichcauses
partitions to overlap. This makes it more efficient for rangequeries
where partitions that are completely contained in query range can
be copied to output and no deduplication step is required. R+-
tree ensures that partitions are disjoint but some records need to be
replicated. R+-tree is more efficient with spatial join where disjoint
partitions allow each one to be processed independently.

The proposed index is constructed using a MapReduce job that
runs in three steps. (1) The partitioning step uses our spatial-aware
partitioner which distributes the data among computation nodes
such that each partition fits within a 64MB HDFS block. For uni-
formly distributed data a uniform grid is used while for skewed
data an R-tree-based partitioning is used. A record (e.g., polygon)
may be replicated if it overlaps multiple partitions while the replica-
tion is handled in the operations layer to produce a correct answer.
(2) In the local indexing step, each partition is locally indexed as
an R-tree and stored in a separate file. (3) The global indexing step
combines all files in one file and creates a global index for thepar-
titions which is kept in the main memory of the master node.

This index is made accessible to MapReduce programs by intro-
ducing two new components in the MapReduce layer, namely,Spa-
tialFileSplitter and SpatialRecordReader. The SpatialFileSplitter
takes a spatially indexed input file and a user-definedfilter function
and it exploits the global index in the input file to prune partitions
that do not contribute to answer. The SpatialRecordReader takes a
locally indexed partition returned by the filter function and exploits
its local index to retrieve the records that match the user query.
These two components allow developers to implement many spa-
tial operations efficiently as shown in the next section.

5. OPERATIONS
The combination of the spatial indexing with the new spatial

functionality in the MapReduce layer gives the core of Spatial-
Hadoop that enables the possibility of efficient realization of many
spatial operations. In this section, we describe how developers can
use the core of SpatialHadoop to implement basic spatial operations
and computational geometry operations. This shows the power and
flexibility of SpatialHadoop for support spatial operations.

5.1 Basic Operations
Among the available spatial operations available, we chosethree

basic operations, namely, range query, k-nearest neighborand spa-
tial join, to implement in SpatialHadoop due to their wide use. We
describe range query and spatial join in this section.

5.1.1 Range Query
A range query takes a set of spatial recordsR and a query area

A as input, and returns the records that overlap withA. In Spa-
tialHadoop, the SpatialFileSplitter reads the global index and uses
a filter function to select the partitions that overlap the query area.
Partitions that are completely outside the query area are pruned as
they do not contribute to answer. Each matching partition ispro-
cessed in a map task, where the SpatialRecordReader extracts its
local index and processes it with a range query to return records
matching the query area. Finally, a duplicate avoidance step filters
out duplicate results caused by replication in the index.

5.1.2 Spatial Join
A spatial join takes two sets of spatial recordsR andS and a spa-

tial join predicateθ (e.g.,touches, overlaps, or contains)
as input, and returns the set of all pairs〈r, s〉 wherer ∈ R, s ∈ S,
and the join predicateθ is true for〈r, s〉. To implement this oper-
ation in SpatialHadoop, we feed the SpatialFileSplitter with a fil-
ter function that selects every pair of overlapping partitions. The
SpatialRecordReader processes every pair of overlapping partitions
and exploit their local indexes with a traditional spatial join opera-
tion to return all overlapping pairs. Finally, a duplicate avoidance
step uses the reference point technique to eliminate duplication in
answer caused by replication in the index.
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Figure 4: Applications built on-top of SpatialHadoop

5.2 CG_Hadoop
CG_Hadoop [9] is a suite of computational geometry opera-

tions for MapReduce. As illustrated in Figure 3, it supportsfive
fundamental computational geometry operations, namely, polygon
union, skyline, convex hull, farthest pair, and closest pair, all imple-
mented as MapReduce. Each operation has two implementations,
one for Hadoop which deals with heap files and a more efficient im-
plementation for SpatialHadoop which utilizes the spatialindex. In
this section, we give the general scheme of how the operations are
implemented in both Hadoop and SpatialHadoop while interested
readers can refer to [9] for more details.

In Hadoop, a computational geometry operation runs in three
steps. (1) Thepartition step randomly partitions input records
across nodes using the default Hadoop non-location-aware parti-
tioner. (2) Thelocal process step processes each partition indepen-
dently and produces a partial answer stored as intermediateresult.
For example in skyline, this step extracts the points on the skyline
of each partition and produces them as a partial answer. (3) In the
global process step, the partial answers are collected in one ma-
chine which computes the final answer and writes it output. For
example in skyline, the points returned by all machines are col-
lected in one machine which computes the skyline for them and
returns the answer.

The drawback of Hadoop algorithms is that they need to scan
the whole dataset. In SpatialHadoop, we make two modifica-
tions to overcome this limitation. (1) we use thelocation-aware
partitioner provided by SpatialHadoop in the partition step which
groups nearby points in one partition. This allows us to run an ex-
tra pruning step before the local process step. In the pruning step,
partitions that do not contribute to answer are early prunedwithout
processing. For example in skyline, we prune partitions in which all
points are guaranteed to be not on the skyline. Only the remaining
non-pruned partitions are processed by the local process step which
makes it much faster as the input size decreases significantly. Fur-
thermore, the global process step also becomes more efficient as
the size of its input (i.e., intermediate partial result) decreases.

6. APPLICATIONS
The core of SpatialHadoop can be used to build scalable appli-

cations which deal with tons of spatial datasets. This section de-
scribes three key examples of systems that use SpatialHadoop as a
powerful backend to handle spatial data processing. (1) MNTG: A
web-based traffic generator for road networks, (2) TAREEG: aweb
service for extracting spatial datasets from OpenStreetMap, and (3)
SHAHED: a tool for analyzing and processing large scale remote
sensing data from NASA.

6.1 MNTG
MNTG [13], available at http://mntg.cs.umn.edu/, is a web-

based traffic generator based on a real road network for the whole
world. Figure 4(a) shows the interface of MNTG where users se-
lect an area on the map, specify a generation model and its pa-
rameters then the system generates the traffic data on the backend
and email back the user when the job is done. One challenge that
MNTG faces is extracting the road network of the selected area
before sending it to the generator. As the total size of the road net-
work dataset is around 100 GB, a full scan would be tedious to do
with every request. To overcome this problem, SpatialHadoop is
used to construct an R+-tree index and use this index to speedup
range queries on selected areas. In MNTG, we construct an index
of around 10,000 partitions with an average partition size of 12 MB.
This was experimentally found to be the best based on typicalre-
quest sizes.

6.2 TAREEG
TAREEG [7] is a web service for extracting spatial datasets from

OpenStreetMap, available online at http://tareeg.org/. Ascreenshot
of TAREEG is depicted in Figure 4(b). The interface is similar to
MNTG where a user selects an area on the map, chooses a dataset
on the left and submits an extraction request. On the backend, the
server performs a range query on the selected dataset and returns
the extracted data in several formats including Google KML format
and ESRI Shapefile. All the available datasets are extractedfrom



Jan Feb 1 2 320132012

Figure 5: Spatio-temporal index

OpenStreetMap using a MapReduce extractor that runs in Spatial-
Hadoop. A Pigeon script is used to create points and connect them
to form lines which form the shapes of the data (e.g., lakes and
roads). After generating the datasets, SpatialHadoop is used to
build R+-tree indexes, one per dataset, in order to speed up range
queries. Total size of all datasets is around 400 GB.

6.3 SHAHED
SHAHED is a tool for analyzing and exploring remote sensing

data publicly available by NASA in a 500 TB archive [5]. SHA-
HED provides a web interface where users navigate through the
map and the system displays satellite data for the selected area. For
example, Figure 4(c) displays the heat map of temperature onthe
night of the selected date. In addition, users can select an area and
ask the system to display the change of temperature over a selected
time period as a video2. A user can also select an area and per-
form an analysis task on that area. For example, find anomalous
patterns of vegetation in the selected area. This system uses Spa-
tialHadoop to pre-compute the heat maps for available datasets and
makes them available to the web browser for map navigation. The
data mining module in the operations layer is also used to perform
data analysis tasks issued by user.

7. SPATIO-TEMPORAL HADOOP
As we are working on the applications and datasets discussed

earlier, we had an increased need for efficient support of thetime
domain. For example in SHAHED, we need to run analysis tasks
on a specific time range. To support this kind of queries, we need to
add a spatio-temporal index which can be used to filter underlying
data by both time and space. In the first prototype, we build a
temporal index on top of the spatial index. In other words, we
first partition the data using the the temporal dimension, then we
build a spatial index inside each partition. As the number oftime
partitions increase, we consolidate some old partitions into larger
ones in order to decrease the number of partitions that need to be
processed by a query.

Figure 5 illustrates how a spatio-temporal index looks likeat a
time point on March 3rd, 2014. As illustrated, the most recent parti-
tion corresponds to the current date where all new data is appended
to that partition. Older partitions have been consolidatedin months
and even older partitions have been grouped by year. Each partition
is associated with an R-tree index to speed up spatial queries inside
each partition. Most recent partitions are stored as non-indexed
heap files as they are too small and an index would be too much
overhead.

There are three advantages to this design of spatio-temporal in-
dex. (1) It allows us to reuse existing spatial indexes whichmini-
mizes the work effort. (2) It gives the flexibility to choose the time
and spatial partitioning separately based on the underlying dataset.
For example, we can use a grid index for uniform data and an R-tree
index for skewed data. (3) It allows data to be added incrementally
to the index in a simple way as new records can be appended to the
most recent partition.
2Please refer to an example at http://youtu.be/hHrOSVAaak8

Spatio-temporal operations can employ this index by first using
the temporal partitioning then the spatial indexes. For example, a
range query would run in three steps. First, a temporal filterselects
the partitions that overlap the time range. Second, a spatial filter
works on the matched partitions and uses their spatial indexes to
select spatial partitions matching the spatial range. Finally, a re-
fine step scans all records in matched partitions and returnsrecords
matching the spatio-temporal range.

8. CONCLUSION
This paper introduces SpatialHadoop, a full-fledged MapReduce

framework with native support of spatial data available as free
open-source. It enriches the core of Hadoop with native spatial data
support including a spatial high level language, spatial indexes, spa-
tial MapReduce components, and a dozen of spatial operations. We
showed that many spatial operations can be realized efficiently us-
ing the built-in components. Three live applications are presented
as examples of how SpatialHadoop can be used by end users. Fi-
nally, we proposed Spatio-temporal Hadoop as an extension which
adds temporal support to the core of SpatialHadoop.
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