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Abstract

There is a recent outbreak in the amounts of spatial data generated by different sources, e.g., smart
phones, space telescopes, and medical devices, which urgedresearchers to exploit the existing dis-
tributed systems to process such amounts of spatial data. However, as these systems are not designed for
spatial data, they cannot fully utilize its spatial properties to achieve high performance. In this paper, we
describe SpatialHadoop, a full-fledged MapReduce framework which extends Hadoop to support spatial
data efficiently. SpatialHadoop consists of four main layers, namely,language, indexing, query process-
ing, and visualization. The languagelayer provides a high level language with standard spatial data
types and operations to make the system accessible to non-technical users. Theindexinglayer supports
standard spatial indexes, such as grid, R-tree and R+-tree,inside Hadoop file system in order to speed
up spatial operations. Thequery processinglayer encapsulates the spatial operations supported by
SpatialHadoop such as range query,k nearest neighbor, spatial join and computational geometryoper-
ations. Finally, thevisualizationlayer allows users to produce images that describe very large datasets
to make it easier to explore and understand big spatial data.SpatialHadoop is already used as a main
component in several real systems such as MNTG, TAREEG, TAGHREED, and SHAHED.

1 Introduction

With the recent explosion in the amounts of spatial data, many researchers are trying to process these data effi-
ciently using the distributed systems that run on hundreds of machines such as Hadoop and Hive. Unfortunately,
most of these systems are designed for general data processing and this generality comes with the price of a
sub-par performance with spatial data. Therefore, there are active research projects which try to extend these
system to well support spatial data. Most notably, ESRI released a suit of GIS tools for Hadoop [15] which inte-
grates Hadoop with their flagship ArcGIS product. Hadoop-GIS [2] extends Hive with a grid index and efficient
implementation of range and self-join queries. Similarly,MD-HBase [12] extends HBase with Quad tree and
K-d tree indexes for point datasets and support range and kNNqueries.

In this work, we describe the recent work in SpatialHadoop [6], a full-fledged system for spatial data which
extends Hadoop in its core to efficiently support spatial data. SpatialHadoop is available as an open source soft-
ware at http://spatialhadoop.cs.umn.edu/ and has been already downloaded around 80,000 times. SpatialHadoop
consists of four main layers, namely,language, indexing, query processing, andvisualization. In the language
layer, SpatialHadoop provides a high level language, termed Pigeon [5], which provides standard spatial data
types and query processing for easy access to non-technicalusers. Theindexinglayer provides efficient spatial
indexes, such as grid, R-tree, and R+-tree, which organize the data nicely in the distributed file system. The
indexes are organized in two levels, oneglobal index that partitions the data across machines, and multiple
local indexes that organize records in each machine. Thequery processinglayer encapsulates a set of spatial
operations that ship with SpatialHadoop including basic spatial operations, join operations and computational
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Figure 1: Overview of SpatialHadoop

geometry operations. Thevisualizationlayer allows users to explore big spatial data by generatingimages that
provide bird’s-eye view on the data. SpatialHadoop is already used in several real systems, such as SHAHED [7],
TAREEG [3], MNTG [11], and TAGHREED [10].

2 Overview of SpatialHadoop

Figure 1 gives an overview of SpatialHadoop. SpatialHadoopruns on a cluster containing one master node, that
breaks a MapReduce job into smaller tasks, and multiple slave nodes that carry out these tasks. The core of
SpatialHadoop consists of four main layers, namely,language, indexing, query processing, andvisualization,
described briefly below.

(1) TheLanguage layer containsPigeon [5], a high level language with OGC-compliant spatial data types
and functions. Pigeon is discussed in Section 3. (2) TheIndexing layer provides standard spatial indexes, such
as grid, R-tree, and R+-tree, which are used to store the datain an efficient way in the Hadoop Distributed File
System (HDFS). Indexes are organized in two-layers, one global index that partitions data across nodes, and
multiple local indexes to organize records inside each node. These indexes are made available to the MapRe-
duce programs through two new components, namely, SpatialFileSplitter and SpatialRecordReader. The spatial
indexing layer is described in Section 4. (3) TheQuery Processing layer encapsulates the spatial operations
supported by SpatialHadoop. This includesbasic operations, join operations, andCG Hadoop[4] which is a
suite of fundamental computational geometry operations. Developers and researchers can enrich this layer by
implementing more advanced spatial operations. The supported operations are discussed in Section 5. (4) The
Visualization layer provides efficient algorithms to visualize big spatial data by generating images that give a
bird’s-eye view to the data. SpatialHadoop supportssingle levelimages, which are generated at a fixed resolu-
tion, and multilevel images, which are generated at multiple resolutions to allow users to zoom in. The details
of the visualization layer is provided in Section 6.

The core of SpatialHadoop is designed to serve as a backbone for applications that deal with large scale data
processing. In Section 7, we describe SHAHED [7] as a case study of a real system which uses SpatialHadoop
to analyze and visualize large scale satellite data.



3 Language Layer: Pigeon

Most MapReduce-based systems require huge coding efforts,therefore, they provide easy high level languages
that make them usable by non-technical users, such as, HiveQL [14] for Hive and Pig Latin [13] for Hadoop.
SpatialHadoop does not provide a completely new language, instead, it provides, Pigeon [5], which extends Pig
Latin language [13] by adding spatial data types, functions, and operations that conform to the Open Geospatial
Consortium (OGC) standard [1]. In particular, we add the following:
1. OGC-compliant spatialdata types including,Point, LineString, andPolygon. Since Pig Latin does
not allow defining new data types, Pigeon overrides thebytearray data type to define spatial data types.
Conversion betweenbytearray andgeometry, back and forth, is done automatically on the fly which
makes it transparent to end users.
2. Basic spatial functions which are used to extract useful information from a single shape; e.g.,Area calcu-
lates the area of a polygonal shape.
3. OGC-standardspatial predicates which return a Boolean value based on a test on the input polygon(s). For
example,IsClosed tests if a linestring is closed whileTouches checks if two geometries touch each other.
4. Spatial analysis functions which perform some spatial transformations on input objects such as calculating
theCentroid or Intersection. These functions are usually used to performs a series of transformations
on input records to produce final answer.
5. Spatial aggregate functions which take a set of spatial objects and return a single value which summarizes
all input objects; e.g., theConvexHull returns one polygon that represents the minimal convex polygon that
contains all input objects.

In addition to the functions in Pigeon, we do the following changes to the language.
1. KNN Keyword. A new keywordKNN is added to perform a k-nearest neighbor query.
2. FILTER. To support a range query, we override the Pig Latin selectionstatement,FILTER, to accept a
spatial predicate as an input and calls the corresponding procedure for range queries.
3. JOIN. To support spatial joins, we override the Pig Latin join statementJOIN to take two spatial files as
input. The processing of theJOIN statement is then forwarded to the corresponding spatial join procedure.

4 Spatial Indexing

Traditional Hadoop stores data files in the Hadoop Distributed File System (HDFS) as heap files. This means
that the data is partitioned into HDFS blocks, of 64 MB each, without taking the values of the records into
consideration. While this is acceptable for traditional queries and applications, it results in a poor performance
for spatial queries. There exist traditional spatial indexes, such as the R-tree [8], however, they are designed for
the local file system and traditionalproceduralprogramming, hence, they are not directly applicable to Hadoop
which uses HDFS and MapReducefunctionalprogramming. HDFS is inherently limited as files can be only
written in sequential manner and, once written, cannot be modified.

To overcome the limitations of traditional spatial indexes, SpatialHadoop proposes a two-layer spatial index
structure which consists of oneglobal index and multiplelocal indexes. The global index partitions data into
HDFS blocks and distributes them among cluster nodes, whilelocal indexes organize records inside each block.
The separation of global and local indexes lends itself to the MapReduce programming paradigm where the
global index is used while preparing the MapReduce job whilethe local indexes are used for processing the
map tasks. In addition, breaking the file into smaller partitions allows each partition to be indexed separately in
memory and dumping it to a file in a sequential manner. SpatialHadoop uses this two-level design to build a grid
index, R-tree and R+-tree.

Figure 2 shows an example of an R-tree index built in SpatialHadoop for a 400 GB dataset of all map objects
in the world extracted from OpenStreetMap. Blue lines represent data while black rectangles represent partition



Figure 2: R-tree index of a 400 GB OpenStreetMap dataset representing all map objects (Best viewed in color)

boundaries of the global index. As shown in this example, SpatialHadoop adjusts the size of each partition
based on data distribution such that the total size of the contents of each partition is 64MB which ensures load
balancing. Records in each partition are stored together asone HDFS block in one machine.

The index is constructed in one MapReduce job that runs in three phases. (1) Thepartitioning phase divides
the space inton rectangles, then, it partitions the data by assigning each record to overlapping rectangles. The
challenge in this step is how to adjust these rectangles suchthat the contents of each partition is around 64 MB
of data to fit in one HDFS block. To overcome this challenge, wefirst calculate the desired number of partitions
by dividing the input file size|S| by the HDFS block capacityB, i.e.,n = |S|/B. Then, for the grid index, we
partition the space using a uniform grid of size

√
n × √

n assuming uniformly distributed data. For R-tree and
R+-tree, we draw a random sample from the input file, and bulk load this sample into an in-memory R-tree of
n leaf nodes using the STR algorithm [9]. Then, the boundariesof the leaf nodes are used to partition the file
assuming that the random sample is representative for data distribution. (2) In thelocal indexingphase, each
partition is processed separately on a single machine and a local index is constructed in memory before it is
dumped to disk. Since the partitioning phase adjusts the size of each partition to be of a single HDFS block, it
becomes possible for each machine to completely load it intomemory, build the index, and write it to disk in
a sequential manner. (3) The finalglobal indexingphase constructs a global index on the master node which
indexes all HDFS blocks in the file using their MBRs as indexing key. The global index is kept in the main
memory of the master node and it provides an efficient way to select file blocks in a specific range.

Once the data is stored efficiently in the file system as indexes, we need to add new components that allow
MapReduce programs to use them. Without these new components, the traditional MapReduce components
shipped with Hadoop will not be able to make use of these indexes and will treat them as heap files. Therefore,
SpatialHadoop adds two new components, namely,SpatialFileSplitterandSpatialRecordReader. The Spatial-
FileSplitter takes a spatially indexed input file and a user-definedfilter functionand it exploits the global index
in the input file to prune partitions that do not contribute toanswer. The SpatialRecordReader takes a locally
indexed partition returned by the filter function and exploits its local index to retrieve the records that match the
user query. These two components allow developers to implement many spatial operations efficiently as shown
in the next section.
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Figure 3: Spatial Queries in SpatialHadoop

5 Query Processing

The efficient indexes and the new MapReduce components introduced in the indexing layer give the core of
SpatialHadoop that enables the possibility of efficient realization of many spatial operations. In this section,
we show a few case studies of three categories of operations,namely,basic operations, join operationsand
computational geometryoperations. Developers can follow similar techniques to add more operations such as
kNN join or reverse nearest neighbor operations.

5.1 Basic Operations

SpatialHadoop contains a number of basic spatial operations such as range query and k-nearest neighbor query.
A range query takes a set of spatial recordsR and a query areaA as input, and returns the records that overlap
with A. SpatialHadoop exploits the global index with the SpatialFileSplitter to select only the partitions that
overlap the query rangeA. Then, it uses the SpatialRecordReader to process the localindexes in matching
partitions and find matching records. Finally, a duplicate avoidance step filters out duplicate results caused by
replication in the index. Although this algorithm is efficient as it quickly prunes non-relevant partitions, it takes
considerable time for very small ranges due to the overhead imposed by Hadoop for starting any MapReduce job.
Therefore, if the query range is very small, i.e., matches only a few partitions, the algorithm can be implemented
on a single machine without starting a MapReduce job, which provides an interactive response [7,10].

5.2 Join Operations

Join operations are usually more complex as they deal with more than one file. In a spatial join query, the input
consists of two sets of spatial recordsR andS and a spatial join predicateθ, e.g.,overlaps, and the output is
the set of all pairs〈r, s〉 wherer ∈ R, s ∈ S, and the join predicateθ is true for〈r, s〉. SpatialHadoop proposes
a MapReduce-based algorithm where the SpatialFileSplitter exploits the two global indexes to find overlapping
pair of partitions as illustrated in Figure 3(a). The map function uses the SpatialRecordReader to exploit the two
local indexes in each pair to find matching records. Finally,a duplicate avoidance step eliminates duplicate pairs
in the answer caused by replication in the index.

5.3 CG Hadoop

CG Hadoop [4] is a suite of computational geometry operations for MapReduce. It supports five fundamental
computational geometry operations, namely, polygon union, skyline, convex hull, farthest pair, and closest pair,
all implemented as MapReduce algorithms. We show the skyline algorithm as an example while interesting
readers can refer to [4] for further details.
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Figure 4: Visualization

In the skyline operation, the input is a set of pointsP and the output is the set ofnon-dominatedpoints. A
point p dominates a pointq if p is greater thanq in all dimensions. CGHadoop adapts the existing divide-and-
conquer skyline algorithm to Hadoop as a MapReduce program.Furthermore, CGHadoop utilizes the spatial
index constructed using SpatialHadoop to prune partitionsthat are outside the query range. A partitionci is
pruned ifall points in this partition are dominated by at least one point in another partitioncj , in which case we
say thatcj dominatesci. For example in Figure 3(b),c1 is dominated byc5 because the top-right corner ofc1
(i.e., best point) is dominated by the bottom-left corner ofc5 (i.e., worst point). The transitivity of the skyline
domination rule implies thatanypoint in c5 dominatesall points inc1. In addition, the partitionc4 is dominated
by c6 because the top-right corner ofc4 is dominated by the top-left corner ofc6 which means that any point
along the top edge ofc6 dominates all points inc4. Since the boundaries of each partition are tight, there hasto
be at least one point along each edge.

6 Visualization

The visualization process involves creating an image that describes an input dataset. This is a natural way to
explore spatial datasets as it allows users to find interesting patterns in the input which are otherwise hard to
spot. Traditional visualization techniques rely on a single machine to load and process the data which makes
them unable to handle big spatial data. SpatialHadoop provides a visualization layer which generates two types
of images, namely,single levelimage andmultilevelimages, as described below.

6.1 Single Level Image Visualization

In single level image visualization, the input dataset is visualized as a single image of a user-specified image size
(width × height) in pixels. SpatialHadoop generates a single level image inthree phases. (1) Thepartitioning
phase partitions the data using either the default non-spatial Hadoop partitioner or using the spatial partitioner in
SpatialHadoop depending on whether the data needs to besmoothedor not. Figure 4(a) shows an example of vi-
sualizing a road network without smoothing where intersecting road segments are overlapping each other, while
Figure 4(b) shows the correct and desired image where intersecting road segments are merged (i.e., smoothed).
If a smooth function is needed, we have to use a spatial partitioner to ensure that intersecting road segments
are processed by the same machine and can be merged. (2) In therasterizephase, the machines in the cluster
process the partitions in parallel and generate a partial image for each partition. If the default Hadoop partitioner
is used, each partial image has the same size of the final desired image because the partition contains data from
all over the input space. On the other hand, if a spatial partitioner is used, each partial image would be of a small
size according to the region covered by the associated partition. (3) In themergingphase, the partial images are
combined together to produce the final image. If a non-spatial partitioner is used, partial images areoverlaidas
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Figure 5: Analyzing and Visualizing Satellite Data using SHAHED

they all have the size of the final image as shown in Figure 4(c). On the other hand, if a spatial partitioner is
used, the merging phasestitchespartial images together as shown in Figure 4(d).

6.2 Multilevel Image Visualization

The quality of a single level image is limited by its resolution which means users cannot zoom in to see more
details. Therefore, SpatialHadoop also supports multilevel images which consist of small tiles produced at
different zoom levels as shown in Figure 4(e). The input to this algorithm is a dataset and a range of zoom
levels[zmin, zmax] and the output is all image tiles in the specified range of levels. A naı̈ve approach is to use
the single level image algorithm to generate each tile independently but this approach is infeasible due to the
excessive number of MapReduce jobs to run. For example, at zoom level 10, there will be more than one million
images which would require running one million MapReduce jobs. Alternatively, SpatialHadoop provides a
more efficient algorithm that runs in two phases only,partition andrasterize. (1) The partition phase scans all
input records and replicates each recordr to all overlapping tiles in the image according to the MBR ofr and
the MBR of each tile. This phase produces one partition per tile in the desired image. (2) Therasterizephase
processes all generated partitions and generates a single image out of each partition. Since the size of each
image tile is small, a single machine can generate that tile efficiently. This technique is used in [7] to produce
temperature heat maps for NASA satellite data.

7 Case Study: SHAHED

The core of SpatialHadoop is used in several real applications that deal with big spatial data including
MNTG [11], a web-based traffic generator; TAREEG [3], a MapReduce extractor for OpenStreetMap data;
TAGHREED [10], a system for querying and visualizing twitter data, and SHAHED [7], a MapReduce system
for analyzing and visualizing satellite data which is further discussed in this section. SHAHED is a tool for
analyzing and exploring remote sensing data publicly available by NASA in a 500 TB archive. It provides a
web interface (Figure 5(a)) where users navigate through the map and the system displays satellite data for the
selected area.

SHAHED uses the indexing layer in SpatialHadoop to organizesatellite data in a uniform grid index as the
data is uniformly distributed. Furthermore, it builds an aggregate-quad-tree local index inside each grid cell
to speed up both selection and aggregate queries. On top of the spatial index, it provides a multi-resolution
temporal index which organizes data in days, months and years. For example, in thedaily level, it builds a



separate spatial index for each day, while in themonthslevel, it builds one index for each month. The goal is to
provide efficient query processing for both small and large temporal ranges.

In the query processinglayer, it provides both selection and aggregate spatio-temporal queries where the
input is a data set, e.g., temperature, a spatial range represented as a rectangular region on the map and a
temporal range provided as a date range on the calendar (see Figure 5(a)). In selection queries, all values in
the chosen dataset and spatio-temporal range are either returned to the user as a file to download, or further
processed to produce an image as shown below. In aggregate queries, only the minimum, maximum and average
values are returned.

SHAHED also makes use of thevisualizationlayer to visualize satellite data. The results of the selection
query are visualized as a satellite heat map. For example, itis used to generate a temperate heat map for the
whole world, as shown in Figure 5(b), which consists of a total of 500 Million points. If a date range is selected
instead of a single date, an animating video is generated which shows the change of temperature over the selected
time 1. SHAHED also uses the multilevel image visualization technique to precompute heatmaps for different
datasets over the whole world and allow users to navigate these datasets on a web interface by overlaying the
generated images over the world map and updating them as the user navigates.
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