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Abstract

There is a recent outbreak in the amounts of spatial data igeee by different sources, e.g., smart
phones, space telescopes, and medical devices, which tegedrchers to exploit the existing dis-
tributed systems to process such amounts of spatial dataerer, as these systems are not designed for
spatial data, they cannot fully utilize its spatial prope# to achieve high performance. In this paper, we
describe SpatialHadoop, a full-fledged MapReduce framlewthich extends Hadoop to support spatial
data efficiently. SpatialHadoop consists of four main layeamelylanguageindexing query process-
ing, andvisualization Thelanguagedayer provides a high level language with standard spatiafad
types and operations to make the system accessible to donit¢al users. Thandexinglayer supports
standard spatial indexes, such as grid, R-tree and R+-iresde Hadoop file system in order to speed
up spatial operations. Thguery processindayer encapsulates the spatial operations supported by
SpatialHadoop such as range quekynearest neighbor, spatial join and computational geomepgr-
ations. Finally, thevisualizationlayer allows users to produce images that describe veryelagtasets
to make it easier to explore and understand big spatial d&jatialHadoop is already used as a main
component in several real systems such as MNTG, TAREEG, REEH, and SHAHED.

1 Introduction

With the recent explosion in the amounts of spatial data,ynnasearchers are trying to process these data effi-
ciently using the distributed systems that run on hundrédsagzhines such as Hadoop and Hive. Unfortunately,
most of these systems are designed for general data progessi this generality comes with the price of a
sub-par performance with spatial data. Therefore, thezeaetive research projects which try to extend these
system to well support spatial data. Most notably, ESRls#d a suit of GIS tools for Hadoop [15] which inte-
grates Hadoop with their flagship ArcGIS product. Hadoof-{Z] extends Hive with a grid index and efficient
implementation of range and self-join queries. Similaty,D-HBase [12] extends HBase with Quad tree and
K-d tree indexes for point datasets and support range anddddiNes.

In this work, we describe the recent work in SpatialHadodpd6ull-fledged system for spatial data which
extends Hadoop in its core to efficiently support spatiahd&patialHadoop is available as an open source soft-
ware at http://spatialhadoop.cs.umn.edu/ and has besadgldownloaded around 80,000 times. SpatialHadoop
consists of four main layers, namelginguage indexing query processingandvisualization In thelanguage
layer, SpatialHadoop provides a high level language, tdrRigeon [5], which provides standard spatial data
types and query processing for easy access to non-teclusieed. Thendexinglayer provides efficient spatial
indexes, such as grid, R-tree, and R+-tree, which orgahigalata nicely in the distributed file system. The
indexes are organized in two levels, oglebal index that partitions the data across machines, and naultipl
local indexes that organize records in each machine. guery processindayer encapsulates a set of spatial
operations that ship with SpatialHadoop including basatiapoperations, join operations and computational
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Figure 1: Overview of SpatialHadoop

geometry operations. Thasualizationlayer allows users to explore big spatial data by generathages that
provide bird’s-eye view on the data. SpatialHadoop is dlyassed in several real systems, such as SHAHED [7],
TAREEG [3], MNTG [11], and TAGHREED [10].

2 Overview of SpatialHadoop

Figure 1 gives an overview of SpatialHadoop. SpatialHadoog on a cluster containing one master node, that
breaks a MapReduce job into smaller tasks, and multipleestedes that carry out these tasks. The core of
SpatialHadoop consists of four main layers, hamlagguage indexing query processingandvisualization
described briefly below.

(1) TheLanguage layer containd?igeon [5], a high level language with OGC-compliant spatial dgfzet
and functions. Pigeon is discussed in Section 3. (2) Mdexing layer provides standard spatial indexes, such
as grid, R-tree, and R+-tree, which are used to store theimata efficient way in the Hadoop Distributed File
System (HDFS). Indexes are organized in two-layers, onkaflmdex that partitions data across nodes, and
multiple local indexes to organize records inside each nddiese indexes are made available to the MapRe-
duce programs through two new components, namely, SpidigHitter and SpatialRecordReader. The spatial
indexing layer is described in Section 4. (3) TQeery Processing layer encapsulates the spatial operations
supported by SpatialHadoop. This includessic operationsjoin operations andCG_Hadoop[4] which is a
suite of fundamental computational geometry operationsveldpers and researchers can enrich this layer by
implementing more advanced spatial operations. The stggpoperations are discussed in Section 5. (4) The
Visualization layer provides efficient algorithms to visualize big spatiata by generating images that give a
bird’s-eye view to the data. SpatialHadoop suppeitgle levelimages, which are generated at a fixed resolu-
tion, and multilevel images, which are generated at matipkolutions to allow users to zoom in. The details
of the visualization layer is provided in Section 6.

The core of SpatialHadoop is designed to serve as a backboapglications that deal with large scale data
processing. In Section 7, we describe SHAHED [7] as a casly stiia real system which uses SpatialHadoop
to analyze and visualize large scale satellite data.



3 LanguagelLayer: Pigeon

Most MapReduce-based systems require huge coding effosigfore, they provide easy high level languages
that make them usable by non-technical users, such as, Hijef) for Hive and Pig Latin [13] for Hadoop.
SpatialHadoop does not provide a completely new languagtead, it provides, Pigeon [5], which extends Pig
Latin language [13] by adding spatial data types, functians operations that conform to the Open Geospatial
Consortium (OGC) standard [1]. In particular, we add th&feing:
1. OGC-compliant spatiadata types including, Poi nt , Li neSt ri ng, andPol ygon. Since Pig Latin does
not allow defining new data types, Pigeon overrideslii¢ ear r ay data type to define spatial data types.
Conversion betweebyt ear r ay andgeonet ry, back and forth, is done automatically on the fly which
makes it transparent to end users.
2. Basic spatial functions which are used to extract useful information from a singlepsh e.g.Ar ea calcu-
lates the area of a polygonal shape.
3. OGC-standardpatial predicates which return a Boolean value based on a test on the input po(gy For
example] sCl osed tests if a linestring is closed whilBouches checks if two geometries touch each other.
4. Spatial analysis functions which perform some spatial transformations on input okjsctch as calculating
theCentroi d orl nt er secti on. These functions are usually used to performs a seriesdftranations
on input records to produce final answer.
5. Spatial aggregate functions which take a set of spatial objects and return a single vahiemsummarizes
all input objects; e.g., th€onvexHul | returns one polygon that represents the minimal convexgoolythat
contains all input objects.

In addition to the functions in Pigeon, we do the followingaolges to the language.
1. KNN Keyword. A new keywordKNN is added to perform a k-nearest neighbor query.
2. FILTER. To support a range query, we override the Pig Latin selectatementfFl LTER, to accept a
spatial predicate as an input and calls the correspondimeefure for range queries.
3. JOIN. To support spatial joins, we override the Pig Latin join etaéntJO N to take two spatial files as
input. The processing of theOl N statement is then forwarded to the corresponding spatiapjocedure.

4 Spatial Indexing

Traditional Hadoop stores data files in the Hadoop Distebutile System (HDFS) as heap files. This means
that the data is partitioned into HDFS blocks, of 64 MB eachltheaut taking the values of the records into
consideration. While this is acceptable for traditiona¢kd@s and applications, it results in a poor performance
for spatial queries. There exist traditional spatial irglexsuch as the R-tree [8], however, they are designed for
the local file system and traditionpfoceduralprogramming, hence, they are not directly applicable todéad
which uses HDFS and MapReduftenctional programming. HDFS is inherently limited as files can be only
written in sequential manner and, once written, cannot beified.

To overcome the limitations of traditional spatial index@patialHadoop proposes a two-layer spatial index
structure which consists of orgdobal index and multipldocal indexes. The global index partitions data into
HDFS blocks and distributes them among cluster nodes, Wdtld indexes organize records inside each block.
The separation of global and local indexes lends itself ®NMapReduce programming paradigm where the
global index is used while preparing the MapReduce job wihikelocal indexes are used for processing the
map tasks. In addition, breaking the file into smaller parig allows each partition to be indexed separately in
memory and dumping it to a file in a sequential manner. Spdiddop uses this two-level design to build a grid
index, R-tree and R+-tree.

Figure 2 shows an example of an R-tree index built in Spatidbdp for a 400 GB dataset of all map objects
in the world extracted from OpenStreetMap. Blue lines regné data while black rectangles represent partition



Figure 2: R-tree index of a 400 GB OpenStreetMap datasetsepting all map objects (Best viewed in color)

boundaries of the global index. As shown in this example tiSipladoop adjusts the size of each partition
based on data distribution such that the total size of théeotsm of each partition is 64MB which ensures load
balancing. Records in each partition are stored togethen@$iDFS block in one machine.

The index is constructed in one MapReduce job that runs eethhases. (1) Thgartitioning phase divides
the space intm rectangles, then, it partitions the data by assigning eactrd to overlapping rectangles. The
challenge in this step is how to adjust these rectangles thiathhe contents of each partition is around 64 MB
of data to fit in one HDFS block. To overcome this challengefivee calculate the desired number of partitions
by dividing the input file sizéS| by the HDFS block capacit, i.e.,n = |S|/B. Then, for the grid index, we
partition the space using a uniform grid of sige x \/n assuming uniformly distributed data. For R-tree and
R+-tree, we draw a random sample from the input file, and kmdkl ithis sample into an in-memory R-tree of
n leaf nodes using the STR algorithm [9]. Then, the boundafdke leaf nodes are used to partition the file
assuming that the random sample is representative for dgtidtion. (2) In thelocal indexingphase, each
partition is processed separately on a single machine andah ihdex is constructed in memory before it is
dumped to disk. Since the partitioning phase adjusts tleedizach partition to be of a single HDFS block, it
becomes possible for each machine to completely load itrmémory, build the index, and write it to disk in
a sequential manner. (3) The firglbbal indexingphase constructs a global index on the master node which
indexes all HDFS blocks in the file using their MBRs as indgxkey. The global index is kept in the main
memory of the master node and it provides an efficient waylexséle blocks in a specific range.

Once the data is stored efficiently in the file system as irglexe need to add new components that allow
MapReduce programs to use them. Without these new comyriéet traditional MapReduce components
shipped with Hadoop will not be able to make use of these ieslexd will treat them as heap files. Therefore,
SpatialHadoop adds two new components, nan&batialFileSplitterand SpatialRecordReaderThe Spatial-
FileSplitter takes a spatially indexed input file and a wdinedfilter functionand it exploits the global index
in the input file to prune partitions that do not contributeatsswer. The SpatialRecordReader takes a locally
indexed partition returned by the filter function and exigdts local index to retrieve the records that match the
user query. These two components allow developers to imgrslemany spatial operations efficiently as shown
in the next section.
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Figure 3: Spatial Queries in SpatialHadoop

5 Query Processing

The efficient indexes and the new MapReduce componentdinteal in the indexing layer give the core of
SpatialHadoop that enables the possibility of efficientization of many spatial operations. In this section,
we show a few case studies of three categories of operatiamsely, basic operationsjoin operationsand
computational geometrgperations. Developers can follow similar techniques t mdre operations such as
kNN join or reverse nearest neighbor operations.

5.1 Basic Operations

SpatialHadoop contains a number of basic spatial opesaiooh as range query and k-nearest neighbor query.
A range query takes a set of spatial recoftiand a query ared as input, and returns the records that overlap
with A. SpatialHadoop exploits the global index with the Spatiafplitter to select only the partitions that
overlap the query rangd. Then, it uses the SpatialRecordReader to process theilm=tes in matching
partitions and find matching records. Finally, a duplicateidance step filters out duplicate results caused by
replication in the index. Although this algorithm is effinteas it quickly prunes non-relevant partitions, it takes
considerable time for very small ranges due to the overhmpdsed by Hadoop for starting any MapReduce job.
Therefore, if the query range is very small, i.e., matchdg afew partitions, the algorithm can be implemented
on a single machine without starting a MapReduce job, whickiges an interactive response [7, 10].

5.2 Join Operations

Join operations are usually more complex as they deal witte itih@n one file. In a spatial join query, the input
consists of two sets of spatial recorsand.S and a spatial join predicatg e.g.,over | aps, and the output is
the set of all pairsr, s) wherer € R, s € S, and the join predicaté is true for(r, s). SpatialHadoop proposes

a MapReduce-based algorithm where the SpatialFile Spdikploits the two global indexes to find overlapping
pair of partitions as illustrated in Figure 3(a). The mapchion uses the SpatialRecordReader to exploit the two
local indexes in each pair to find matching records. Finallguplicate avoidance step eliminates duplicate pairs
in the answer caused by replication in the index.

5.3 CG_Hadoop

CG_Hadoop [4] is a suite of computational geometry operatiandfapReduce. It supports five fundamental
computational geometry operations, namely, polygon urskyline, convex hull, farthest pair, and closest pair,
all implemented as MapReduce algorithms. We show the skyigorithm as an example while interesting
readers can refer to [4] for further details.
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Figure 4: Visualization

In the skyline operation, the input is a set of poifmsnd the output is the set abn-dominategoints. A
point p dominates a poing if p is greater tham in all dimensions. CGHadoop adapts the existing divide-and-
conquer skyline algorithm to Hadoop as a MapReduce progfanthermore, CGHadoop utilizes the spatial
index constructed using SpatialHadoop to prune partittbas are outside the query range. A partitigns
pruned ifall points in this partition are dominated by at least one pairriother partitior;, in which case we
say thatc; dominates:;. For example in Figure 3(by; is dominated by because the top-right corner af
(i.e., best point) is dominated by the bottom-left cornerfi.e., worst point). The transitivity of the skyline
domination rule implies thany point in c; dominatesall points inc;. In addition, the partitiorz4 is dominated
by ¢¢ because the top-right corner of is dominated by the top-left corner ef which means that any point
along the top edge af dominates all points in,. Since the boundaries of each partition are tight, therdédas
be at least one point along each edge.

6 Visualization

The visualization process involves creating an image thatiibes an input dataset. This is a natural way to
explore spatial datasets as it allows users to find integegtatterns in the input which are otherwise hard to

spot. Traditional visualization techniques rely on a sngiachine to load and process the data which makes
them unable to handle big spatial data. SpatialHadoop ges\a visualization layer which generates two types

of images, namelsingle leveimage andnultilevelimages, as described below.

6.1 SingleLevel Image Visualization

In single level image visualization, the input dataset ssiglized as a single image of a user-specified image size
(width x height) in pixels. SpatialHadoop generates a single level imadlereae phases. (1) Thpartitioning
phase partitions the data using either the default nonadp#doop partitioner or using the spatial partitioner in
SpatialHadoop depending on whether the data needsambethedr not. Figure 4(a) shows an example of vi-
sualizing a road network without smoothing where intelisgatoad segments are overlapping each other, while
Figure 4(b) shows the correct and desired image where ating road segments are merged (i.e., smoothed).
If a smooth function is needed, we have to use a spatial ipait to ensure that intersecting road segments
are processed by the same machine and can be merged. (2)rastbezephase, the machines in the cluster
process the partitions in parallel and generate a partedafor each partition. If the default Hadoop partitioner
is used, each partial image has the same size of the finabdesiage because the partition contains data from
all over the input space. On the other hand, if a spatialtparér is used, each partial image would be of a small
size according to the region covered by the associatedipart(3) In themergingphase, the partial images are
combined together to produce the final image. If a non-spadiditioner is used, partial images areerlaid as



(a) Screen shot of SHAHED (b) World heat map generated by SHAHED

Figure 5: Analyzing and Visualizing Satellite Data using/&BH#ED

they all have the size of the final image as shown in Figure. 40g) the other hand, if a spatial partitioner is
used, the merging phasétchespartial images together as shown in Figure 4(d).

6.2 Multilevel Image Visualization

The quality of a single level image is limited by its resabmiwhich means users cannot zoom in to see more
details. Therefore, SpatialHadoop also supports mudtil@wages which consist of small tiles produced at
different zoom levels as shown in Figure 4(e). The input fe #igorithm is a dataset and a range of zoom
levels [znin, zmas] @nd the output is all image tiles in the specified range oflsev& naive approach is to use
the single level image algorithm to generate each tile ieddpntly but this approach is infeasible due to the
excessive number of MapReduce jobs to run. For examplepat #vel 10, there will be more than one million
images which would require running one million MapRedudasjo Alternatively, SpatialHadoop provides a
more efficient algorithm that runs in two phases opigrtition andrasterize (1) The partition phase scans all
input records and replicates each recoitw all overlapping tiles in the image according to the MBR-aind

the MBR of each tile. This phase produces one partition peirtithe desired image. (2) Thiasterizephase
processes all generated partitions and generates a sing@geiout of each partition. Since the size of each
image tile is small, a single machine can generate thatffilgently. This technique is used in [7] to produce
temperature heat maps for NASA satellite data.

7 Case Study: SHAHED

The core of SpatialHadoop is used in several real applicstithat deal with big spatial data including
MNTG [11], a web-based traffic generator; TAREEG [3], a Mag&ee extractor for OpenStreetMap data;
TAGHREED [10], a system for querying and visualizing twittkata, and SHAHED [7], a MapReduce system
for analyzing and visualizing satellite data which is fertldiscussed in this section. SHAHED is a tool for
analyzing and exploring remote sensing data publicly atségl by NASA in a 500 TB archive. It provides a
web interface (Figure 5(a)) where users navigate throughmtap and the system displays satellite data for the
selected area.

SHAHED uses the indexing layer in SpatialHadoop to orgas#ellite data in a uniform grid index as the
data is uniformly distributed. Furthermore, it builds argeagate-quad-tree local index inside each grid cell
to speed up both selection and aggregate queries. On toge aptitial index, it provides a multi-resolution
temporal index which organizes data in days, months andsyedaor example, in thdaily level, it builds a



separate spatial index for each day, while innti@nthdevel, it builds one index for each month. The goal is to
provide efficient query processing for both small and laggagoral ranges.

In the query processindayer, it provides both selection and aggregate spatigoeah queries where the
input is a data set, e.g., temperature, a spatial rangeseezl as a rectangular region on the map and a
temporal range provided as a date range on the calendar igpae 5(a)). In selection queries, all values in
the chosen dataset and spatio-temporal range are eithenedtto the user as a file to download, or further
processed to produce an image as shown below. In aggregaiesjwnly the minimum, maximum and average
values are returned.

SHAHED also makes use of thesualizationlayer to visualize satellite data. The results of the silact
guery are visualized as a satellite heat map. For examgkeuied to generate a temperate heat map for the
whole world, as shown in Figure 5(b), which consists of altot®00 Million points. If a date range is selected
instead of a single date, an animating video is generatechvghiows the change of temperature over the selected
time . SHAHED also uses the multilevel image visualization téghe to precompute heatmaps for different
datasets over the whole world and allow users to navigatetbatasets on a web interface by overlaying the
generated images over the world map and updating them as¢h@avigates.
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Please refer to an example at http://youtu.be/hHrOSVAaak8



