New Trends in Database Systems

Ahmed Eldawy
Spatial and Spatio-temporal data
What is spatial data

Geographical data

Medical images

Astronomical data

Trajectories
Application of spatial data

- Tracking of infectious disease
- Geo-targeted advertising
- Geographic Information Systems (GIS)
- Identifying local events/groups
- Disaster recovery/eviction plans
- Routing
Query processing

- Point selection
- Range selection
- Nearest neighbor
- Spatial join
Indexing

▷ A better organization of records to speed up the query processing

Why do we need new indexes?

R-tree

Quad-tree
Selectivity estimation

- Estimates the size of the answer without having to run the query
- Useful for query optimization
- e.g., range selection queries

💡 Cost model for spatial join on big data
Road networks

- Road intersections as graph vertices
- Road segments as (weighted) edges
- Planar graphs
- Adds topology semantics to queries
- e.g., nearest neighbor and clustering
-💡 Build and visualize a 3D road network
Big Spatial Data

- Four V’s of big data
- Volume
 - Partitioning and distributed query processing
- Velocity
 - In-memory indexes
 - Flushing policy
- Variety
 - Combine vector and raster data
- Veracity
 - Inherent errors in location data
Project ideas for BSD

- A benchmark for BSD systems
 - Real data is available
 - A mix of range and spatial join queries
 - Run on a few systems
- Implement a new query on a BSD system
 - spatial join in AsterixDB
 - KNN join on SpatialHadoop
- Aggregated visualization of BSD
 - e.g., color code cities by number of tweets
 - Integrate AsterixDB with a visualization server
Volunteered Geographic Information (VGI)

- Collection of geographic data by volunteers
- OpenStreetMap

- How to take user locations into account?
- Identifying experts
Ridesharing

- Uber

Matching drivers and passengers

Tracking vehicles

Figure from http://www.eia.gov/todayinenergy/detail.php?id=13531
Spatial keyword queries

- Keywords are assigned to each record

- Expand queries to incorporate keywords
 - Range queries: Find all *restaurants* for *kids* within 10 miles
 - Nearest neighbor queries: Find the nearest *gas station* that accepts *credit card*
 - Join queries: Find *excellent* *schools* and *2br* *houses* that are within a distance of five miles
Indoor Environment

- Motivated by new technologies
 - WiFi and Bluetooth localization
 - RFID
 - NFC

- Challenges
 - 3D localization
 - Indoor maps
 - Indoor routing
Geo-image browser
Geo-image browser
Geo-image browser
Emerging Applications
Traditional Applications

› Relational data schema
 › Tables, columns, and rows
 › Normalization

› Relational operations
 › Select, project, join, group and aggregate

› Descriptive query language
 › SQL

› ACID transaction guarantees
New Requirements

- Schema-less
- Hierarchical formats
- New operations
 - Closures
 - Similarities
- Scientific language
 - R, Matlab
- Weak or no transaction guarantees
Social Networks

- Eventual consistency
- High volume + High velocity
Graph processing

- Social networks
- Web graphs
- Call Detail Records (CDR)
- Road networks
- Brain simulation data
- Knowledge base and RDF data

💡 A benchmark for big graph systems, e.g., GraphX, Giraph, and Pregelix
Data cleaning

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Affiliation</th>
<th>ZIP code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>mark@ucr.edu</td>
<td>UC Riverside</td>
<td>922521</td>
</tr>
<tr>
<td>Anthony</td>
<td>james@uci.edu</td>
<td>UC Riverside</td>
<td>92697</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Area code</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>UCR</td>
<td>951</td>
<td>555-5555</td>
</tr>
<tr>
<td>Tony</td>
<td>UC Irvine</td>
<td>949</td>
<td>555-5555</td>
</tr>
</tbody>
</table>

- How many errors can you spot?
- Can you fix any of them?
-💡 Data cleaning of big data on Spark
Crowd sourcing

- Outsource *hard* problems to people
- e.g.,
 - Select all pictures with a waterfall
 - Do these two pictures show the same person?
 - Which query result is more relevant?

- Challenges
 - Minimize cost
 - Achieve a high accuracy
 - Task allocation
Visualization

➢ Explore big data through visualization

➢ Challenge: Make these visualizations scalable and interactive
Challenge: Keep data safe while providing scalable computing
Summary

- Spatial and spatio-temporal data
 - Query processing
 - Big spatial data
 - Indexing
 - Road networks
- Emerging applications
 - Social networks
 - Graph processing
 - Visualization
 - Data cleaning
Thank You!