Introduction to Big-data Management

Review and next steps
What We Covered

• Storage (HDFS)
• Query processing (MapReduce, RDD, Hyracks)
• Higher-level data flow engines (Pig, SparkSQL)
• Storage formats (row, column, Parquet, LSM indexing)
• Document databases (MongoDB)
• Machine learning (MLlib)
HDFS

HDFS Block

128 MB
128 MB
128 MB
128 MB
...

Name node

Data nodes

3
Logical View of MapReduce

• During MapReduce, the input and output are considered a set of key-value pairs $\langle k, v \rangle$
Map and Reduce Functions

• Map Function
 ▪ Maps a single input record to a set (possibly empty) of intermediate records
 ▪ Map: $\langle k_1, v_1 \rangle \rightarrow \{\langle k_2, v_2 \rangle\}$

• Combine Function
 ▪ Combine: $\langle k_2, \{v_2\} \rangle \rightarrow \{\langle k_2, v_2 \rangle\}$

• Reduce Function
 ▪ Reduces a set of intermediate records with the same key to a set (possibly empty) of output records
 ▪ Reduce: $\langle k_2, \{v_2\} \rangle \rightarrow \{\langle k_3, v_3 \rangle\}$
Job Execution Overview

Driver

Job submission → Job preparation → Map, Combine → Shuffle → Reduce → Cleanup
Resilient Distributed Dataset (RDD)

• RDD is a pointer to a distributed dataset
• Stores information about how to compute the data rather than where the data is
• Transformation: Converts an RDD to another RDD
• Action: Returns an answer of an operation over an RDD
• Narrow Vs wide dependencies
• How RDD operations work
SparkSQL

Dataframe (SparkSQL)
- Lazy execution
- Spark is aware of the data model
- Spark is aware of the query logic
- Can optimize the query

RDD
- Lazy execution
- The data model is hidden from Spark
- The transformations and actions are black boxes
- Cannot optimize the query
Main components of MLlib

- Transformers, e.g., feature extraction
- Estimator, e.g., clustering or regression
- Evaluator, e.g., precision and recall calculation
- Validator, e.g., k-fold cross validation

Pipeline: Transformation(s) + Estimator
Big Spatial Data

• How to customize Spark for a specific domain, i.e., spatial data
• Support various file formats other than the regular text files
• Build complex query pipelines such as spatial join and visualization
• Combine spatial operations with regular Spark operations
Storage formats

• Difference between row and column formats
 ▪ How attributes map to disk
 ▪ Major applications for each of them
• Parquet files
 ▪ A column store file format
 ▪ Handles nesting and replication
 ▪ Schema → Maximum definition and repetition level
 ▪ Record → Definition and repetition level for each attribute
 ▪ Do not forget to add null (non-existent) attributes
Document databases

• How a document database compares to a relational database (RDBMS)
 ▪ Normalization (nesting and repetition)
 ▪ ACID compliance
• How MongoDB compares attributes
• Log-structured-merge (LSM) tree for big data indexing
Did we cover everything?
Big Data Landscape

Data & AI Landscape 2020

Infrastructure
- Storage
 - Hadoop
 - Cloudera
 - Hortonworks
 - Object Storage
 - Cloud Storage
- Data Warehouses
 - Snowflake
 - Amazon Redshift
 - Google BigQuery
 - Alibaba Cloud
- Streaming/MEMORY
 - Apache Kafka
 - Apache Storm
 - Apache Flink
- Data Quality
 - Data Cleansing
 - Data Validation
- ETL/Data Transformation
 - Talend
 - Alteryx
- Graph DBs
 - Neo4j
 - Apache TinkerPop
- MPP DBs
 - Amazon Redshift
 - Google BigQuery

Analytics & Machine Intelligence
- BI Platforms
 - Tableau
 - Qlik
 - Alteryx
 - Power BI
- Visualization
 - Plotly
 - Matplotlib
 - Seaborn
- Data Analyst Platforms
 - Databricks
 - Jupyter
 - Pandas
- Data Science Platforms
 - Anaconda
 - PySpark
 - R
- Machine Learning
 - TensorFlow
 - PyTorch
 - Keras

Applications - Enterprise
- Sales
 - CRM
 - ERP
 - Online Ordering
- Marketing - B2B
 - Email Marketing
 - Video Marketing
 - E-Commerce
- Marketing - B2C
 - Social Media
 - Email Marketing
 - Mobile Marketing
- Customer Experience - Service
 - Customer Service
 - Self-Service
 - Chatbots
- Human Capital
 - HR
 - Talent Management

Applications - Industry
- Advertising
 - Digital Advertising
 - Video Advertising
- Education
 - Learning Management Systems
 - Assessment
- Real Estate
 - Property Management
 - Real Estate
- Government & Intelligence
 - Intelligence
 - National Security
- Commerce
 - Payment Processing
 - E-Commerce
- Finance - Investing
 - Stock Trading
 - Investment Management
 - Risk Management

Open Source
- Frameworks
 - Flask
 - Django
 - React
 - Angular
- Query/Data Flow
 - Apache Flink
 - Apache Storm
 - Apache Kafka
- Data Access & Databases
 - Apache Hadoop
 - Apache Spark
 - Apache Cassandra

Collaboration & Security
- Communication
 - Slack
 - Zoom
- Security
 - Network Security
 - Data Security

Data Sources & APIs
- Financial & Economic Data
 - Bloomberg
 - FactSet
- Air/Space/Sea
 - NASA
 - JPL
- People/Entities
 - LinkedIn
 - Facebook
- Location Intelligence
 - Mapbox
 - Google Maps
- Other
 - OpenStreetMap

Data Resources
- Incubators & Schools
 - Stanford
 - MIT
 - UC Berkeley
- Research
 - MIT Media Lab
 - Stanford AI Lab

Version 1.0 - September 2020
© Matt Turck (@matturck) & FirstMark (@firstmarkcap) mattturck.com/data2020
Topics not Covered

• Key-value stores
• Big graph analytics
• Visualization
• Streaming
• Coordination
• Cloud platforms
Key-value Stores

• Provide a simple API to insert/delete/update/search key-value pairs
• Records are indexed by key (typically a string)
• Internal structure is typically a Log-structured-merge tree (LSM)
• Not generally suitable for large-scale analytics
Big Graph Analytics

• Graphs are usually processed using a node-centric processing model
• Nodes and edges are both treated as first-class citizens
• Processing is normally iterative with a lot of iterations
Visualization

- Sometimes called Business Intelligence (BI)
- Focuses more on the end-user interface while producing nice graphs (e.g., bar charts and line graphs)
- Internally, the data is managed using the common big-data platforms but the systems are tuned to provide fast query response for ad-hoc queries
Streaming

• Some applications need to process data in real-time with a very small latency
 • Examples: Twitter search, IoT applications, and social network trends

• Works primarily off main memory

• Keeps only the latest records to ensure real-time response
Coordination

• Most big-data systems are designed for shared-nothing large-scale analytics
• No coordination between machines is part of the design
• Coordination systems provide an easy way to coordinate the work in these distributed platforms, e.g., a catalog of information, work queue, and a global system status
Cloud Platforms

• Maintaining your own cluster is costly
• It could be underutilized most of the time
• Cloud platforms allow you to rent virtual machines to do your work and dispose them after
• They are well-integrated with big data platforms (such as Hadoop and Spark) to give the best user experience
• All you need is an internet connection and a credit card
What is next?
What is next?

• Real big data is widely available
• Big data is like gold
• Only a few people know how to deal with it
• You’re now one of them
• Applications
 ▪ Keep your hands dirty
 ▪ Consider using the public cloud (e.g., AWS, Google Cloud, or Microsoft Azure)
Job Market

Big Data Market Forecast Worldwide from 2011 to 2026, by segment (in billion U.S. dollars)

Data Science

Hacking Skills

Math & Statistics Knowledge

Machine Learning

Danger Zone!

Data Science

Traditional Research

Substantive Expertise

Credits: Drew Conway
Data Science

- Computer Science using Big Data
- Machine Learning
- Math & Statistics
- Dangerous Software
- Traditional Research
- Subject Matter Expertise

Next Steps

• CS
 ▪ Big data tools
 ▪ Python/R/Scala

• Math/Stats
 ▪ Linear algebra
 ▪ Correlation analysis
 ▪ Hypothesis tests

• Collaboration with domain experts
 ▪ Visualization
 ▪ Prototyping
Software Engineering

Prototyping

Production

Python
R
Julia
Java
Scala
C++/Go

Software Engineering

Prototyping

Production

Python R Julia
Java Scala C++/Go

Mathematics & Statistics

Mathematics
- Linear Algebra
- Multivariable Calculus
- Graph Theory
- Probability

Statistics
- Statistical Distributions
- (Non) Parametric Tests
- Significance & Hypothesis Testing
- Bayesian Methods
Online Courses

Mathematics & Statistics

Data Analytics

Machine Learning & Software Engineering

Machine Learning
- Supervised (SVM, Random Forest)
- Unsupervised (Clustering, Topic Modeling)
- NLP / Information Retrieval
- Validation, Model Comparison

Software Engineering
- Algorithms & Data Structures
- Data Visualization
- Data Munging
- Distributed Computing
Thank You!

Good Luck 😊