NoSQL and MongoDB

College of Engineering

HOW TO WRITE A CV

DO YOU HAVE
ANY EXPERTISE

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO sSQL"

Leverage the NoSQL boom

Introduction to
NoSQL

Based on a presentation by Traversy Media

https://www.youtube.com/watch?v=uD3p_rZPBUQ

What is NoSQL?

* Not only SQL

* SQL means
= Relational model|
= Strong typing
= ACID compliance
" Normalization

* NoSQL means more freedom or
flexibility

Relevance to Big Data

* Data gets bigger
* Traditional RDBMS cannot scale well

* RDBMS is tied to its data and query
processing models

* NoSQL relaxes some of the restrictions
of RDBMS to provide a better
performance

Advantages of NoSQL

* Handles Big Data

* Data Models — No predefined schema

 Data Structure — NoSQL handles semi-
structured data

* Cheaper to manage
* Scaling — Scale out / horizonal scaling

Advantages of RDBMS

* Better for relational data

* Data normalization

* Well-established query language (SQL)
* Data Integrity

* ACID Compliance

Types of NoSQL Databases

* Document Databases [MongoDB,
CouchDB]

* Column Databases [Apache Cassandra]

* Key-Value Stores [Redis, Couchbase
Server]

* Cache Systems [Redis, Memcached]
* Graph Databases [Neo4J]
e Streaming Systems [FlinkDB, Storm]

Structured/Semi-structured

Jack jack@example.com
2 Jill jill@example.net
3 Alex alex@example.org

{“id”: 1, “name”:"Jack”, “email”: “jack@example.com”.
“address”: {“street”: “900 university ave”, “city”: “Riv
state: “CA”}, “friend_ids”: [3, 55, 123]}

|II {“;

{“id”: 2, “name”: “Jill”, “email”: “jill@example.net”, “hobbies”:
[“hiking”, “cooking”]}

Document Database
MongoDB

College of Engineering

Document Data Model

e Relational model (RDBMS)

= Database
- Relation (Table) : Schema
- Record (Tuple) : Data

D Model
O C u m e n t O e {“id”: 1, “name”:"Jack”, “email”: “jack@example.com”,

“address”: {“street”: “900 university ave”, “city”: “Riverside”,

N D a ta b a S e state: “CA”}, “friend_ids”: [3, 55, 123]}

- Collection : No predefined schema
- Document : Schema+data

* No need to define/update schema
* No need to create collections

Document Format

* MongoDB natively works with JSON
documents

* For efficiency, documents are stored in a
binary format called BSON (i.e., binary
JSON)

* Like JSON, both schema and data are
stored in each document

How to Use MongoDB

Install: Check the MongoDB website
https://docs.mongodb.com/manual/installation/

Create collection and insert a document

db.users.insert({name: “Jack”, email:

“jack@example.com”});

Retrieve all/some documents

db.users.find();
db.users.find({name: “Jack”});

Update

db.users.update({name: "Jack"}, {$set: {hobby:
"cooking"}});
updateOne, updateMany, replaceOne

Delete

db.users.remove({name: "Alex"});

deleteOne, deleteMany

https://docs.mongodb.com/manual/crud/

https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/crud/

Schema Validation

* You can still explicitly create collections
and enforce schema validation

db.createCollection("students", {
validator: { $jsonSchema: {
bsonType: "object”,
required: ["name", "year", "major", "address"],
properties: {
name:
bsonType: "string",
description: "must be a string and is required" },

https://docs.mongodb.com/manual/core/schema-validation/

Indexing

e Like RDBMS, document databases use
indexes to speed up some queries

Collection Query Ciriteria Sort order

' v

db.users.find({ score: { "$1t": 30 } }).sort({ score: -1 })

{ score: 1 } Index

e MongoDB uses B-tree as an index structure

15

https://docs.mongodb.com/manual/indexes/

https://docs.mongodb.com/manual/indexes/

Index Types

e Default unique _id index

* Single field index
= db.collection.createlndex({name: -1});

 Compound index (multiple fields)

= db.collection.createlndex({ name: 1,
score: -1});

* Multikey indexes (for array fields)
" Creates an index entry for each value

https://docs.mongodb.com/manual/indexes/

https://docs.mongodb.com/manual/indexes/

Index Types

* Geospatial index (for geospatial points)
= Uses geohash to convert two dimensions to
one dimension
= 2d indexes: For Euclidean spaces
= 2d sphere: spherical (earth) geometry
" Works with multikey indexes for multiple
locations (e.g., pickup and dropoff locations
for taxis)
e Text Indexes (for string fields)
= Automatically removes stop words
= Stems the words to store the root only

* Hashed Indexes (for point lookups)

Geohashes

18

Additional Index Features

* Unique indexes: Rejects duplicate keys

* Sparse Indexes: Skips documents without the
index field

" |n contrast, non-sparse indexes assume a
null value if the index field does not exist

* Partial indexes: Indexes only a subset of
records based on a filter.

db.restaurants.createIndex(
{ cuisine: 1, name: 1 },

{ partialFilterExpression: { rating: { $gt: 5 } } }

)

Comparison of data types

* Min key (internal type)
* Null

 Numbers (32-bit integer, 64-bit integer, double)
e Symbol, String

* Object

* Array

e Binary data

e ObjectID

* Boolean

* Date, timestamp

* Regular expression

* Max key (internal type)

https://docs.mongodb.com/v3.6/reference/bson-type-comparison-order/

20

https://docs.mongodb.com/v3.6/reference/bson-type-comparison-order/

Comparison of data types

* Numbers: All converted to a common type

e Strings
= Alphabetically (default)
= Collation (i.e., locale and language)

* Arrays
" <:Smallest value of the array
" >:largest value of the array
* Empty arrays are treated as null

Object
" Compare fields in the order of appearance
= Compare <name,value> for each field

21

Distributed Processing

* Two methods for distributed processing
" Replication (Similar to MySQL)
» Sharding (True horizontal scaling)

L/
37 &

Replication Sharding

https://docs.mongodb.com/manual/replication/ https://docs.mongodb.com/manual/sharding/

22

https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/sharding/

Distributed Index
Structure

Log-structured Merge Tree (LSM)

Big Data Indexing

* Hadoop and Spark are good in scanning
large files

* We would like to speed up point and
range queries on big data for some
gueries

* HDFS limitation: Random updates are
not allowed

e Log-structured Merge Tree (LSM-Tree) is
adopted to address this problem.

RDBMS Indexing

New
record

Index Update in RDBMS

Randomly
updated disk

page(s)
New

record

Append a
disk page

LSM Tree

* Key idea: Use the log as the index

* Regularly: Merge the logs to consolidate the
index (i.e., remove redundant entries)

New FIUSh
records

Merge

Bigger log

O’Neil, Patrick, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. "The log-structured merge-tree (LSM-tree)." Acta Informatica 33, no. 4 (1996): 351-385.

LSM in Big Data

* First major application: BigTable
(Google)

Citations by year
120

100
80
60 BigTable paper
40
20 I |
0 — — m _ B ®m =m - - = | I I I I
n © ~ ®

First report from Google mentioning LSM

28

LSM in Big Data

* Buffer data in memory (memory
component)

* Flush records to disk into an LSM as a
disk component (sequential write)

* Disk components are sorted by key

* Compact (merge) disk components in
the background (sequential read/write)

Conclusion

* MongoDB is a document database that
is geared towards high update rates and
transactional queries

* |t adopts JSON as a data model

* It provides the flexibility to insert any
kind of data without schema definition

* LSM Tree is used for indexing

* Weak types are handled using a special
comparison method for all types

