Big Data Processing

Big Data Frameworks

- A system that allows developers to write a program and execute it on a cluster of machines.
- Hides most of the low-level system issues such as fault tolerance, network communication, and load balancing.
- Imposes some restrictions on the developer to ensure that they can run the program efficiently.

Word Count Example

Input.txt

I often repeat repeat myself
I often repeat repeat
I don't don't know why know why
I simply know that I I I
am am inclined to say to say
a lot a lot this way this way
I often repeat repeat myself
I often repeat repeat

Word	Count
a	2
am	2
don't	2
I	9
inclined	1
know	3
lot	2
myself	2
often	4
repeat	8
say	2
simply	1
that	1
this	2
to	2
way	2
why	2

3

Word Count Walkthrough (1/2)

Word Count Walkthrough (2/2)

Word Count Logic

- The logic behind the word count example can be expressed using only two functions
 - WordExtractor: String \rightarrow {(w, 1)}
 - WordSum: $(w,\{c\}) \rightarrow (w, \Sigma c)$

Complete Word Count in Hadoop

```
public static class TokenizerMapper
  extends Mapper<Object, Text, Text, IntWritable>{
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 public void map(Object key, Text value, Context context
  StringTokenizer itr = new StringTokenizer(value.toString());
  while (itr.hasMoreTokens()) {
   word.set(itr.nextToken());
   context.write(word, one);
public static class IntSumReducer
  extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();
 public void reduce(Text key, Iterable<IntWritable> values,
           Context context
  int sum = 0:
  for (IntWritable val : values) {
   sum += val.get();
  result.set(sum);
  context.write(key, result);
```

```
public static void main(String[] args) throws Exception {
   Configuration conf = new Configuration();
   Job job = Job.getInstance(conf, "word count");
   job.setJarByClass(WordCount.class);
   job.setMapperClass(TokenizerMapper.class);
   job.setCombinerClass(IntSumReducer.class);
   job.setReducerClass(IntSumReducer.class);
   job.setOutputKeyClass(Text.class);
   job.setOutputValueClass(IntWritable.class);
   FileInputFormat.addInputPath(job, new Path(args[0]));
   FileOutputFormat.setOutputPath(job, new Path(args[1]));
   System.exit(job.waitForCompletion(true) ? 0 : 1);
}
```

Source: https://hadoop.apache.org/docs/r3.2.2/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example: WordCount v1.0

Complete Word Count in Spark

```
// In Scala shell
val lines = sc.textFile("data.txt")
val pairs = lines.flatMap(s => s.split("\\b"))
.map(w => (w,1))
val counts = pairs.reduceByKey((a, b) => a + b)
counts.saveAsTextFile("word_count_output.txt")
```

Big-data Processing

- Programming Model
 - How a developer writes a big-data program
- Application Model (Logical Model)
 - How the big-data platform internally represents a user program
- Execution Model (Physical Model)
 - How the program gets executed on the cluster

Functional Programming Model

- A big-data program consists of userdefined functions
 - E.g., Map and Reduce functions in a Hadoop MapReduce program
- A valid function must satisfy two constraints
 - Sateless/Memoryless
 - Deterministic

Functional Programming

Which of these are functions?

Functional Programming

Which of these are functions?

Word Count Functions

```
Word Extractor(Line: String) {
  words = Line.split
  foreach (w \in words) output.write(w, 1)
SumWords(word: String, counts: int[]) {
  sum = sum(counts)
  output.write(word, sum)
```

Examples

```
Function1(x) {
  return x + 5;
}
```

```
RNG random;
Function3(x) {
  random.randomInt(0, x);
}
```

```
Int sum
Function2(x) {
    sum += x;
    return sum;
}
```

```
Map<String, Int> lookuptable;
Function4(x) {
  return lookuptable.get(x);
}
```

Examples

```
Function1(x) {
  return x + 5:
}
```

```
RNG random;
Function3(x) {
  random.randomInt(0, x);
}
```

```
Int sum
Function2(x) {
   sum += x;
   return sum;
}
```

```
Map<String, Int> lookuptable;
Function4(x) {
  return lookuptable.get(x);
}
```

Directed Acyclic Graph

- The functional programming paradigm allows the developer to define one function
- The program consists of multiple functions

DAG for Word Count in Spark

```
// In Scala shell
val lines = sc.textFile("data.txt")
val pairs = lines.flatMap(s => s.split("\\b"))
.map(w => (w,1))
val counts = pairs.reduceByKey((a, b) => a + b)
counts.saveAsTextFile("word_count_output.txt")
```


Bulk Synchronous Parallel (BSP)

- The BSP model is how big-data frameworks execute a program
- The model splits the execution into stages of local processing
- Computation stages are separated by a communication barrier

BSP Model

Communication Patterns

Fully Connected (Requires network communication)

One-to-one (Can be done locally in one stage)

Word Count Stages

Architecture of Big-data Frameworks

User Driver Node Master Node Executor Nodes

Hadoop MapReduce

Map and Reduce Functions

- Map Function
 - Maps a single input record to a set (possibly empty) of intermediate records
 - Map: $\langle k_1, v_1 \rangle \rightarrow \{\langle k_2, v_2 \rangle\}$
- Reduce Function
 - Reduces a set of intermediate records with the same key to a set (possibly empty) of output records
 - Reduce: $\langle k_2, \{v_2\} \rangle \rightarrow \{\langle k_3, v_3 \rangle\}$
- Combine Function (Optional)
 - Partial local reduction before reduce
 - Combine: $\langle k_2, \{v_2\} \rangle \rightarrow \{\langle k_2, v_2 \rangle\}$

MapReduce DAG

MapReduce Program Cycle

User Driver Node Master Node Executor Nodes

Job Execution Overview

Job Submission

- Execution location: Driver node
- A driver machine should have the following
 - Compatible Hadoop binaries
 - Cluster configuration files
 - Network access to the master node
- Collects job information from the user
 - Input and output paths
 - Map, reduce, and any other functions
 - Any additional user configuration
- Packages all this in a Hadoop Configuration

Hadoop Configuration

Key: String	Value: String
Input	hdfs://user/eldawy/README.txt
Output	hdfs://user/eldawy/wordcount
Mapper	edu.ucr.cs.cs167.eldawy.WordCount
Reducer	
JAR File	
User-defined	User-defined

Serialized over network

Master node

Job Preparation

- Runs on the master node
- Gets the job ready for parallel execution
- Collects the JAR file that contains the userdefined functions, e.g., Map and Reduce
- Writes the JAR and configuration to HDFS to be accessible by the executors
- Looks at the input file(s) to decide how many map tasks are needed
- Makes some sanity checks
- Finally, it pushes the BRB (Big Red Button)

Job Preparation

Map Phase

- Runs in parallel on worker nodes
- M Mappers:
 - Read the input
 - Apply the map function
 - Apply the combine function (if configured)
 - Store the map output
- There is no guaranteed ordering for processing the input splits

Input record reader

- Split the file based on the file metadata
 - File size, block sizes, # of nodes
- Each split is defined by:
 - File name, Start offset, Length
- For each split:
 - Seek to the start offset
 - Skip the first record (except for the first split)
 - Read until the beginning of the record goes beyond the start + length

Map Phase

Map Task

- Reads the job configuration and task information (mainly, InputSplit)
- Instantiates an object of the Mapper class
- Instantiates a record reader for the assigned input split
- Reads records one-by-one from the record reader and passes them to the user-defined map function
- Passes the map output to the next step

Map output

- What happens to the map output?
- It depends on the number of reducers
 - 0 reducers: Map output is written directly to HDFS as the final answer
 - 1+ reducers: Map output is passed to the shuffle phase

Shuffle Phase

- Executed only in the case of one or more reducers
- Transfers data between the mappers and reducers
- Groups records by their keys to ensure local processing in the reduce phase

Shuffle Phase

Shuffle Phase (Map-side)

Reduce₁ Reduce₂ ... Reduce_N

Shuffle Phase (Reduce-side)

Reduce Phase

Apply the reduce function to each group of similar keys

Output Writing

- Materializes the final output to disk
- All results are from one process (mapper/reducer) are stored in a subdirectory
- An OutputFormat is used to
 - Create any files in the output directory
 - Write the output records one-by-one to the output
 - Merge the results from all the tasks (if needed)
- While the output writing runs in parallel, the final commit step runs on a single machine

Hadoop MapReduce Conclusion

- A MapReduce program consists of a map, a reduce, and optionally a combine function
- Hadoop distributes the program to all executor nodes
- The input is partitioned and each input split is processed independently
- The intermediate data is shuffled and reduced to produce the final output.

Spark Resilient Distributed Dataset (RDD)

Spark

- A memory-based big-data framework
- Resilient Distributed Dataset (RDD) is an alternative query processing framework for big-data
- Utilizes more memory to speed up query processing

RDD Abstraction

- RDD is a pointer to a distributed dataset
- Stores information about how to compute the data or where the data is
- Transformation: Converts an RDD to another RDD
- Action: Returns an answer of an operation over an RDD

RDD

Filter Operation

GroupBy (Shuffle) Operation

Application DAG

- A complete DAG consists:
 - One or more input loader
 - Zero or more transformations

DAG Execution using BSP

How does Spark split a DAG into stages?

Types of Dependencies

- Narrow dependencies
- Wide dependencies

co-partitioned inputs

Wide dependencies:

Each partition of the parent RDD may be depended on by multiple child partitions.

Source: https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies

Spark RDD Features

- Lazy execution: Collect transformations and execute on actions
- Lineage tracking: Keep track of the lineage of each RDD for fault-tolerance
- Resiliency: When an in-memory partition gets lost, Spark recomputes it

Examples of Transformations

- map
- mapToPair
- flatMap
- reduceByKey
- filter
- sample
- join
- union
- partitionBy

Examples of Actions

- count
- collect
- save(path)
- persist
- reduce

RDD Operations

- Spark is richer than Hadoop in terms of operations
- Sometimes, you can do the same logic with more than one way
- In the following part, we will explain how different RDD operations work
- The goal is to understand the performance implications of these operations and choose the most efficient one

Java Examples

- Apache Spark homepage
 - https://spark.apache.org

```
# Initialize the Spark context
JavaSparkContext spark =
    new JavaSparkContext("local", "CS167-Demo");
```

```
# Count the number of OK lines (response code 200)
JavaRDD<String> okLines = textFileRDD.filter(new
Function<String, Boolean>() {
    @Override
    public Boolean call(String s) throws Exception {
        String code = s.split("\t")[5];
        return code.equals("200");
});
long count = okLines.count();
System.out.println("Number of OK lines is "+count);
```

```
# Count the number of OK lines (response code 200)
# Shorten the implementation using lambdas (Java 8 and above)
JavaRDD<String> okLines =
  textFileRDD.filter(s -> s.split("\t")[5].equals("200"));
long count = okLines.count();
System.out.println("Number of OK lines is "+count);
```

```
# Make it parametrized by taking the response code as a
command line argument
String inputFileName = args[0];
String desiredResponseCode = args[1];
JavaRDD<String> textFileRDD = spark.textFile(inputFileName);
JavaRDD<String> oklines = textFileRDD.filter(new
Function<String, Boolean>() {
    @Override
    public Boolean call(String s) {
        String code = s.split("\t")[5];
        return code.equals(desiredResponseCode);
});
```

```
# Count by response code
# Important! Not all transformations and actions are on the
getting started guide
JavaPairRDD<Integer, String> linesByCode =
textFileRDD.mapToPair(new PairFunction<String, Integer,
String>() {
    @Override
    public Tuple2<Integer, String> call(String s) {
        String code = s.split("\t")[5];
        return new Tuple2<Integer,
String>(Integer.valueOf(code), s);
});
Map<Integer, Long> countByCode = linesByCode.countByKey();
System.out.println(countByCode);
```

RDD<T>#filter

- func: T → Boolean
- Applies the predicate function on each record and produces that tuple only of the predicate returns true
- Result RDD<T> with same or fewer records than the input
- In Hadoop:

```
map(T value) {
  if (func(value))
    context.write(value)
}
```

RDD<T>#map(func)

- func: $T \rightarrow U$
- Applies the map function to each record in the input to produce one record
- Results in RDD<U> with the same number of records as the input
- In Hadoop:

```
map(T value) {
  context.write(func(value));
}
```

RDD<T>#flatMap(func)

- func: T → Iterator<V>
- Applies the map function to each record and add all resulting values to the output RDD
- Result: RDD<V>
- This is the closest function to the Hadoop map function
- In Hadoop:

```
map(T value) {
   Iterator<V> results = func(value);
   for (V result : results)
      context.write(result)
}
```

RDD<T>#mapPartition(func)

- func: Iterator<T> → Iterator<U>
- Applies the map function to a list of records in one partition in the input and adds all resulting values to the output RDD
- Can be helpful in two situations
 - If there is a costly initialization step in the function
 - If many records can result in one record
- Result: RDD<U>

RDD<T>#mapPartition(func)

 In Hadoop, the mapPartition function can be implemented by overriding the run() method in the Mapper, rather than the map() function

```
run(context) {
   // Initialize
   Array<T> values;
   for (T value : context)
    values.add(value);
   Iterator<V> results = func(values);
   for (V value : results)
    context.write(value);
```

RDD<T>#mapPartitionWithIndex(func)

- func: (Integer, Iterator<T>) → Iterator<U>
- Similar to mapPartition but provides a unique index for each partition
- In Hadoop, you can achieve a similar functionality by retrieving the InputSplit or taskID from the context.

RDD<T>#sample(r, f, s)

- r: Boolean: With replacement (true/false)
- f: Float: Fraction [0,1]
- s: Long: Seed for random number generation
- Returns RDD<T> with a sample of the records in the input RDD
- Can be implemented using mapPartitionWithIndex as follows
 - Initialize the random number generator based on seed and partition index
 - Select a subset of records as desired
 - Return the sampled records

RDD<T>#distinct()

- Removes duplicate values in the input RDD
- Returns RDD<T>
- Implemented as follows map(x => (x, null)). reduceByKey((a, b) => a, numPartitions). map(_._1)
- Note: Both a and b are null in the reduceByKey function above

RDD<T>#reduce(func)

- func: (T, T) → T
- This is not the same as the reduce function of Hadoop even though it has the same name
- Reduces all the records to a single value by repeatedly applying the given function
- Result: T
- This is an action

RDD<T>#reduce(func)

```
    In Hadoop

 map(T value) {
    context.write(NullWritable.get(), value);
 combine, reduce(key, Iterator<T> values)
    T result = values.next();
    while (values.hasNext())
      result = func(result, values.next());
    context.write(result);
```

RDD<T>#reduce(func)

RDD<K,V>#reduceByKey(func)

- func: (V, V) → V
- Similar to reduce but applies the given function to each group separately
- Since there could be so many groups, this operation is a transformation that can be followed by further transformations and actions
- Result: RDD<K,V>
- By default, number of reducers is equal to number of input partitions but can be overridden

RDD<K,V>#reduceByKey(func)

In Hadoop: map(K key, V value) { context.write(key, value); combine, reduce(K key, Iterator<V> values) { V result = values.next(); while (values.hasNext()) result = func(result, values.next()); context.write(key, result);

Limitation of reduce methods

- Both reduce methods have a limitation is that they have to return a value of the same type as the input.
- Let us say we want to implement a program that operates on an RDD<Integer> and returns one of the following values
 - 0: Input is empty
 - 1: Input contains only odd values
 - 2: Input contains only even values
 - 3: Input contains a mix of even and odd values

- zero: U Zero value of type U
- seqOp: (U, T) → U Combines the aggregate value with an input value
- combOp: (U, U) → U Combines two aggregate values
- Returns U

 Similarly, aggregateByKey operates on RDD<K,V> and returns RDD<K,U>

In Hadoop: run(context) { U result = zero; for (T value : context) result = seqOp(result, value); context.write(NullWritable.get(), result); combine,reduce(key, Iterator<U> values) { U result = values.next(); while (values.hasNext()) result = combOp(result, values.next()); context.write(result);

- Example:
- RDD<Integer> values

```
    Byte marker = values.aggregate((Byte)0,
(result: Byte, x: Integer) => {

     if (x % 2 == 0) // Even
return result | 2;
     else
       return result | 1;
    (result1: Byte, result2: Byte) => result1 |
  result2
```


RDD<K,V>#groupByKey()

- Groups all values with the same key into the same partition
- Closest to the shuffle operation in Hadoop
- Returns RDD<K, Iterator<V>>
- Performance notice: By default, all values are kept in memory so this method can be very memory consuming.
- Unlike the reduce and aggregate methods, this method does not run a combiner step, i.e., all records get shuffled over network

Further Readings

- List of common transformations and actions
 - http://spark.apache.org/docs/latest/r
 dd-programmingguide.html#transformations
- Spark RDD Scala API
 - http://spark.apache.org/docs/latest/a pi/scala/index.html#org.apache.spark. rdd.RDD