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Big Data Frameworks

* A system that allows developers to write
a program and execute it on a cluster of
machines.

* Hides most of the low-level system
issues such as fault tolerance, network

communication, and load balancing.

* Imposes some restrictions on the
developer to ensure that they can run
the program efficiently.
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Word Count Walkthrough (1/2)
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Word Count Walkthrough (2/2)
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Word Count Logic

* The logic behind the word count
example can be expressed using only
two functions

= WordExtractor: String =2 {(w, 1)}
= WordSum: (w,{c}) = (w, Zc)



Complete Word Count in Hadoop

public static class TokenizerMapper
extends Mapper<Obiject, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void (Object key, Text value, Context context

) {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);

}
}
}

public static class IntSumReducer
extends Reducer<Text,IntWritable, Text,IntWritable> {
private IntWritable result = new IntWritable();
public void (Text key, Iterable<IntWritable> values,
Context context
) {
int sum =0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);

public static void (String[] args) throws Exception {
Configuration conf = new Configuration();
Job job =Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FilelnputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);

Source: https://hadoop.apache.org/docs/r3.2.2/hadoop-mapreduce-
client/hadoop-mapreduce-client-
core/MapReduceTutorial.html#Example: WordCount v1.0



https://hadoop.apache.org/docs/r3.2.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Complete Word Count in Spark

// In Scala shell

val lines = sc.textFile("data.txt")

val pairs = lines.flatMap(s => s.split("\\b"))
.map(w =>(w,1))

val counts = pairs.reduceByKey((a, b) =>a + b)

counts.saveAsTextFile("word count output.txt")



Big-data Processing

* Programming Model
" How a developer writes a big-data
program
* Application Model (Logical Model)
" How the big-data platform internally
represents a user program
e Execution Model (Physical Model)

" How the program gets executed on
the cluster



Functional Programming Model

* A big-data program consists of user-
defined functions

" E.g., Map and Reduce functions in a
Hadoop MapReduce program
* A valid function must satisfy two
constraints
= Sateless/Memoryless
= Deterministic



output

Functional Programming

* Which of these are functions?
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Functional Programming
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Word Count Functions

* Word Extractor(Line: String) {
words = Line.split
foreach (w € words) output.write(w, 1)

J

 SumWords(word: String, counts: int[]) {
sum = sum(counts)
output.write(word, sum)

J



Examples

Functionl(x) { Int sum

return x + 5; Function2(x) {
} sum += X;
return sum;

¥

RNG random;
Function3(x) {

random.randomInt(0, x);

¥

Map<String, Int> lookuptable;
Functiond4(x) {

return lookuptable.get(x);
}
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Directed Acyclic Graph

* The functional programming paradigm
allows the developer to define one
function

* The program consists of multiple
functions

G@e@
B D



DAG for Word Count in Spark

// In Scala shell

val lines = sc.textFile("data.txt")

val pairs = lines.flatMap(s => s.split("\\b"))
.map(w =>(w,1))

val counts = pairs.reduceByKey((a, b) =>a + b)

counts.saveAsTextFile("word count output.txt")
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input words wordPairs nt :

': wordCou
= QO——O——OQ——Q) -

input.txt ﬂatMap( ) maip(...) reduceByKey(‘..) wordcount.txt
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Bulk Synchronous Parallel (BSP)

* The BSP model is how big-data
frameworks execute a program

* The model splits the execution into
stages of local processing

 Computation stages are separated by a
communication barrier



BSP Model

Communication
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Communication Patterns

Fully Connected One-to-one
(Requires network communication) (Can be done locally in one stage)
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Word Count Stages
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Architecture of Big-data Frameworks

Job DAG +

Functions +
Main program Configuration

A

Tasks for stages

User Driver Node Master Node Executor Nodes
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Hadoop MapReduce

Input Intermediate Output
Data
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Map and Reduce Functions

* Map Function

= Maps a single input record to a set (possibly
empty) of intermediate records

= Map: (kq,v1) =
e Reduce Function

= Reduces a set of intermediate records with the
same key to a set (possibly empty) of output
records

» Reduce: - {(k3,v3)}

e Combine Function (Optional)
= Partial local reduction before reduce
= Combine: —



MapReduce DAG
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MapReduce Program Cycle

JAR File + Map and Reduce Tasks
Configuration

Main program

A

User Driver Node Master Node Executor Nodes
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Job Execution Overview

Job Job Map Shuffle Reduce Cleanup
submission preparation



Job Submission

e Execution location: Driver node

* A driver machine should have the following
" Compatible Hadoop binaries
" Cluster configuration files
" Network access to the master node
* Collects job information from the user
" Input and output paths
" Map, reduce, and any other functions
" Any additional user configuration

* Packages all this in a Hadoop Configuration



Hadoop Configuration

Input
Output
Mapper
Reducer
JAR File

User-defined

hdfs://user/eldawy/README.txt
hdfs://user/eldawy/wordcount

edu.ucr.cs.cs167.eldawy.WordCount

User-defined

Serialized over network

Master node
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Job Preparation

* Runs on the master node
* Gets the job ready for parallel execution

e Collects the JAR file that contains the user-
defined functions, e.g., Map and Reduce

* Writes the JAR and configuration to HDFS to
be accessible by the executors

* Looks at the input file(s) to decide how
many map tasks are needed

* Makes some sanity checks
* Finally, it pushes the BRB (Big Red Button)




Job Preparation
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Map Phase

* Runs in parallel on worker nodes

* M Mappers:
= Read the input
= Apply the map function

" Apply the combine function (if
configured)

= Store the map output

* There is no guaranteed ordering for
processing the input splits



Input record reader

* Split the file based on the file metadata
= File size, block sizes, # of nodes

* Each split is defined by:
" File name, Start offset, Length

* For each split:
" Seek to the start offset
. Sk:p)the first record (except for the first
split
" Read until the beginning of the record
goes beyond the start + length



Map Phase

Master node

Input Splits
(Map tasks)




Map Task

* Reads the job configuration and task
information (mainly, InputSplit)

* Instantiates an object of the Mapper class

* Instantiates a record reader for the
assigned input split

* Reads records one-by-one from the record

reader and passes them to the user-defined
map function

* Passes the map output to the next step



Map output

* What happens to the map output?

* It depends on the number of reducers

" 0 reducers: Map output is written
directly to HDFS as the final answer

" 1+ reducers: Map output is passed to
the shuffle phase



Shuffle Phase

* Executed only in the case of one or
more reducers

* Transfers data between the mappers
and reducers

* Groups records by their keys to ensure
local processing in the reduce phase



Shuffle Phase
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Shuffle Phase (Reduce-side)




Reduce Phase

* Apply the reduce function to each group
of similar keys
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Output Writing

* Materializes the final output to disk

* All results are from one process
(mapper/reducer) are stored in a subdirectory
 An OutputFormat is used to
" Create any files in the output directory

= \Write the output records one-by-one to the
output

" Merge the results from all the tasks (if
needed)

* While the output writing runs in parallel, the
final commit step runs on a single machine



Hadoop MapReduce Conclusion

* A MapReduce program consists of a
map, a reduce, and optionally a combine

function

* Hadoop distributes the program to all
executor nodes

* The input is partitioned and each input
split is processed independently

* The intermediate data is shuffled and
reduced to produce the final output.
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Spark Resilient Distributed
Dataset (RDD)




Spark

* A memory-based big-data framework

* Resilient Distributed Dataset (RDD) is
an alternative query processing
framework for big-data

e Utilizes more memory to speed up
gquery processing



RDD Abstraction

* RDD is a pointer to a distributed
dataset

 Stores information about how to
compute the data or where the data is

* Transformation: Converts an RDD to
another RDD

* Action: Returns an answer of an
operation over an RDD



RDD

Operation

RDD RDD



Filter Operation

Similar to the map operation

Filter

RDD RDD



GroupBYy (Shuffle) Operation

Similar operation Join

RDD RDD



Application DAG

* A complete DAG consists:
" One or more input loader
" Zero or more transformations

* One action Action

—

textFile( ) saveAsTextFlle( )
': input words wordPairs  wordCount
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DAG Execution using BSP

textFile(...)

4

input.txt

saveAsTextFile(...)

\_

input

words

N\

word

..3,@ O

ﬂatMélp (-..)

mz:lp(...)

4 ) -

Pairs wordCount |

> ____ ’Q N

Stage 1

Stage 2

How does Spark split a DAG into stages?

B

reduceB }'IKey(. ..)  wordcount.txi
I\ J

Marlan and Rosemary Bourns
College of Engineering



Types of Dependencies

* Narrow dependencies
* Wide dependencies

Narrow dependencies: Wide dependencies:
map, filter %
groupByKey
join
join union

Source: https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies



Spark RDD Features

* Lazy execution: Collect transformations
and execute on actions

* Lineage tracking: Keep track of the
lineage of each RDD for fault-tolerance

* Resiliency: When an in-memory
partition gets lost, Spark recomputes it



Examples of Transformations

* map
* mapToPair
 flatMap

* reduceByKey
e filter

* sample

* join

* union

* partitionBy



Examples of Actions

e count

e collect

* save(path)
* persist

* reduce



RDD Operations

e Spark is richer than Hadoop in terms of
operations

* Sometimes, you can do the same logic with
more than one way

* In the following part, we will explain how
different RDD operations work

* The goal is to understand the performance
implications of these operations and
choose the most efficient one



Java Examples

> Apache Spark homepage
https://spark.apache.org

# Initialize the Spark context

JavaSparkContext spark =
new JavaSparkContext("local"”, "CS167-Demo");

57


https://spark.apache.org/

Examples

# Initialize the Spark context

JavaSparkContext spark =
new JavaSparkContext("local", "CS167-Demo");

# Hello World! Example. Count the number of lines in the file

JavaRDD<String> textFileRDD =
spark.textFile("nasa 19950801.tsv");

long count = textFileRDD.count();
System.out.println("Number of lines is "+count);

58



Examples

# Count the number of OK lines (response code 200)

JavaRDD<String> okLines = textFileRDD.filter(new
Function<String, Boolean>() {

@Override

public Boolean call(String s) throws Exception {
String code = s.split("\t")[5];
return code.equals("200");

})s

long count = okLines.count();
System.out.println("Number of OK lines is "+count);
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Examples

# Count the number of OK lines (response code 200)

# Shorten the implementation using lambdas (Java 8 and above)

JavaRDD<String> okLines =
textFileRDD.filter(s -> s.split("\t")[5].equals("200"));

long count = okLines.count();
System.out.println("Number of OK lines is "+count);
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Examples

# Make it parametrized by taking the response code as a
command line argument

String inputFileName = args[0];
String desiredResponseCode = args[1];

JavaRDD<String> textFileRDD = spark.textFile(inputFileName);

JavaRDD<String> okLines = textFileRDD.filter(new
Function<String, Boolean>() {

@Override

public Boolean call(String s) {
String code = s.split("\t")[5];
return code.equals(desiredResponseCode);

})s

61



Examples

# Count by response code

# Important! Not all transformations and actions are on the
getting started guide

JavaPairRDD<Integer, String> linesByCode =

textFileRDD.mapToPair(new PairFunction<String, Integer,
String>() {

@Override
public Tuple2<Integer, String> call(String s) {
String code = s.split("\t")[5];

return new Tuple2<Integer,
String>(Integer.valueOf(code), s);

¥

0¥
Map<Integer, Long> countByCode = linesByCode.countByKey();

System.out.println(countByCode);

62



RDD<T>#filter

* func: T = Boolean
* Applies the predicate function on each

record and produces that tuple only of the
predicate returns true

 Result RDD<T> with same or fewer records
than the input

* In Hadoop:

" map(T value) {
if (func(value))
context.write(value)

J



RDD<T>#map(func)

e func: T > U

* Applies the map function to each record
in the input to produce one record

* Results in RDD<U> with the same
number of records as the input

* |n Hadoop:

" map(T value) {
context.write(func(value));

}



RDD<T>#flatMap(func)

 func: T =2 Iterator<V>

* Applies the map function to each record and
add all resulting values to the output RDD

e Result: RDD<V>

* This is the closest function to the Hadoop map
function

* In Hadoop:

" map(T value) {
lterator<V> results = func(value);
for (V result : results)
context.write(result)

}



RDD<T>#mapPartition(func)

e func: Iterator<T> = lterator<U>

* Applies the map function to a list of records
in one partition in the input and adds all
resulting values to the output RDD

* Can be helpful in two situations

" If there is a costly initialization step in the
function

" I[f many records can result in one record
* Result: RDD<U>



RDD<T>#mapPartition(func)

* |In Hadoop, the mapPartition function can be
implemented by overriding the run() method in
the Mapper, rather than the map() function

" run(context) {

// Initialize

Array<T> values;

for (T value : context)
values.add(value);

lterator<V> results = func(values);

for (V value : results)
context.write(value);

}



RDD<T>#mapPartitionWithindex(func)

* func: (Integer, Iterator<T>) 2
Iterator<U>

* Similar to mapPartition but provides a
unique index for each partition

* |In Hadoop, you can achieve a similar
functionality by retrieving the InputSplit
or taskID from the context.



RDD<T>#sample(r, f, s)

* r: Boolean: With replacement (true/false)
* f: Float: Fraction [0,1]

* s: Long: Seed for random number
generation

* Returns RDD<T> with a sample of the
records in the input RDD

* Can be implemented using
mapPartitionWithIndex as follows

" |nitialize the random number generator
based on seed and partition index

= Select a subset of records as desired
" Return the sampled records



RDD<T>#distinct()

* Removes duplicate values in the input
RDD

* Returns RDD<T>

* Implemented as follows
map(x => (x, null)).
reduceByKey((a, b) => a, numPartitions).
map( . 1)

* Note: Both a and b are null in the
reduceByKey function above



RDD<T>#reduce(func)

efunc: (T, T) 2> T
* This is not the same as the reduce

function of Hadoop even though it has
the same name

* Reduces all the records to a single value
by repeatedly applying the given
function

e Result: T
* This is an action



RDD<T>#reduce(func)

* In Hadoop

" map(T value) {
context.write(NullWritable.get(), value);

J

= combine, reduce(key, Iterator<T> values)
{
T result = values.next();
while (values.hasNext())
result = func(result, values.next());
context.write(result);

J



RDD<T>#reduce(func)
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RDD<K,V>#reduceByKey(func)
e func: (V, V) 2 V

* Similar to reduce but applies the given
function to each group separately

* Since there could be so many groups, this
operation is a transformation that can be
followed by further transformations and
actions

e Result: RDD<K,V>

* By default, number of reducers is equal to
number of input partitions but can be
overridden



RDD<K,V>#reduceByKey(func)

* In Hadoop:

" map(K key, V value) {
context.write(key, value);

J

= combine, reduce(K key, Iterator<V>
values) {
V result = values.next();
while (values.hasNext())
result = func(result, values.next());
context.write(key, result);

J



Limitation of reduce methods

* Both reduce methods have a limitation is
that they have to return a value of the same
type as the input.

* Let us say we want to implement a program
that operates on an RDD<Integer> and
returns one of the following values

= O: Input is empty
= 1: Input contains only odd values
= 2: Input contains only even values

= 3: Input contains a mix of even and odd
values



RDD<T>#aggregate(zero, seqOp, combOp)

e zero: U - Zero value of type U
* seqOp: (U, T) 2 U —Combines the
aggregate value with an input value

* combOp: (U, U) 2 U - Combines two
aggregate values

e Returns U

* Similarly, aggregateByKey operates on
RDD<K,V> and returns RDD<K,U>



RDD<T>#aggregate(zero, seqOp, combOp)

* In Hadoop:

" run(context) {
U result = zero;
for (T value : context)
result = seqOp(result, value);
context.write(NullWritable.get(), result);

}

" combine,reduce(key, Iterator<U> values) {
U result = values.next();
while (values.hasNext())
result = combOp(result, values.next());
context.write(result);

}



RDD<T>#aggregate(zero, seqOp, )

* Example:
* RDD<Integer> values

* Byte marker = values.aggregate( (Byte)0,
Xresult Byte X: Integer%
if (x% 2 = O)/ Even
return result | 2;
else
return result | 1;

b

);



RDD<T>#aggregate(zero, seqOp, )

637
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Final Result
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RDD<K,V>#groupByKey()

* Groups all values with the same key into
the same partition

* Closest to the shuffle operation in Hadoop
* Returns RDD<K, Iterator<V>>

* Performance notice: By default, all values
are kept in memory so this method can be

very memory consuming.

* Unlike the reduce and aggregate methods,
this method does not run a combiner step,
l.e., all records get shuffled over network



Further Readings

e List of common transformations and
actions
" http://spark.apache.org/docs/latest/r
dd-programming-
guide.html#transformations

* Spark RDD Scala API

" http://spark.apache.org/docs/latest/a
pi/scala/index.html#forg.apache.spark.

rdd.RDD



http://spark.apache.org/docs/latest/rdd-programming-guide.html
http://spark.apache.org/docs/latest/api/scala/index.html

