Dynamic Programming
Chapter 15
Dictionary Definition

- **Program (noun)**
 - Pronunciation: 'prō-ˌgram , -grəm \
 - Definition: a sequence of coded instructions that can be inserted into a mechanism (such as a computer)

- **Programming (noun)**
 - Pronunciation: 'prō-ˌgra-miŋ , -grə-
 - Definition: a plan of action to accomplish a specified end

Synonyms
- progressing, plan out, arrange
Rod Cutting Problem
Rod Cutting Problem

- Given a rod of length n inches and a table of prices p_i for $i = 1,2,\ldots, n$, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.
- Naïve solution?
 - Try all possibilities. Exponential!
Recursive Solution

- Define r_i as the maximum possible revenue you can get for a rod of length i
- We can express r_i as follows

$$r_i = \begin{cases} 0 & i = 0 \\ \max_{1 \leq j < i} \left(p_j + r_{i-j} \right) & i > 0 \end{cases}$$

- The value of the rod without cutting
- Final answer is r_n
- Trying all possible cuts
Optimal Substructure

- The problem is to find the optimal cut for a rod of length \(n \)
- Assuming that we cut \(n \) at position \(i \)
- This leads to two subproblems, cutting two rods of lengths \(i \) and \(n - i \)
- The optimal solution when \(n \) is cut at position \(i \) must include the optimal cuts of rods of lengths \(i \) and \(n - i \)
- Proof by contradiction
def rodcut(i, p)
 return 0 if i == 0
 best_cut = p[i]
 for j in (1..i-1)
 value = rodcut(j, p) + rodcut(i-j, p)
 best_cut = [best_cut, value].max
 end
 return best_cut
end
Execution Recurrence Tree

\[n_5 \]

\[n_4 \]
\[n_3 \]
\[n_2 \]
\[n_1 \]

\[n_3 \]
\[n_2 \]
\[n_1 \]

\[n_2 \]
\[n_1 \]

\[n_1 \]
Memoized Recursive Solution

@best_cuts = []
def rodcut_memoized(i,p):
 return 0 if i == 0
 return @best_cuts[i] if @best_cuts[i]
 best_cut = p[i]
 for j in (1..i-1):
 value = rodcut_memoized(j,p) +
 rodcut_memoized(i-j,p)
 best_cut = [best_cut, value].max
 end
 return @best_cuts[i] = best_cut
end
def rodcut_bottomup(n, p):
 best_cuts = []
 for i in range(1, n + 1):
 best_cuts[i] = p[i]
 for j in range(1, i):
 value = best_cuts[j] + best_cuts[i-j]
 best_cuts[i] = max(best_cuts[i], value)
 return best_cuts[n]
Dynamic Programming

- You have a big problem
- You can break it down into smaller subproblems
- You don’t know the best way to split it
 - So, you try all possibilities
- Identify similar subproblems that are solved many times
- Devise a better (polynomial) algorithm
Matrix Chain Multiplication
Example

\[A_1 A_2 A_3 = (A_1 A_2)A_3 \]
\[A_1 A_2 A_3 = A_1 (A_2 A_3) \]

Cost?
def multiply(a, b)
 raise "Incompatible sizes" if a.columns != b.rows
 c = Matrix.new(a.rows, b.columns)
 for i in (1..a.rows)
 for j in (1..b.columns)
 c[i][j] = 0
 for k in (1..a.columns)
 c[i][j] += a[i][k] * b[k][j]
 end
 end
 end
end
Example

Cost\left((A_1A_2)A_3 \right) = 10 \cdot 100 \cdot 5 + 10 \cdot 5 \cdot 50 = 7,500

Cost\left(A_1(A_2A_3) \right) = 10 \cdot 100 \cdot 50 + 100 \cdot 5 \cdot 50 = 75,000
Problem

Given a sequence of (not necessarily square) matrices \(A_1, A_2, \ldots, A_n \) where the dimensions of matrix \(A_i \) is \(p_{i-1} \times p_i \). We want to find the order of matrix multiplication operations to compute the product \(A_1 \cdot A_2 \cdot \cdots \cdot A_n \) while minimizing the number of scalar multiplication operations.

Hint: Number of scalar multiplication operations to compute \(X \cdot Y \) with dimensions \(p \times q \) and \(q \times r \), respectively, is \(p \cdot q \cdot r \)
Recursive Implementation

```python
def matrix_chain_multiplication(p, i, j):
    return 0 if i == j  # No cost for one matrix
    min_cost = Float::INFINITY
    for k in (i..j-1):
        # Cost of left chain
        cost = matrix_chain_multiplication(p, i, k) +
        # Cost of right chain
        matrix_chain_multiplication(p, k+1, j) +
        # Cost of the final multiplication
        p[i-1] * p[k] * p[j]
    min_cost = [min_cost, cost].min
    return min_cost
```

With Memoization

```ruby
@table = {}
def matrix_chain_multiplication(p, i, j)
  return 0 if i == j # No cost for one matrix
  return @table[range] if @table[range]
  min_cost = Float::INFINITY
  for k in (i..j-1)
    # Cost of left chain
    cost = matrix_chain_multiplication(p, i, k)) +
    # Cost of right chain
    matrix_chain_multiplication(p, k+1, j) +
    # Cost of the final multiplication
    p[i-1] * p[k] * p[j]
    min_cost = [min_cost, cost].min
  end
  @table[range] = min_cost
  return min_cost
end
```
Recurrence Relation

- \(m[i, j] \): Minimum cost for multiplying matrices \(i \) through \(j \); \(1 \leq i \leq j \leq n \)
- \(m[i, j] = \)
 \[
 \begin{cases}
 0 & i = j \\
 \min_{i \leq k < j} \{ m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j \} & i < j
 \end{cases}
 \]
def matrix_chain_multiplication_bottom_up(p):
 m = {}; n = p.size
 # Initialize the diagonal (bottom level) with zeros
 for i in (1..n)
 m[i..i] = 0
 end
 for l in (2..n) # Level or chain Length
 for i in (1..(n-l+1))
 j = i + l - 1
 m[i..j] = Float::INFINITY
 for k in (i..(j-1))
 q = m[i..k] + m[(k+1)..j] + p[i-1]*p[k]*p[j]
 m[i..j] = q if q < m[i..j]
 end
 end
 end
 return m[range]
Bottom-up Approach

Final answer

Cost[$A_i \ldots A_j$]

A_1 A_2 ... A_n
Longest Common Subsequence
Definitions

Sequence: A C C G G T C G A G

Subsequence: A C G A A

Sequence: G T C G T C G G A A T G C

Subsequence: G C T A A T

Subsequence: G C T A A T

Sequence: G T C G T C G G A A T G C
Definitions

Sequence: A C C G G T C G A G

Common subsequence: G G T C

Sequence: G T C G T C G G A A T G C
Definitions

Sequence: A C C G G T C G A G

Common subsequence: G G T C

Longer Common subsequence: G G T C A G
Definitions

Sequence: A C C G T C G A G

Common subsequence: G G T C

Longer Common subsequence: G G T C A G

Longest Common subsequence: G G T C G A G

Sequence: G T C G T C G A A T G C
Problem Definition

- Given two sequences X and Y, we say that a sequence Z is a **common subsequence** of X and Y if it is a subsequence of both X and Y. For example, if $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$, the sequence $\langle B, C, A \rangle$ is a common subsequence of X and Y; not a longest one though. The problem is to find a longest common subsequence of X and Y.
Optimal Substructure

- Let x_m and y_n bet the last two characters in the two sequences and z_k be the last character in the longest common subsequence

- $x_m = y_n$

- $x_m \neq y_n$

 - $z_k = x_m$?

 - $z_k = y_n$?
Recursive Algorithm

LCS(X, Y)
 if X[m] == Y[n]
 return LCS(X[1..m-1], Y[1..n-1]) + 1
 if X[m] != Y[n]
 return MAX(LCS(X[1..m], Y[1..n-1]), LCS(X[1..m-1], Y[1..n]))
Bottom-up Algorithm

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bottom-up Algorithm

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bottom-up Algorithm

<table>
<thead>
<tr>
<th>j</th>
<th>B</th>
<th>D</th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bottom-up Algorithm

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>D</th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Bottom-up Algorithm

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>D</th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>j</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>0</td>
<td>↑0</td>
<td>↑0</td>
<td>↑0</td>
<td>↓1</td>
<td>←1</td>
</tr>
<tr>
<td>A2</td>
<td>0</td>
<td>←1</td>
<td>←1</td>
<td>←1</td>
<td>↑1</td>
<td>↓2</td>
</tr>
<tr>
<td>B2</td>
<td>0</td>
<td>↑1</td>
<td>↑1</td>
<td>↓2</td>
<td>←2</td>
<td>↑2</td>
</tr>
<tr>
<td>C3</td>
<td>0</td>
<td>↑1</td>
<td>↑1</td>
<td>↓2</td>
<td>←2</td>
<td>↑2</td>
</tr>
<tr>
<td>B4</td>
<td>0</td>
<td>←1</td>
<td>↑1</td>
<td>↑2</td>
<td>↑2</td>
<td>↓3</td>
</tr>
<tr>
<td>D5</td>
<td>0</td>
<td>↑1</td>
<td>↓2</td>
<td>↑2</td>
<td>↑2</td>
<td>↑3</td>
</tr>
<tr>
<td>A6</td>
<td>0</td>
<td>↑1</td>
<td>↑2</td>
<td>↑2</td>
<td>↓3</td>
<td>↑3</td>
</tr>
<tr>
<td>B7</td>
<td>0</td>
<td>←1</td>
<td>↑2</td>
<td>↑2</td>
<td>↑3</td>
<td>↓4</td>
</tr>
</tbody>
</table>
Bottom-up Algorithm

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th></th>
<th>A</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>j</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>↑0</td>
<td>↑0</td>
<td>↑0</td>
<td>↘1</td>
<td>←1</td>
<td>↑1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>↘1</td>
<td>←1</td>
<td>←1</td>
<td>↑1</td>
<td>↘2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>↑1</td>
<td>↑1</td>
<td>↘2</td>
<td>←2</td>
<td>↑2</td>
<td></td>
<td>↑2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>↘1</td>
<td>↑1</td>
<td>↑2</td>
<td>↑2</td>
<td>↘3</td>
<td>←3</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>↑1</td>
<td>↘2</td>
<td>↑2</td>
<td>↘3</td>
<td>↑3</td>
<td></td>
<td>↘4</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>↘1</td>
<td>↑2</td>
<td>↑2</td>
<td>↑3</td>
<td>↘4</td>
<td></td>
<td>↑4</td>
</tr>
</tbody>
</table>
Construction Algorithm

LCS-LENGTH(X, Y)
1 \(m = X.length \)
2 \(n = Y.length \)
3 let \(b[1..m, 1..n] \) and \(c[0..m, 0..n] \) be new
4 \(\text{for } i = 1 \text{ to } m \)
5 \(c[i, 0] = 0 \)
6 \(\text{for } j = 0 \text{ to } n \)
7 \(c[0, j] = 0 \)
8 \(\text{for } i = 1 \text{ to } m \)
9 \(\text{for } j = 1 \text{ to } n \)
10 \(\text{if } x_i == y_j \)
11 \(c[i, j] = c[i - 1, j - 1] + 1 \)
12 \(b[i, j] = \text{“\textless”} \)
13 \(\text{elseif } c[i - 1, j] \geq c[i, j - 1] \)
14 \(c[i, j] = c[i - 1, j] \)
15 \(b[i, j] = \text{“\textup{”}”} \)
16 \(\text{else } c[i, j] = c[i, j - 1] \)
17 \(b[i, j] = \text{“\textless”} \)
18 \(\text{return } c \text{ and } b \)
Print-LCS

\textbf{PRINT-LCS}(b, X, i, j)

1 \hspace{1em} \textbf{if} \ i == 0 \ \text{or} \ j == 0
2 \hspace{1em} \textbf{return}
3 \hspace{1em} \textbf{if} \ b[i, j] == "\downarrow"
4 \hspace{1em} \textbf{PRINT-LCS}(b, X, i - 1, j - 1)
5 \hspace{1em} \textbf{print} \ x_i
6 \hspace{1em} \textbf{elseif} \ b[i, j] == "\uparrow"
7 \hspace{1em} \textbf{PRINT-LCS}(b, X, i - 1, j)
8 \hspace{1em} \textbf{else} \ \textbf{PRINT-LCS}(b, X, i, j - 1)
Edit Distance
Minimum Edit Distance

- How to measure the similarity of words or strings?
- Auto corrections: “rationg” → {“rating”, “ration”}
- Alignment of DNA sequences

An Example of DNA sequence alignment

Human LEP gene

Mouse ob gene

© 2010 Pearson Education, Inc.

Adapted from Klug p. 384

Determine the matching score.
Edit Distance

- Defined as the number of edit operations from string X to a string Y.
- The edit operations are:
 - Insertion: “ratio” \rightarrow “ration”
 - Deletion: “rationg” \rightarrow “ration”
 - Substitution: “rationg” \rightarrow “rations”
- Example:
 - Edit distance of “Mickey” and “Mikey” is one deletion operation
Minimum Edit Distance

- Given two strings X and Y, find the minimum edit distance between them. That is, find the minimum number of edit operations that can be applied on X to transform it to Y. Also, find this sequence of operations.
Subproblem Formulation

G O B L I N

G O L D E N
If the last character in both strings is the same, then we know that the optimal solution can copy this value. Why?

The subproblem is formulated by removing the last character of both
Subproblem Formulation

If the last character is different, then we do not really know what would be the optimal edit.

If we do not know the optimal edit, the next best thing is to try everything.
Subproblem Formulation

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>G</td>
<td>O</td>
<td>B</td>
<td>L</td>
<td>I</td>
</tr>
<tr>
<td>Y</td>
<td>G</td>
<td>O</td>
<td>L</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

P

$X[1..n]$

- Insert last character in Y

P_1

$X[1..n-1]$

- Delete last character in X

P_2

$X[1..n-1]$

- Substitute the last characters

P_3
Recurrence Relation

- \(D_{i,j} \): The cost of transforming \(X[1..i] \) to \(Y[1..j] \)

\[
D_{i,j} = \begin{cases}
\max\{i, j\} & ; i = 0 \lor j = 0 \\
D_{i-1,j-1} & ; i > 0 \land j > 0 \land x_i = y_j \\
\min \left\{ D_{i,j-1} + \text{insertion cost}(y_j), D_{i-1,j} + \text{deletion cost}(x_i), D_{i-1,j-1} + \text{substitution cost}(x_i, y_j) \right\} & ; i > 0 \land j > 0 \land x_i \neq x_j
\end{cases}
\]

\[
D_{i,j} = \begin{cases}
\max\{i, j\} & ; i = 0 \lor j = 0 \\
D_{i,j-1} + \text{insertion cost}(y_j) & ; i > 0 \land j > 0 \\
\min \left\{ D_{i,j-1} + \text{deletion cost}(x_i), D_{i-1,j} + \text{deletion cost}(x_i), D_{i-1,j-1} + \text{substitution cost}(x_i, y_j) \right\} & ; i > 0 \land j > 0
\end{cases}
\]

\[
\text{substitution cost}(a, b) = \begin{cases}
0 & ; a = b \\
1 & ; a \neq b
\end{cases}
\]
Bottom-up Algorithm

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>O</th>
<th>L</th>
<th>D</th>
<th>E</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>