Graph Algorithms

Chapter 22
Graphs

- A flexible data structure for a wide range of applications
- Consists mainly of Vertices (nodes) and Edges (arcs)
- Vertices and/or Edges can be annotated with further information
- Applications?
Graphs

▶ Social Network

▶ Knowledge Base

Gavin Newsom
Governor-of
Resident-in
California

Washington

Capital-of
US

State-in
Outline

- Types of graphs
- Representations of graphs
 - Adjacency list
 - Adjacency matrix
- Elementary graph algorithms
 - Bread-first Search (BFS)
 - Depth-first Search (DFS)
 - Connectivity
 - Cycle Detection
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
Undirected Graph

- No direction in edges
- An edge can be traversed in both ways
- E.g., Facebook friends

![Diagram of an undirected graph with nodes 1, 2, 3, 4, 5 connected in a cycle.]
Directed Graph

- Direction on edges
- An edge can be traversed in one direction
- E.g., Twitter follows
Weighted Graph

Vertices and/or edges can be assigned weights
E.g., road network

Unweighted Graph

Weighted Graph
Connected Graphs

Connected Graph

Disconnected Graph
Bipartite Graph

A graph where the vertices can be partitioned into two groups where there are no edges within a group and all the edges are from one group to the other.
Acyclic Graph

- A graph that has at least one cycle

Acyclic Graph

Non-acyclic Graph
Adjacency List
Graph Representations
Adjacency List
Adjacency Matrix
Adjacency Matrix

```
1  2  3  4  5  6
1 0 1 0 1 0 0
2 0 0 0 0 1 0
3 0 0 0 0 1 1
4 0 1 0 0 0 0
5 0 0 0 1 0 0
6 0 0 0 0 0 1
```
Graph Traversals
Breadth-first Search
Depth-first Search
Cycle Detection

- A path is a sequence of edges that can be traversed from a source node to a destination node
- A cycle is an infinite path in a graph
- Given an undirected graph, how to detect if it has a cycle?
- Find the vertices that comprise a cycle
- Given a directed graph, how to detect if it has a cycle?
Minimum Spanning Tree
MST Problem Definition

Given a weighted undirected graph $G = (V, E, W)$, where V is the set of vertices, E is the set of edges, and W is the weighting function which defines the weight $w(u, v)$ for any pair of vertices $\langle u, v \rangle$. We want to find an acyclic subset $T \subseteq E$ that connects all of the vertices and whose total weight $w(T) = \sum_{(u,v) \in T} w(u, v)$, is minimized.
Example
Non-minimum Spanning Tree

Total weight = 21
A Minimum Spanning Tree

Total weight = 16
Another MST

Total weight = 16
Kruskal’s Algorithm

- Sort all the edges by weight
- Scan the edges by weight from lowest to highest
- If an edge introduces a cycle, drop it
- If an edge does not introduce a cycle, pick it
- Terminate when n-1 edges are picked
Kruskal’s MST in Action
Prim’s Algorithm

- Start from any node and mark it as visited
- Set the weight of each node to the lowest weight of an incident edge with a visited node
- Find the node with the lowest weight and visit it
- Repeat until all the n nodes are visited
Prim’s MST in Action

A

B

C

D

E

F

\[\begin{array}{cccc}
\infty & 1 & \infty & \infty \\
3 & \infty & 2 & 4 \\
4 & 4 & \infty & 5 \\
\infty & \infty & 7 & \infty \\
\end{array} \]
Prim’s MST in Action
Generic-MST

- Generic-MST(G, w)
 - $A = \{\}$
 - While A does not form a spanning tree
 - Find an edge (u, v) that is safe for A
 - $A = A \cup \{(u, v)\}$
 - Return A

- If A is a subset of a MST, then an edge (u, v) if safe is $A \cup \{(u, v)\}$ is also a subset of a MST.
The edge (A,B) crosses the cut.

\[S = \{A, D, E\} \]
\[V - S = \{B, C, F\} \]

Cut \((S, V - S)\)
Light edge/Safe edge

- A light edge: is a crossing edge with the minimum weight
- A safe edge: is an edge that can be added to A while keeping it a subset of the MST
- Theorem: A light edge is a safe edge
Kruskal’s Algorithm

\textsc{Kruskal}(G, w)

\begin{align*}
O(1) & \quad A = \emptyset \\
O(1) & \quad \text{for each vertex } v \in G.V \quad // \ V \text{ iterations} \\
O(1) & \quad \text{MAKE-SET}(v) \\
O(\log E) & \quad \text{sort the edges of } G.E \text{ into nondecreasing order by weight } w \\
& \quad \text{for each } (u, v) \text{ taken from the sorted list } // \ E \text{ iterations} \\
O(\alpha(V)) & \quad \text{if } \text{FIND-SET}(u) \neq \text{FIND-SET}(v) \\
O(1) & \quad A = A \cup \{(u, v)\} \\
O(\alpha(V)) & \quad \text{UNION}(u, v) \\
\text{return } A
\end{align*}
Prim’s Algorithm

\(\text{PRIM}(G, w, r) \)

\(Q = \emptyset \)

\textbf{for} each \(u \in G.V \) \quad // \ V \ \text{iterations}

\(u.\text{key} = \infty \)

\(u.\pi = \text{NIL} \)

\(O(\log V) \quad \text{INSERT}(Q, u) \)

\(O(\log V) \quad \text{DECREASE-KEY}(Q, r, 0) \quad // \ r.\text{key} = 0 \)

\textbf{while} \(Q \neq \emptyset \)

\(O(\log V) \quad u = \text{EXTRACT-MIN}(Q) \)

\textbf{for} each \(v \in G.\text{Adj}[u] \) \quad // \ V \ \text{iterations}

\textbf{if} \(v \in Q \) and \(w(u, v) < v.\text{key} \)

\(v.\pi = u \)

\(O(\log V) \quad \text{DECREASE-KEY}(Q, v, w(u, v)) \)