Assignment #3
Due on Thursday 2/14/2019

1. In the selection problem discussed in class, we used an algorithm that computes the median of 5 and showed that it works in a worst-case linear time.

 (a) Repeat the problem using the median of 3 and argue that it does not work in linear time.

 (b) Repeat the problem using the median of 7 and show that it works in a linear time.

2. Given two sorted lists \(A[1..n] \) and \(B[1..n] \). We would like to find the median of the union of the two lists. For simplicity, assume that the union of \(A \) and \(B \) does not contain any duplicate items and that \(n \) is a power of 2. The median is the element at position \(n \), i.e., the one that is larger than \(n - 1 \) elements and less than \(n \) elements.

 (a) Propose a naive algorithm that finds the median in \(\Theta(n) \) running time.

 (b) Propose a divide-and-conquer algorithm that finds the median in \(\Theta(\log n) \) running time.

3. Suppose that we have \(n \) tasks to schedule on a computer with a single-core processor where task \(i \) takes \(t_i \) time units to finish. We would like to run all of the \(n \) tasks while minimizing the total waiting time for all tasks. Assuming that the first tasks starts at \(t = 0 \), the waiting time \(w_i \) for task \(i \) is the total time before it is started. For example, if we have three tasks with execution times \(t_1 = 5, t_2 = 3 \), and \(t_3 = 2 \) scheduled to run in the order \(\langle c_1, c_2, c_3 \rangle \), the waiting times are \(w_1 = 0, w_2 = 5 \), and \(w_3 = 5 + 3 = 8 \). If they are scheduled in the order \(\langle c_3, c_2, c_1 \rangle \), the waiting times become \(w_3 = 0, w_2 = 2 \), and \(w_1 = 2 + 3 = 5 \). Propose a greedy algorithm that finds the optimal scheduling for the \(n \) tasks with the minimum waiting time. Prove the optimality of the algorithm and establish its running time.