
CS133
Computational Geometry

Voronoi Diagram

Delaunay Triangulation

1

Nearest Neighbor Problem

Given a set of points 𝑃 and a query point 𝑞,

find the closest point 𝑝 ∈ 𝑃 to 𝑞

∀𝑝, 𝑟 ∈ 𝑃, 𝑑𝑖𝑠𝑡 𝑝, 𝑞 ≤ 𝑑𝑖𝑠𝑡(𝑟, 𝑞)

Simple algorithm: Scan and find the minimum

An efficient algorithm: Use a spatial index

structure such as K-d tree

What if we need to repeat this for every point

in the space, i.e., an infinite number of

points?

2

Application: Cell Coverage

3

Voronoi Diagram

Other Applications

Service coverage for hospitals, post offices,

schools, … etc.

Marketing: Find candidate locations for a new

restaurant

Routing: How an electric vehicle should travel

while staying close to charging stations

4

Voronoi Region

Given a set 𝑃 of points (also called sites), a

Voronoi region (Voronoi face) of a site 𝑝𝑖 ∈ 𝑃,

𝑉 𝑝𝑖 is the set of points in the Euclidean

space where 𝑝𝑖 is (one of) the closest sites

𝑉 𝑝𝑖 = 𝑥: 𝑝𝑖 − 𝑥 ≤ 𝑝𝑗 − 𝑥 ∀𝑝𝑗 ∈ 𝑃

5

Voronoi Diagram

The Voronoi diagram is the set of points that

belong to two or more Voronoi regions

Voronoi diagram is a tessellation of the space

into regions where each region contains all

the points that are closest to one site

6

VD of Two Points

7

𝑝1

𝑝2𝑉 𝑝1

𝑉 𝑝2

VD of Three Points

8

𝑝1

𝑝2𝑉 𝑝1

𝑉 𝑝2

𝑝3

𝑉 𝑝3

VD of Three Points

9

𝑝1

𝑝2𝑉 𝑝1

𝑉 𝑝2

𝑝3

𝑉 𝑝3

Voronoi Region

A Voronoi region of a set 𝑝𝑖 is the intersection

of all half spaces defined by the

perpendicular bisectors

𝑉 𝑝𝑖 = 𝑗≠𝑖𝐻ځ 𝑝𝑖 , 𝑝𝑗

10

VD of a Set of Points

11

𝑃 𝑉𝐷 𝑃

Mother Nature Loves VD

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature

Mother Nature Loves VD

Mother Nature Loves VD

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature

Mother Nature Loves VD

Onion cells under the microscope

Mother Nature Loves VD

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature

A thin slice of carrot under the scope

Mother Nature Loves VD

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature

A dead maple leaf at 160X

Mother Nature Loves VD

http://forum.woodenboat.com/showthread.php?112363-Voronoi-Diagrams-in-Nature

An oak leaf

VD Properties

19

Voronoi regions are

convex

Each Voronoi region

contains a single site

Voronoi regions (faces)

can be unbounded

Most intersection points

connect three

segments

VD Properties

𝑉 𝑝𝑖 is unbounded iff 𝑝𝑖 ∈ 𝒞ℋ 𝑃

If a point 𝑥 is at the intersection of three or

more Voronoi regions, say

𝑉 𝑝1 , 𝑉 𝑝2 , … , 𝑉 𝑝𝑘 , then 𝑥 is the center of

a circle 𝐶 that have 𝑝1, … , 𝑝𝑘 at its boundary

𝐶 contains no other sites

VD is unique

20

Delaunay Triangulation (DT)

Delaunay triangulation is the straight-line dual

of the Voronoi diagram

Each site is a corner of at least one triangle

Each two Voronoi regions that share an edge

are connected with an edge in DT

21

DT Properties

The edges of 𝐷 𝑃 do not intersect

Is 𝐷 𝑃 unique?

Yes, if no four sites are co-circular

If 𝑝𝑖 and 𝑝𝑗 are the closest pair

of sites, they are connected with an edge in DT

If 𝑝𝑖 and 𝑝𝑗 are nearest neighbors, they are

connected with an edge in DT

The circumcircle of 𝑝𝑖, 𝑝𝑗, and 𝑝𝑘 is empty ⟺

𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘 is a triangle in DT

22

DT is a Planar Graph

Since the edges in DT do not intersect, they

form a planar graph

The number of edges/faces in a Delaunay

Triangulation is linear in the number of vertices.

The number of edges/vertices in a Voronoi

Diagram is linear in the number of faces.

The number of vertices/edges/faces in a Voronoi

Diagram is linear in the number of sites.

23

Theorem 7.3

For 𝑛 ≥ 3, the number of vertices in the

Voronoi diagram (𝑛𝑣) of a set of 𝑛 point sites

in the plane is at most 2𝑛 − 5, and the

number of edges 𝑛𝑒 is at most 3𝑛 − 6

24

Proof

For any connected graph 𝐺

Euler’s rule: 𝑚𝑣 −𝑚𝑒 +𝑚𝑓 = 2

𝑚𝑣: Number of vertices (nodes)

𝑚𝑒: Number of edges (arcs)

𝑚𝑓: Number of faces

𝑛𝑣 + 1 − 𝑛𝑒 + 𝑛 = 2

Each edge connects two vertices

The sum of degrees of vertices

∑𝑑 𝑣𝑖 = 2𝑛𝑒
𝑑 𝑣𝑖 ≥ 3

25

Proof (cont’d)

3𝑛𝑣 ≤ ∑𝑑 𝑣𝑖
3 𝑛𝑣 + 1 ≤ 2𝑛𝑒

𝑛𝑣 + 1 ≤
2

3
𝑛𝑒

But: 𝑛𝑣 + 1 − 𝑛𝑒 + 𝑛 = 2

𝑛𝑣 + 1 = 2 − 𝑛 + 𝑛𝑒 ≤
2

3
𝑛𝑒

1

3
𝑛𝑒 ≤ 𝑛 − 2

𝑛𝑒 ≤ 3𝑛 − 6

𝑛𝑣 ≤ 2𝑛 − 5

26

DT Properties

The boundary of 𝐷 𝑃 is the convex hull of 𝑃

27

𝑝𝑖

𝑝𝑗

𝑉 𝑝𝑖

𝑉 𝑝𝑗

DT Properties

The boundary of 𝐷 𝑃 is the convex hull of 𝑃

28

𝑝𝑖

𝑝𝑗

𝑉 𝑝𝑖

𝑉 𝑝𝑗

DT Properties

The boundary of 𝐷 𝑃 is the convex hull of 𝑃

29

𝑝𝑖

𝑝𝑗

𝑉 𝑝𝑖

𝑉 𝑝𝑗

DT Properties

The boundary of 𝐷 𝑃 is the convex hull of 𝑃

30

𝑝𝑖

𝑝𝑗

𝑉 𝑝𝑖

𝑉 𝑝𝑗

DT Properties

The boundary of 𝐷 𝑃 is the convex hull of 𝑃

31

𝑝𝑖

𝑝𝑗

𝑉 𝑝𝑖

𝑉 𝑝𝑗∞

DT Properties

If 𝑝𝑗 is the nearest neighbor of 𝑝𝑖 then 𝑝𝑖𝑝𝑗 is

a Delaunay edge

𝑝𝑗 is the nearest neighbor of 𝑝𝑖 iff. the circle

around 𝑝𝑖 with radius 𝑝𝑖 − 𝑝𝑗 is empty of

other points.

⇒The circle through 𝑝𝑖 + 𝑝𝑗 /2 with radius

|𝑝𝑖 − 𝑝𝑗|/2 is empty of other points.

⇒ 𝑝𝑖 + 𝑝𝑗 /2 is on the Voronoi diagram.

⇒ 𝑝𝑖 + 𝑝𝑗 /2 is on a Voronoi edge.

32

VD Plane Sweep

Scan the plane from top to bottom

Compute the VD of the points above the

sweep line

Is it that simple?

33

VD of a Line and a Point

34

𝑦 =
1

2

𝑥 − 𝑝𝑖𝑥
2

𝑝𝑖𝑦 − ℓ𝑦
+ ℓ𝑦 + 𝑝𝑖𝑦

𝑝𝑖𝑥, 𝑝𝑖𝑦

ℓ𝑦

VD of a Line and a n Points

35

VD of a Line and a n Points

36

Fortune’s Algorithm

As the line sweeps the plane, the algorithm

maintains the VD of the set of points and the

sweep line

Since the sweep line is closer than any future

point, it acts as a barrier that isolates the VD

from all future points

37

Fortune’s Algorithm in Action

38

VD Properties

The VD part above the beach line (blue) is

final. Why?

This area is closer to some site than the beach

line

… closer to some site than any future site

We already know the nearest site to those areas

39

VD Properties

The beach line is 𝑥-monotone. Why?

Each parabola is 𝑥-monotone

At each 𝑥-coordinate, the beach line takes one

value which is the minimum of all the parabolas

Therefore, it is 𝑥-monotone

40Figure Credits: http://www.cs.sfu.ca/~binay/813.2011/Fortune.pdf

VD Properties

The breakpoints of the beach line lie on

Voronoi edges of the final diagram

Each breakpoint is equidistant from two sites

A breakpoint is as close to some site as to the

sweep line

The sweep line is (closer) to the blue sites than

future sites

41

Fortune’s Algorithm

Move the sweep line downwards and update

the VD as the line moves

When the line reaches −∞, we will have our

final VD. (Because any point in the space is

closer to some site than y = −∞)

Note: We never create the beach line

explicitly. We only maintain enough

information that allows us to reconstruct parts

of it when we need them

42

Beach Line Changes

How can the beach line change

(topologically)

A new arc appears

An existing arc is removed

43

Site Event

When the sweep line hits a new site

Where are the points that are equi-distant

from the new site and the sweep line?

A vertical line that crosses the new site

44

Site Event

45

Lemma: The only way in which a new arc can

appear on the beach line is through a site event

Proof by contradiction

Case 1: An existing arc 𝛽𝑗 breaks through

the middle of an existing arc 𝛽𝑖

Case 2: An existing arc 𝛽𝑗 appears

in between two arcs

Proof is in the book

Circle (Vertex) Event

An existing arc shrinks into a point and

disappears

This happens when three (or more) sites

become closer to a point than the sweep line

shielding the point from the sweep line

46

Circle (Vertex) Event

The sweep line will only go further down while

the points stay

This results in a vertex on the Voronoi Diagram

Lemma: The only way in which an existing arc

can disappear from the beach line is through a

circle event

47

Circle (Vertex) Event

A circle event

happens between

three adjacent arcs

of three different

sites

A circle event is

added at the lowest

point of the circle

and is associated

with the point of the

disappearing arc
48

Circle event

Plane Sweep Constructs

Sweep line status: The VD of the sites and

the sweep line. In other words, the final part

of the VD + the beach line in non-decreasing

𝑥 order

Event points:

Site event: A new site that adds a new arc to the

VD. 1-to-1 mapping to an input site

Circle event: The disappearance of an arc

resulting in a vertex in VD. Can only be

discovered along the way

49

Sweep Line Status

The final part of VD is stored in the Doubly-

Connected Edge List (DCEL) data structure

The beach line is stored as a BST (𝜏) of arcs

sorted by 𝑥

Leaves store arcs

Internal nodes store the breakpoints as a pair of

sites 𝑝𝑖 , 𝑝𝑗

50

Sweep Line Status

51

𝑝1

𝑝2
𝑝3

𝛼1

𝛼2 𝛼3

𝑝1, 𝑝2

𝑝1, 𝑝2
𝑝2, 𝑝3

𝑝2, 𝑝3𝑝1

𝑝2 𝑝3

Event Points

Stored in a priority queue 𝑄 as a max-heap

ordered by 𝑦

𝑄 is initialized with all sites

52

Handle Site Event (𝒑𝒊)

If 𝜏 is empty, add the site to it and return

Search in 𝜏 for the arc 𝛼 vertically above 𝑝𝑖
If exists, delete a circle event linked with 𝛼

Split 𝛼 into two arcs and insert a new arc 𝛼𝑖
corresponding to 𝑝𝑖
The new intersections are 𝛼, 𝛼𝑖 and 𝛼𝑖 , 𝛼

Check the new triples of arcs and add their

corresponding circle event to 𝑄

53

Handle Site Event (𝒑𝒊)

54

𝑝1

𝑝2
𝑝3

𝛼1

𝛼2 𝛼3

𝑝1, 𝑝2

𝑝1, 𝑝2
𝑝2, 𝑝3

𝑝2, 𝑝3𝑝1

𝑝2 𝑝3

𝑝4

Handle Site Event (𝒑𝒊)

55

𝑝1

𝑝2
𝑝3

𝛼1

𝛼2 𝛼3

𝑝1, 𝑝2

𝑝1, 𝑝2
𝑝2, 𝑝3

𝑝2, 𝑝3𝑝1

𝑝2 𝑝3

𝑝4

𝑝4, 𝑝2𝑝2, 𝑝4

Handle Site Event (𝒑𝒊)

56

𝑝1

𝑝2
𝑝3

𝛼1

𝛼2 𝛼3

𝑝1, 𝑝2

𝑝1, 𝑝2
𝑝2, 𝑝3

𝑝2, 𝑝3𝑝1

𝑝3

𝑝4

𝑝4, 𝑝2𝑝2, 𝑝4
𝑝2, 𝑝4

𝑝4, 𝑝2

𝑝4

𝑝2

𝑝2

Handle Site Event (𝒑𝒊)

57

𝑝1

𝑝2
𝑝3

𝛼1

𝛼2 𝛼3

𝑝1, 𝑝2

𝑝1, 𝑝2
𝑝2, 𝑝3

𝑝2, 𝑝3𝑝1

𝑝3

𝑝4

𝑝4, 𝑝2𝑝2, 𝑝4
𝑝2, 𝑝4

𝑝4, 𝑝2

𝑝4

𝑝2

𝑝2

𝛼1𝛼2𝛼3 are no longer adjacent ➔ Remove the circle event that corresponds to 𝛼2

𝛼1𝛼2𝛼4 are now adjacent ➔ Create a new circle event for them

Similarly, create a circle event for 𝛼4𝛼2𝛼3

No circle event for the triple 𝛼2𝛼4𝛼2
because they don’t correspond tot three

different sites

Creating a Circle Event

Given three sites 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘 that have three

adjacent arcs, we first compute the center of

their circumcircle, i.e., the intersection of the

two perpendicular bisectors to 𝑝𝑖𝑝𝑗 and 𝑝𝑗𝑝𝑘

Compute the bottom point of the circle as

𝑥𝑐 , 𝑦𝑐 − 𝑟 where

𝑥𝑐 , 𝑦𝑐 are the coordinates of the circle center

and 𝑟 is the circle radius

Associate the circle event with the middle site

in the tree order

58

Handle Circle Event (𝜸)

Delete the leaf 𝛾 that corresponds to the

disappearing arc 𝛼𝑖 from 𝜏

Delete the two breakpoints that involve 𝛼𝑖
Insert a new break point

Add the center of the circle event as a vertex

in VD. This center is one side of two half-

edges

Check for any new circle events caused by

the now adjacent triples of arcs

Running time: 𝑂 𝑛 log 𝑛
59

Circle Event (𝜸)

60

𝑝1 𝑝2 𝑝3

𝛼1
𝛼2

𝛼3

𝑝1, 𝑝2 𝑝2, 𝑝3

Circle event point

𝑝1, 𝑝2

𝑝2, 𝑝3

𝑝1 𝑝2 𝑝3

𝑝4

𝜏

𝛼4

𝑝3, 𝑝4

𝑝3, 𝑝4

𝑝4

Circle Event (𝜸)

61

𝑝1 𝑝2 𝑝3

𝛼1
𝛼2

𝛼3

𝑝1, 𝑝2 𝑝2, 𝑝3

Circle event point

𝑝1, 𝑝2

𝑝2, 𝑝3

𝑝1 𝑝2 𝑝3

𝑝4

𝜏

𝛼4

𝑝3, 𝑝4

𝑝3, 𝑝4

𝑝4

Circle Event (𝜸)

62

𝑝1 𝑝2 𝑝3

𝛼1
𝛼2

𝛼3

𝑝1, 𝑝2 𝑝2, 𝑝3

Circle event point
𝑝1, 𝑝3

𝑝1

𝑝3

𝑝4

𝜏

𝛼4

𝑝3, 𝑝4

𝑝3, 𝑝4

𝑝4

(𝑝1, 𝑝3, 𝑝4) are now adjacent in the

tree, create a corresponding circle

event

Delaunay

Triangulation

63

Delaunay Triangulation

A Delaunay triangulation can be defined as

the (unique) triangulation in which the

circumcircle of each triangle has no other

sites

Naïve algorithm:

Consider all possible triangles 𝑂 𝑛3

Check if the circumcircle of the triangle is empty 𝑂 𝑛

Running time 𝑂 𝑛4

64

Guibas and Stolfi’s Algorithm

A divide and conquer algorithm

65

Algorithm Outline

DelaunayTriangulation(P)

If (|P| <= 3)

return TrivialDT(P)

Split P into P1 and P2

DT1 = DelaunayTriangulation(P1)

DT2 = DelaunayTriangulation(P1)

Merge(DT1, DT2)

66

Split

67Pre-sort by x

TrivialDT(P)

68

P TrivialDT(P)

Merge(P1, P2)

69

Merge(P1, P2)

70

Merge(P1, P2)

71

Merge(P1, P2)

72

Find the First LR edge

73Upper tangent of 𝒞ℋ 𝑃1 , 𝒞ℋ 𝑃2

Base LR edge

Rising Bubble

74

Rising Bubble

75

Rising Bubble

76

Rising Bubble

77

New Base LR edge

Rising Bubble

78

Rising Bubble

79

Rising Bubble

80

Rising Bubble

81

Rising Bubble

82

Rising Bubble

83

Rising Bubble

84

Rising Bubble

85

Rising Bubble

86

Rising Bubble

87

Rising Bubble

88

Rising Bubble

89

Rising Bubble

90

Rising Bubble

91

Rising Bubble

92

Rising Bubble

93

Rising Bubble

94

Rising Bubble

95

Rising Bubble

96

Rising Bubble

97

Rising Bubble

98

Rising Bubble

99

Rising Bubble

100

Rising Bubble

101

Rising Bubble

102

Rising Bubble

103

Rising Bubble

104

Rising Bubble

105

Rising Bubble

106

Rising Bubble

107

Rising Bubble

108

Rising Bubble

109

Rising Bubble

110

Rising Bubble

111

Rising Bubble

112

Rising Bubble

113

Rising Bubble

114

Rising Bubble

115

Terminate

116

Rising Bubble Implementation

117

𝜃𝑅𝜃𝐿

Rising Bubble Implementation

118

𝜃𝑅
𝜃𝐿

Rising Bubble Implementation

119

𝜃𝑅
𝜃𝐿

Rising Bubble Implementation

120

𝜃𝑅
𝜃𝐿

Rising Bubble Implementation

121

𝜃𝑅
𝜃𝐿

Rising Bubble Implementation

122

Terrain Problem

123

Terrain Problem

We would like to build a model for the Earth

terrain

We can measure the altitude at some points

How to approximate the altitude for non-

measured points?

124

Nearest Neighbor

One possibility,

approximate it to the

nearest measured

point

Does not look

natural

125

Triangulation

Determine a

triangulation

Raise each point to

its altitude

Question: Which

triangulation?

126

Angle-optimal Triangulation

For a triangulation 𝒯

𝐴(𝒯): is the angle vector which

consists of the angles 𝛼’s in

sorted order

𝛼1 ≤ 𝛼2 ≤ ⋯ ≤ 𝛼𝑛
We say that 𝐴 𝒯 > 𝐴(𝒯′) if

𝐴(𝒯) is lexicographically larger

than 𝐴(𝒯′)

𝒯 is angle optimal if 𝐴 𝒯 ≥
𝐴(𝒯′) for all triangulations 𝒯′

127

𝛼1

𝛼2

𝛼3 𝛼4

𝛼5

𝛼6

Edge Flip

The edge 𝑝𝑖𝑝𝑗 is illegal if min
1≤𝑖≤6

𝛼𝑖 < min
1≤𝑖≤6

𝛼𝑖
′

Flipping an edge increases the angle vector

128

𝛼1

𝛼2

𝛼3 𝛼4

𝛼5

𝛼6

𝑝𝑖

𝑝𝑗

𝑝𝑘

𝑝𝑙

𝛼1
′

𝛼2
′

𝛼3
′

𝛼4
′

𝛼5
′

𝛼6
′

𝑝𝑖

𝑝𝑗

𝑝𝑘

𝑝𝑙

Edge Flip

Detect Illegal Edges

Thale’s Theorem

𝑎𝑏 is a chord in 𝐶

∡𝑎𝑟𝑏 > ∡𝑎𝑝𝑏

∡𝑎𝑝𝑏 = ∡𝑎𝑞𝑏

∡𝑎𝑞𝑏 > ∡𝑎𝑠𝑏

129

𝑎

𝑏

𝑟

𝑝
𝑞

𝑠

𝐶

Detect Illegal Edges

By Thale’s Theorem

∡𝑝𝑖𝑝𝑗𝑝𝑘 < ∡𝑝𝑖𝑝𝑙𝑝𝑘

∡𝑝𝑗𝑝𝑖𝑝𝑘 < ∡𝑝𝑗𝑝𝑙𝑝𝑘

An angle-optimal

triangulation is

equivalent to Delauany

Triangulation

130

𝑝𝑖

𝑝𝑗

𝑝𝑘

𝑝𝑙

Illegal Edge

Delaunay Triangulation

1. Start with any valid triangulation

2. If no illegal edges found, terminate

3. Pick an illegal edge and flip it

4. Go to 2

• Does this algorithm terminate?

• Running time: 𝑂 𝑛2

131

Incremental Algorithm

Given an existing Delaunay triangulation

𝐷𝑇(𝑃)

We need to add a point 𝑝𝑖 to 𝐷𝑇

132

Incremental Algorithm

133

Incremental Algorithm

134

Incremental Algorithm

135

Incremental Algorithm

136

Incremental Algorithm

137

𝑝−1 𝑝−2

Incremental Algorithm

138

Incremental Algorithm

139

Insert

140

Legalize Edge

141

Correctness

142

Correctness

143

Incremental Algorithm

144

Search Data Structure

145

