
CS133
Computational Geometry

Intersection Problems

1



Riddle: Fair Cake-cutting

Using only one straight-line cut, how to split 

the cake into two equal pieces (by area)?

2

Cake



Riddle: Fair cake-cutting

Mixed cake!

Still one cut

3

Cake

Cake



Line Segment Intersections

Given a set of line segments, each defined by 

two end points, find all intersecting line 

segments

4



Line Segment Intersection

5



Line Segment Intersection

6



Naïve Algorithm

Enumerate all possible pairs of lines

Test for intersection

Running time O(n2)

What is the lower bound of the running time?

Worst case: O(n2)

Is this optimal?

7



Plane-sweep Algorithm

8



Plane-sweep Algorithm

9



Plane-sweep Algorithm

10



Plane-sweep Algorithm

11



Plane-sweep Algorithm

12



Plane-sweep Algorithm

13



Plane-sweep Algorithm

14



Plane-sweep Algorithm

15



Plane-sweep Algorithm

16



Plane-sweep Algorithm

17



Plane-sweep Algorithm

18



Plane-sweep Algorithm

19



Plane-sweep Algorithm

20



Plane-sweep Algorithm

21



Plane-sweep Algorithm

22



Plane-sweep Algorithm

23



Plane-sweep Algorithm

24



Plane-sweep Algorithm

25



Elements of Plane-sweep

The sweep line: Sweeps the plane in specific 

direction, e.g., top-down

The state of the sweep line 𝑆: A set of all line 

segments that intersect the sweep line at any 

position. The state changes as the line move.

The event points 𝐸: Is the set of points where 

the state 𝑆 changes. In this case, the end 

points of the line segments comprise the 

event points.

26



Example: Event Points

27

𝑙1

𝑙2

𝑙3

(4,10)

(1,7)

(2,5) (3,5)

(5,6)

(3,3)

𝒚 𝒍𝒊 Start/End

10 𝑙1 Start

7 𝑙2 Start

6 𝑙3 Start

5 𝑙1 End

5 𝑙2 End

3 𝑙3 End



Plane-sweep Simple Impl.

Input 𝐿 = 𝑙𝑖
𝑙𝑖 = 𝑙𝑖 . 𝑝1, 𝑙𝑖 . 𝑝2
𝐸= the list of 𝑦-coordinates sorted in decreasing 

order

𝑆 = {}

For each event with a corresponding line 𝑙𝑖
If top point

Compare 𝑙𝑖 to each 𝑠 ∈ 𝑆

Insert 𝑙𝑖 to S

If end point

Remove 𝑙𝑖 from S

28



Plane-sweep Poor Behavior

29

𝑂 𝑛2



Bentley-Ottmann Algorithm

An improved scan-line algorithm

Maintains the state S in a sorted order to 

speed up checking a line segment against 

segments in S

30



Example

31

Sweep line state (in sorted order)



Algorithm Pseudo code

Create a list of event points 𝑃

𝑃 is always sorted by the 𝑦 coordinate

Initialize the state 𝑆 to an empty list

Initialize 𝑃 with the first point (top point) of 

each line segment

While 𝑃 is not empty

𝑝 𝑃.pop

𝑦𝑠 = 𝑝. 𝑦

processEvent(𝑝)

32



Process Event Point (p)

// p is the top (starting) point

If 𝑝 is the top point

Add 𝑝. 𝑙 to 𝑆 at the order 𝑝. 𝑥 (𝑝. 𝑙 = 𝑆𝑖)

checkIntersection(𝑆𝑖−1, 𝑆𝑖)

checkIntersection(𝑆𝑖 , 𝑆𝑖+1)

Add the end point of 𝑝. 𝑙 to 𝑃

33



Process Event Point (p)

// p is the bottom (ending) point

If 𝑝 is the bottom point

// let 𝑝. 𝑙 be at position 𝑆𝑖 before removal

Remove 𝑝. 𝑙 from 𝑆

checkIntersection(𝑆𝑖−1, 𝑆𝑖)

34



Process Event Point (p)

If 𝑝 is an interior point

Report 𝑝 as an intersection

Find 𝑝. 𝑙 in 𝑆 (𝑝. 𝑙 = 𝑆𝑖 , 𝑆𝑖+1 )

Swap(𝑆𝑖 , 𝑆𝑖+1)

checkIntersection(𝑆𝑖−1, 𝑆𝑖)

checkIntersection(𝑆𝑖+1, 𝑆𝑖+2)

35



Check Intersection(𝑙1, 𝑙2)

If 𝑙1 does not intersect 𝑙2 then return

Compute the intersection 𝑝𝑖 of 𝑙1 and 𝑙2
If 𝑝𝑖. 𝑦 is above the sweep line then return

If 𝑝𝑖 ∈ 𝑃 then return

Insert 𝑝𝑖 into 𝑃

36



Sweep Line State (𝑆)

A list of line segments [𝑙𝑖]

Sorted by the 𝑥-coordinate of the 

intersections between 𝑙𝑖 and the sweep line

37

𝑙𝑖[0]

𝑙𝑖[1]

𝑦𝑠

𝑙𝑖 0 . 𝑥 +
Δ𝑥

Δ𝑦
𝑦𝑠 − 𝑙𝑖 0 . 𝑦 , 𝑦𝑠

Δ𝑥

Δ𝑦



Analysis

Initial sort of starting points 𝑂 𝑛 ⋅ log 𝑛

Number of processed event points 2𝑛 + 𝑘

For each event point

Remove from P: 𝑂 log 𝑃

Insert or remove from S: 𝑂 log 𝑆

Check intersection with at most two lines: 𝑂 1

Insert a new event points: 𝑂 log 𝑃

Upper limit of 𝑃 = 2𝑛

Upper limit of 𝑆 = 𝑛

Overall running time 𝑂 𝑛 + 𝑘 log 𝑛
38



Corner Case 1: Horizontal Line

39

l1

l2
l3

If two points have the 

same y-coordinate, sort 

them by the x-coordinate

Starting point



Corner Case 2:

Three Intersecting Lines

40

l1

l2l3

Allow the event point to store a 

list of all intersecting line 

segments

When processed, reverse the 

order of all the lines



Rectangle Intersection

Given a set of orthogonal rectangles (𝑅), find 

the set of all intersections between pairs of 

rectangles

𝑟1 ∩ 𝑟2: 𝑟1, 𝑟2 ∈ 𝑅

41



Example

42

r1

r2

r3

r4



Example

43

r1

r2

r3

r4



Rectangle Primitives

An orthogonal rectangle is represented by its 

two corner points, lower and upper

Test if two rectangles overlap

Two rectangles overlap if both their x intervals and 

y-intervals overlap

Intervals overlap [x1,x2], [x3,x4]: x4>=x1 and 

x2>=x3

R1(x1,y1,x2,y2)×R2(x3,y3,x4,y4) ➔

R3(Max(x1,x3), Max(y1,y3), Min(x2,x4), 

Min(y2,y4))

44



Naïve Algorithm

Test all pairs of rectangles and report the 

intersections

Running time O(n2)

Is it optimal?

45



Simple Plane-sweep Algo.

46

r1

r2

r3

r4



Simple Plane-sweep Algo.

What is the state of the sweep line?

What is an event?

What processing should be done at each 

event?

47



Improved Plane-sweep Algo.

Keep the sweep line state sorted

But how?

Interval tree

A variation of BST

Stores intervals

Supports two operation

Find all intervals that overlap a query point 𝑝

Find all intervals that overlap a query interval 𝑞

48



A Simple Interval Tree

Store the intervals in a BST ordered by 𝑖. 𝑥𝑚𝑖𝑛

Augment the BST with the value 𝑥𝑚𝑎𝑥 which 

stores the maximum value of all the intervals 

in the subtree

50



Augmented BST

51
Credit: https://en.wikipedia.org/wiki/Interval_tree



Polygon Intersection

Given a set of polygons, find all intersecting 

polygons

52



Polygon Representation

A polygon is represented as a sequence of 

points that form its boundary

A general polygon

might also contain

holes, e.g., a grass area

with a lake inside

For simplicity, we will only

deal with solid polygons

with no holes

53

p1

p2

p3

p4
p5

p6

p7

p8

Corners

Edge or

Segment



Filter-and-refine Approach

Convert all polygons to rectangles

For each polygon, compute its minimum bounding 

rectangle (MBR)

Filter: Find all overlapping rectangles

Refine: Test the polygons that have 

overlapping MBBs

54



Filter-and-refine Approach

Filter step: Already studied

Refine: How to find the intersection of two 

polygons?

For any two polygons, there are three cases:

1. Polygons are disjoint

2. One polygon is contained in the other polygon

3. Polygon boundaries intersect

55



Case 1: Disjoint

56

P
Q

No intersection points

Neither 𝑃 ⊂ 𝑄 nor 𝑄 ⊂ 𝑃

The intersection is empty



Case 2: Contained

57

P

Q

No intersection points

If 𝑃 ⊂ 𝑄, then any corner

of P is ∈ 𝑄

If 𝑄 ⊂ 𝑃, then any corner

of Q is ∈ 𝑃

The intersection is the

contained polygon



Case 3: Intersecting

If the boundaries of the two polygons overlap, 

then there is at least two polygon edges that 

overlap

Naïve solution: Compute all intersections 

between every pair of edges 𝑂 𝑚 ⋅ 𝑛

Where 𝑚 and 𝑛 are the sizes of the two polygons

We can also use the line-segment sweep-line 

algorithm

Run in 𝑂 𝑘 + 𝐼 log 𝑘 where 𝑘 = 𝑚 + 𝑛 and 𝐼 is the 

number of intersections

If we only need to test, we can stop at the first 

intersection
58



Computing the Intersection

59

P

Q



Computing the Intersection

60

P

Q



Computing the Intersection

61

P

Q



Computing the Intersection

62

P

Q



Computing the Intersection

63

P

Q



Computing the Intersection

64

P

Q



Computing the Intersection

65

P

Q



Computing the Intersection

66

P

Q



Computing the Intersection

67

P

Q



Computing the Intersection

68

P

Q



Computing the Intersection

69

P

Q



Computing the Intersection

70

P

Q



Computing the Intersection

71

P

Q



Computing the Intersection

72

P

Q



Special Case: Convex Polygons

73

P Q



Convex Polygon Overlaps

74

Right-left Right-right

left-left

Left-right



Left-right Split

75



Left-right Overlap Test

76

Observation: the points of 

each half are monotone 

along the 𝑦-axis

R L Since the segments that form 

each hull are monotone (i.e., 

going down), there is no 

chance for the top red 

segment to intersect the 

green half-hull

Start with the top two 

segments from each 

half-hull

Do they intersect? No!



Left-right Overlap Test

77

The bottom point of the 

green segment is higher 

than all remaining red 

segments

R L

Skip to the next 

green line segment

Do the current segments 

intersect? No!



Left-right Overlap Test

78

R L

The bottom point of the 

red segment is higher.

Skip to the next.

Do the current segments 

intersect? No!



Left-right Overlap Test

79

Report the intersection

R L

Bottom green point is higher.

Skip to the next green 

segment.

Do the current segments 

intersect? Yes!



Left-right Overlap Test

80

R L

Report the intersection
Do the current segments 

intersect? Yes!

Bottom red point is higher.

Skip to the next red segment.



Left-right Overlap Test

81

R L

Do the current segments 

intersect? No!

Both bottom points are at equal 

𝑦-coordinate. Skip any of them



Right-right Overlap Test

82



Right-right Overlap Test

83



Right-right Overlap Test

84



Right-right Overlap Test

85



Right-right Overlap Test

86



Right-right Overlap Test

87



Convex Polygon Intersection

If only testing is required, the algorithm can 

terminate as soon as the first intersection is 

found

If the polygon intersection is needed, the 

algorithm reports all intersections

The algorithm terminates when all segments 

are inspected

Running time: 𝑂 𝑚 + 𝑛 , each iteration skips 

one segment

88


