
CS133 Lab 8–DCEL (Part I) 

Objective 
• In this lab, you will implement the basic Doubly-Connected Edge List (DCEL) structure to use in 

future labs to implement Voronoi Diagram and/or Delaunay Triangulation algorithms. 

Detailed Requirements 
Create a DCEL data structure that contains a list of vertices, half edges, and surfaces as detailed below. 

Structures 

• Struct Vertex 

A Vertex object contains a single DCEL pointer, named “leaving”, to a HalfEdge object. This 

pointer points to a single HalfEdge that has this Vertex object as its origin. If multiple HalfEdges 

have this Vertex object as their origin, the leaving pointer can point to any one of them 

arbitrarily. 

• Struct HalfEdge 

The HalfEdge object contains a pointer to a Vertex, named “origin”, a pointer to a Face named 

"face", and two pointers to HalfEdges, one named "twin" and one named “next”. The origin is 

the vertex from which the HalfEdge starts. The face is the face to the “left” side of the HalfEdge, 

while the twin pointer points to the HalfEdge on the “right” side of the HalfEdge that completes 

its edge. The “next” pointer points to the HalfEdge that starts from h->twin->origin and ends at 

the next vertex in h->face, traveling counterclockwise around the boundary. This pointer allows 

us to traverse a polygon, by following next pointers until we arrive back at the HalfEdge we 

began at. 

• Struct Face 

A Face object contains a single DCEL pointer, named “edge”, to a HalfEdge object. This pointer 

points to a single HalfEdge that has this Face object as its face. This HalfEdge can be any one of 

the Face object's boundary HalfEdges. 

Operations 
Below, is a list of primitive operations in DCEL that you will implement in this lab. In these functions, 

PVertex, PEdge, and PFace, are pointers to a Vertex, a HalfEdge, or a Face, respectively. 

1. PEdge Vertex::nextLeaving(PEdge) 

Given an edge leaving a vertex v, this function returns the next edge leaving the vertex v. Note 

that in the vertex, we only store one leaving edge. This function should be used to iterate over 

all leaving edges of a vertex. 



2. PEdge::destination() : PVertex 

Returns the destination vertex of a HalfEdge. Note that we only store the source vertex of a 

HalfEdge. This function is used to return the destination vertex as well. 

3. PVertex DCEL:createVertex(double x, double y) 

Creates and returns a new vertex at the given point location. Initially, this vertex is not 

connected to any half edges. 

4. std::vector<PFace> DCEL::findFaces(PVertex) 

Returns all faces that are adjacent to a vertex v. 

5. PFace DCEL::findCommonFace(PVertex, PVertex) 

Finds a common face between two vertices. A common face has the two given vertices on its 

boundary. If the two vertices have more than one common face, any bounded face is returned. 

That is, if they have two common faces and one of them is the unbounded face, the other one is 

returned. If more than one bounded face exists, any of them is returned. If no common faces 

exist, a NULL pointer is returned. 

6. bool DCEL::isConnected(PVertex, PVertex) 

Returns true if and only if the two given vertices have a common edge between them. 

7. PEdge DCEL::findIncidentEdge(PVertex v, PFace f) 

If exists, returns the HalfEdge that has v as its source vertex and f as its face. If such an edge 

does not exist, a NULL pointer is returned. 
8. PFace DCEL::getUnboundedFace() 

Returns the single unbounded face in this DCEL. Keep in mind that the unbounded face is a 

special face that never gets deleted. 

9. PEdge DCEL::createEdge(PFace f, PVertex v1, PVertex v2) 

Connects the two vertices v1 and v2 that belong to the same face (f) without splitting that face. 

Returns any of the newly created half edges. 

10. PEdge DCEL::splitFace(PFace f, PVertex v1, PVertex v2) 

Creates a new half edge between the vertices v1 and v2 which splits the face f into two new 

faces. Returns any of the newly created half edges. 

11. DCEL mergeAndDestroy(DCEL& d1, DCEL& d2) 

Given two DCEL structures, this function combines them together into a new DCEL. The returned 

DCEL combines all the vertices, edges, and faces in both DCELs. Except for the unbounded face, 

it is assumed that all vertices, edges, and faces in both DCELs are different. For efficiency 

purposes, the two input DCELs are destroyed as a result of calling this function. 

Feel free to add more supporting functions as you need. 

Example 
Below is a simple example that you can use to test your implementation. It starts with a simple empty 

DCEL and manipulates it using the functions given above. You should add more sophisticated test cases 

to ensure the correctness of your implementation. 

DCEL dcel; 

PVertex v1 = dcel.createVertex(1,0); 



PVertex v2 = dcel.createVertex(2,1); 

PVertex v3 = dcel.createVertex(0,1); 

PVertex v4 = dcel.createVertex(0,0); 

// v1 has one face (the unbounded face) 

assert(dcel.findFaces(v1).size() == 1); 

 

PEdge e1 = dcel.createEdge(dcel.getUnboundedFace(), v1, v2); 

// v1 still has one face which is not NULL 

assert(dcel.findFaces(v1).size() == 1); 

assert(dcel.findFaces(v1).front() != NULL); 

// v2 also has one unbounded face 

assert(dcel.findFaces(v2).size() == 1); 

// All vertices have one common face which is the unbounded face 

assert(dcel.findCommonFace(v1, v2) != NULL); 

assert(dcel.findCommonFace(v1, v3) != NULL); 

// Find the newly created edge using the findIncidentEdge function 

assert(dcel.findIncidentEdge(e1->origin, e1->face) == e1); 

dcel.createEdge(dcel.getUnboundedFace(), v2, v3); 

// v1 and v2 are still connected 

assert(dcel.isConnected(v1, v2)); 

// v1 and v3 are not connected (i.e., not adjacent) 

assert(!dcel.isConnected(v1, v3)); 

// Create two new edges to create the first face 

dcel.createEdge(dcel.getUnboundedFace(), v3, v4); 

dcel.splitFace(dcel.getUnboundedFace(), v4, v1); 

// Now there are two faces, the newly created face and the unbounded face 

assert(dcel.getFaceCount() == 2); 

// All the four vertices are adjacent to the two faces 

assert(dcel.findFaces(v1).size() == 2); 

assert(dcel.findFaces(v2).size() == 2); 

assert(dcel.findFaces(v3).size() == 2); 

assert(dcel.findFaces(v4).size() == 2); 

// v1 and v2 have two common faces, but the bounded face should be returned 

assert(dcel.findCommonFace(v1, v2) != dcel.getUnboundedFace()); 

assert(dcel.findCommonFace(v1, v2)->getBoundary().size() == 4); 

// Create a new edge that will result in a new face 

dcel.splitFace(dcel.findCommonFace(v1, v2), v4, v2); 

assert(dcel.getFaceCount() == 3); 

assert(dcel.findFaces(v4).size() == 3); 


