Big-data Management

Topics not Covered
What We Covered

- Storage (HDFS)
- Query processing (MapReduce, RDD, Hyracks)
- Higher-level data flow engines (Pig, SparkSQL, Spark Streaming)
- Storage formats (row, column, hybrid)
- Indexing (Global/local and LSM)
- Application-specific (Big Spatial Data)
Topics not Covered

- Key-value stores
- Big graph analytics
- Document DB
- Visualization
- Streaming
- Coordination
- Machine learning
- Cloud platforms
Key-value Stores

- Provides a simple API to insert/delete/update/search key-value pairs
- Records are indexed by key (typically a string)
- Internal structure is typically a Log-structured-merge tree (LSM)
- Not generally suitable for large-scale analytics
Big Graph Analytics

- Graphs are usually processed using a node-centric processing model
- Nodes and edges are both treated as first-class citizens
- Processing is normally iterative with a lot of iterations
Visualization

- Sometimes called Business Intelligence (BI)
- Focuses more on the end-user interface while producing nice graphs (e.g., bar charts and line graphs)
- Internally, the data is managed using the common big-data platforms but the systems are tuned to provide fast query response for ad-hoc queries
Streaming

- Some applications need to process data in real-time with a very small latency
- Examples: Twitter search, IoT applications, and social network trends
- Works primarily off main memory
- Keeps only the latest records to ensure real-time response
Coordination

- Most big-data systems are designed for shared-nothing large-scale analytics
- No coordination between machines is part of the design
- Coordination systems provide an easy way to coordinate the work in these distributed platforms, e.g., a catalog of information, work queue, and a global system status

Apache Zookeeper
Machine Learning

- ML is on the rise
- The increasing amount of data make it a big-data problem
- Some big ML systems emerge to provide scalable processing

TensorFlow
Caffe
theano
Cloud Platforms

- Maintaining your own cluster is costly
- It could be underutilized most of the time
- Cloud platforms allow you to rent virtual machines to do your work and dispose them after
- They are well-integrated with big data platforms (such as Hadoop and Spark) to give the best user experience
- All you need is an internet connection and a credit card