Declarative MapReduce
MapReduce Examples

- Filter
- Aggregate
- Grouped aggregated
- Equi-join
- Non-equi-join
Declarative Languages

- Describe what you want to do not how to do it
- The most popular example is SQL
- Can we compile SQL queries into MapReduce program(s)?
Pig

- A system built on-top of Hadoop (Now supports Spark as well)
- Provides a SQL-ETL-like query language termed Pig Latin
- Compiles Pig Latin programs into MapReduce programs
Examples

- Filter: Return all the lines that have a user-specified response code, e.g., 200.

```pig
log = LOAD 'logs.csv' USING PigStorage() AS (host, time, method, url, response, bytes);
ok_lines = FILTER log BY response = '200';
STORE ok_lines into 'filtered_output';
```
Examples

- Grouped aggregate
- Find the total number of bytes per response code

```pig
log = LOAD 'logs.csv' USING PigStorage()
    AS (host, time, method, url, response, bytes: int);
grouped = GROUP log BY response;
grouped_aggregate =
    FOREACH grouped GENERATE group, SUM(bytes);
STORE grouped_aggregate into 'grouped_output';
```
Examples

- Grouped aggregate
- Find the **average** number of bytes per response code

```java
log = LOAD 'logs.csv' USING PigStorage()
    AS (host, time, method, url, response, bytes: int);
grouped = GROUP log BY response;
grouped_aggregate =
    FOREACH grouped GENERATE group, AVG(bytes);
STORE grouped_aggregate into 'grouped_output';
```
Examples

- Join: Find pairs of requests that ask for the same URL, coming from the same source.

\[
\begin{align*}
\text{log1} &= \text{LOAD} \ '\text{logs.csv}' \ \text{USING} \ \text{PigStorage}() \\
\text{AS} \ (\text{host}, \ \text{time}, \ \text{method}, \ \text{url}, \ \text{response}, \ \text{bytes: int}); \\
\text{log2} &= \text{LOAD} \ '\text{logs.csv}' \ \text{USING} \ \text{PigStorage}() \\
\text{AS} \ (\text{host}, \ \text{time}, \ \text{method}, \ \text{url}, \ \text{response}, \ \text{bytes: int}); \\
\text{joined} &= \text{JOIN} \ \text{log1} \ \text{BY} \ (\text{url}, \ \text{host}), \\
\text{log2} \ \text{BY} \ (\text{url}, \ \text{host});
\end{align*}
\]
Examples

- Join: Find pairs of requests that ask for the same URL, coming from the same source and happened within an hour of each other

```java
log1 = LOAD 'logs.csv' USING PigStorage()
    AS (host, time, method, url, response, bytes: int);
log2 = LOAD 'logs.csv' USING PigStorage()
    AS (host, time, method, url, response, bytes: int);
joined = JOIN log1 BY (url, host),
    log2 BY (url, host);
filtered = FILTER joined BY
    ABS(log1::time - log2::time) < 3600000;
```
How it works

- **LOAD operation**
 - Determines the input path and InputFormat

- **STORE operation**
 - Determines the output path and OutputFormat

- **FILTER and FOREACH**
 - Translated into map-only jobs

- **AGGREGATE and JOIN**
 - Translated into map-reduce jobs

- All are compiled into one or more MapReduce jobs
Additional Features

› Lazy execution
 › Nothing gets actually executed until the STORE command is reached

› Consolidation of map-only jobs
 › Map-only jobs (FILTER and FOREACH) can be consolidated into a next job’s map function or a previous job’s reduce function
A Complex Example

log1 = LOAD 'logs.csv' USING PigStorage() AS (...);
log2 = LOAD 'logs.csv' USING PigStorage() AS (...);
joined = JOIN log1 BY (url, host),
 log2 BY (url, host);
filtered = FILTER joined BY
 ABS(log1::time - log2::time) < 3600000;
grouped = GROUP filtered BY log1::host;
agg_groups = FOREACH grouped GENERATE group, COUNT(*);
STORE agg_groups INTO 'final_result';
Further Readings

- Pig home page: https://pig.apache.org
- Detailed documentation: http://pig.apache.org/docs/r0.17.0/
- The original Pig Latin paper: