CS133 Bonus Lab

1. (5 points) Write a logarithmic-time function that finds the top-most point in a convex polygon. The polygon is given as a list of points in CCW order.

```cpp
class Point { double x, y; }
Point topMostPoint(std::vector<Point> P);
```

2. (5 points) Write a function that constructs a kd tree from a set of points \(P \).

```cpp
class KDNode {
    enum {AXIS_X, AXIS_Y} splitAxis;
    double splitCoord;
    struct KDNode *left, *right;
};
KDNode* buildKDTree(std::vector<Point> P);
```

3. (10 points) Given a convex polygon \(P \), write a function that finds the oriented minimum bounding rectangle using a rotating-calipers method.

```cpp
class Rectangle { Point p1, p2, p3, p4; }
Rectangle mbr(std::vector<Point> P);
```

4. (10 points) Given a set of points \(P \) and a distance \(d \), develop a plane-sweep algorithm that finds all pairs of points that are within the distance \(d \). Your implementation should be very similar to the rectangle intersection problem by making imaginary squares of side length \(d \) around each point and find if they intersect. Only the points with overlapping squares will be tested for their distance. For simplicity, you can implement the simple plane-sweep algorithm which does not build any search trees.

```cpp
std::vector<std::pair<Point, Point>> distanceJoin(std::vector<Point> P, double d);
```