AsterixDB
A Scalable Open Source DBMS

This presentation is based on slides made by Michael J. Carey, Chen Li, and Vassilis Tsotras
So what went on – and why?

What’s going on right now?
Also: Today’s Big Data Tangle
AsterixDB: “One Size Fits a Bunch”

Semistructured Data Management

Parallel Database Systems

1st Generation “Big Data“ Systems

BDMS Desiderata:

- Able to manage data
- Flexible data model
- Full query capability
- Continuous data ingestion
- Efficient and robust parallel runtime
- Cost proportional to task at hand
- Support “Big Data data types”
ASTERIX Data Model (ADM)

CREATE DATAVERSE TinySocial;
USE TinySocial;

CREATE TYPE GleambookUserType AS {
 id: int,
 alias: string,
 name: string,
 userSince: datetime,
 friendIds: {{ int }},
 employment: [EmploymentType]
};

CREATE TYPE EmploymentType AS {
 organizationName: string,
 startDate: date,
 endDate: date?
};

CREATE DATASET GleambookUsers (GleambookUserType)
PRIMARY KEY id;

Highlights include:
- JSON++ based data model
- Rich type support (spatial, temporal, …)
- Records, lists, bags
- *Open vs. closed types*
ASTERIX Data Model (ADM)

CREATE DATaverse TinySocial;
USE TinySocial;

CREATE TYPE GleambookUserType AS {
 id: int
};

CREATE TYPE EmploymentType AS {
 organizationName: string,
 startDate: date,
 endDate: date?
};

CREATE DATASET GleambookUsers (GleambookUserType) PRIMARY KEY id;

Highlights include:
› JSON++ based data model
› Rich type support (spatial, temporal, …)
› Records, lists, bags
› Open vs. closed types

11/28/2018
CREATE DATaverse TinySocial;
USE TinySocial;

CREATE TYPE GleambookUserType AS {
 id: int
};

CREATE TYPE GleambookMessageType AS {
 messageId: int,
 authorId: int,
 inResponseTo: int?,
 senderLocation: point?,
 message: string
};

CREATE DATASET GleambookUsers (GleambookUserType) PRIMARY KEY id;

CREATE DATASET GleambookMessages (GleambookMessageType) PRIMARY KEY messageId;
Ex: GleambookUsers Data

{"id":1, "alias":"Margarita", "name":"MargaritaStoddard", "nickname":"Mags", "userSince":datetime("2012-08-20T10:10:00"), "friendIds":\{2,3,6,10\}, "employment": [{"organizationName":"Codetechno", "startDate":date("2006-08-06"), "endDate":null}, {"organizationName":"geomedia", "startDate":date("2010-06-17"), "endDate":date("2010-01-26")) }], "gender":"F"
},

{"id":2, "alias":"Isbel", "name":"IsbelDull", "nickname":"Izzy", "userSince":datetime("2011-01-22T10:10:00"), "friendIds":\{1,4\}, "employment": [{"organizationName":"Hexvialfind", "startDate":date("2010-04-27")) }]
},

{"id":3, "alias":"Emory", "name":"EmoryUnk", "userSince":datetime("2012-07-10T10:10:00"), "friendIds":\{1,5,8,9\}, "employment": [{"organizationName":"geomedia", "startDate":date("2010-06-17"), "endDate":date("2010-01-26")) }]
},

......
Other DDL Features

CREATE INDEX gbUserSinceIdx ON GleambookUsers(userSince);
CREATE INDEX gbAuthorIdx ON GleambookMessages(authorId) TYPE BTREE;
CREATE INDEX gbSenderLocIndex ON GleambookMessages(senderLocation) TYPE RTREE;
CREATE INDEX gbMessageIdx ON GleambookMessages(message) TYPE KEYWORD;

CREATE TYPE AccessLogType AS CLOSED
 { ip: string, time: string, user: string, verb: string, `path`: string, stat: int32, size: int32 };
CREATE EXTERNAL DATASET AccessLog(AccessLogType) USING localfs
 ("path"="localhost:///Users/mikejcarey/extdemo/accesses.txt"),
 ("format"="delimited-text"), ("delimiter"="|"));

CREATE FEED myMsgFeed USING socket_adapter
 ("sockets"="127.0.0.1:10001"), ("address-type"="IP"),
 ("type-name"="GleambookMessageType"), ("format"="adm"));
CONNECT FEED myMsgFeed TO DATASET GleambookMessages;
START FEED myMsgFeed;

External data highlights:
- Equal opportunity access
- Feeds to “keep everything!”
- Ingestion, *not* streams
Q1: List the user names and messages sent by Gleambook social network users with less than 3 friends:

```sql
SELECT user.name AS uname,
       (SELECT VALUE msg.message
        FROM GleambookMessages msg
        WHERE msg.authorId = user.id) AS messages
FROM GleambookUsers user
WHERE COLL_COUNT(user.friendIds) < 3;
```

```
{ "uname": "NilaMilliron", "messages": [ ] }
{ "uname": "WoodrowNehling", "messages": [ " love acast its 3G is good:)" ] }
{ "uname": "IsbelDull", "messages": [ " like product-y the plan is amazing", " like product-z its platform is mind-blowing" ] }
...
```
Q2: Identify active users (last 30 days) and group and count them by their numbers of friends:

```sql
WITH endTime AS current_datetime(),
     startTime AS endTime - duration("P30D")
SELECT nf AS numFriends, COUNT(user) AS activeUsers
FROM GleambookUsers user
LET nf = COLL_COUNT(user.friendIds)
WHERE SOME logrec IN AccessLog SATISFIES
  user.alias = logrec.user
  AND datetime(logrec.time) >= startTime
  AND datetime(logrec.time) <= endTime
GROUP BY nf;
```

SQL++ highlights:
- Born at UCSD (Yannis P.)
- Many features (see docs)
- Spatial & text predicates
- Set-similarity matching
Updates and Transactions

Q3: Add a new user to Gleambook.com:

```sql
UPSERT INTO GleambookUsers (  
{"id":667,"alias":"dfrump",  
"name":"DonaldFrump",  
"nickname":"Frumpkin",  
"userSince":datetime("2017-01-01T00:00:00"),  
"friendIds":{},  
"employment":[{"organizationName":"USA",  
"startDate":date("2017-01-20")}],  
"gender":"M"}  
);
```

Key-value store-like transactions (w/record-level atomicity)
- Insert, delete, and upsert ops; index-consistent
- 2PL concurrency
- WAL no-steal, no-force with LSM shadowing
AsterixDB System Overview

Load client → Client Interface → Metadata Manager → Hyracks Dataflow → Dataset Storage → LSM Tree Manager

AQL client → AQL Compiler → Metadata Manager → Hyracks Dataflow → Dataset Storage → LSM Tree Manager

Feed client → Cluster Controller → Job Execution → Metadata Manager → Hyracks Dataflow → Dataset Storage → LSM Tree Manager
Software Stack

SQL++ or AQL

Apache AsterixDB

Apache VXQuery

HiveQL

Pregel Job

Hadoop M/R Job

Algebricks

Pregelix

M/R Layer

Operator Library (join, sort, group-by, etc.)

Storage Library (LSM B-Tree, R-Tree, etc.)

Connector Library (m-to-n, m-to-1, etc.)

HDFS Utilities

Hyracks General-Purpose DAG Execution Engine

11/28/2018
Hyracks Dataflow Runtime

• Partitioned-parallel platform for data-intensive computing
• Job = dataflow DAG of operators and connectors
 – Operators consume and produce partitions of data
 – Connectors route (repartition) data between operators
• Hyracks vs. the “competition”
 – Based on time-tested parallel database principles
 – vs. Hadoop MR: More flexible model and less “pessimistic”
 – vs. newer SQL-on-Hadoop runtimes: Emphasis on out-of-core execution and adherence to memory budgets
 – Fast job activation, data pipelining, binary format, state-of-the-art DB style operators (hash-based, indexed, ...)
• Early test at Yahoo! Labs on 180 nodes (1440 cores, 720 disks)
Query

```sql
use dataverse TinySocial

avg {
  for $m in dataset MugshotMessages
  where $m.timestamp >=
    datetime("2014-01-01T00:00:00")
  and $m.timestamp <
    datetime("2014-04-01T00:00:00")
  return string-length($m.message)
}
```

Algebricks

- Assign $hi := 2014-04-01T00:00:00
- Assign $lo := 2014-01-01T00:00:00
- Btree $id := search(msTimestampIdx, $lo, $hi)
- Sort $id
- Btree $m := search(MugshotMessages, $id, $id)
- Assign $l := string-length($m.message)
- Aggregate $agg := global-avg($l)
- Aggregate $lagg := local-avg($l)
- Select $t := $m.timestamp
- Select $t >= 2014-01-01T00:00:00 and $t < 2014-04-01T00:00:00
- Assign $t := $m.timestamp
- Assign $lo := 2014-01-01T00:00:00
- Assign $hi := 2014-04-01T00:00:00

Algebricks (cont.)

- Btree $m := search(MugshotMessages, $id, $id)
- Sort $id
- Btree $id := search(msTimestampIdx, $lo, $hi)
- Assign $hi := 2014-04-01T00:00:00
- Assign $lo := 2014-01-01T00:00:00

Partitioned Parallelism
Algebricks Query Compiler Framework

Algebricks
- Logical Operators
- Logical Expressions
- Metadata Interface
- Model-Neutral Logical Rewrite Rules
- Physical Operators
- Model-Neutral Physical Rewrite Rules
- Hyracks Job Generator

Target Query Language
- Query Parser (AST)
- AST Translator
- Metadata Catalog
- Expression Type Computer
- Logical Rewrite Rules
- Physical Rewrite Rules
- Language Specifics
Native Storage Management

Memory
- Working Memory
- Buffer Cache
- In-Memory Components

Transaction Sub-System
- Transaction Manager
- Lock Manager
- Log Manager
- Recovery Manager

Disk 1

Disk n

IO Scheduler

11/28/2018
LSM-Based Filters

Intuition: Do NOT touch unneeded records

Idea: Utilize LSM partitioning to prune disk components

Q: Get all tweets > T14

Memory

Disk

T16, T17

[T12, T15]

[T7, T11]

[T1, T6]

T12, T13, T14, T15

T7, T8, T9, T10, T11

T1, T2, T3, T4, T5, T6

Oldest Component
Transaction Support

• Key-value store-like transaction semantics
 – Entity-level transactions (by key) within “transactors”
 – Atomic insert, delete, and upsert (including indexing)
 – Concurrency control (based on entity-level locking)
 – Crash recovery (based on no-steal logging + shadowing)
 – Backup and restore support (just in case... 😊)

• Expected use of AsterixDB is to model, capture, and track the “state of the world” (not to...)

SELECT ... FROM Weather W...
 // return current conditions by city

(Long serializable reads)
Example AsterixDB Use Cases

Potential use case areas include

- Behavioral science
- Cell phone event analytics
- Social data analytics
- Public health
- Cluster management log analytics
- Power usage monitoring
- IoT data storage and querying
-
Commercial Use: Big Data Analytics

Couchbase Data Platform

✓ Service-Centric Clustered Data System
✓ Multi-process Architecture
✓ Dynamic Distribution of Facilities
✓ Cluster Map Distribution
✓ Automatic Failover
✓ Enterprise Monitoring/Management
✓ Security
✓ Offline Mobile Data Integration
✓ Streaming REST API
✓ SQL-like Query Engine for JSON
✓ Clustered* Global Indexes
✓ Lowest Latency Key-Value API
✓ Active-Active Inter-DC Replication
✓ Local Aggregate Indexes
✓ Full-Text Search*

✓ Operational Analytics (currently DP)

11/28/2018
For More Information

- Asterix project UCI/UCR research home
- Apache AsterixDB home
- SQL++ Primer
 - http://asterixdb.apache.org/docs/0.9.2/index.html