
Trees

Chapter 4

1



Objectives

Understand the terminology of the tree data 

structure

Represent a tree structure in a program

Understand the importance of the binary 

trees

Use a binary search tree for storing ordered 

elements

2



Motivation

Why lists, stacks, and queues are not 

enough?

Not everything can be linearized. We may 

need to represent hierarchies, for example.

Sorted array search: O(log(n))

Sorted array insert: O(n)

Linked list search: O(n)

Linked list insert: O(1)

Can we build a data structure that is fast for 

both search and insert?
3



Hierarchical Structures

UC 
System

UCR

BCOE

CSE ECE

CNAS …

UCI UCSD …

4



Hierarchical Structures

US

CA

Riverside 
County

Riverside
Palm 

Springs

San 
Bernardino 

County
…

AZ MN

5

…



Definition

A tree can be defined recursively

A tree is a group of nodes

Each node contains a value

If the tree is not empty, one node is identified 

as the root node

The root node has zero or more subtrees

The root of a subtree is connected to the root 

of the tree

6



Terminology: Basic Definitions

7

A

B C D

E

I J

F G H

K

Root

Subtrees

A is the parent of D

D is the child of A

B, C, and D 

are siblings

E and F are 

not siblings



Terminology: Descendants

8

A

B C D

E

I J

F G H

K

Descendants of A



Terminology: Ancestors

9

A

B C D

E

I J

F G H

K

Ancestors of E

Descendant of E



Terminology: Leaves

10

A

B C D

E

I J

F G H

K

Leaf nodes (Leaves)

Internal nodes



Terminology: Levels, Depth

11

A

B C D

E

I J

F G H

K

Level 0

Level 1

Level 2

Level 3

J is at level 3

The depth of J is 3

What is the relationship between 

the depth of a node and the 

number of ancestors?

What is the height of 

the tree?



Terminology: Path

12

A

B C D

E

I J

F G H

K

The path from A to J is (A, B, E, J)

The length of the path is three (edges)
What is the path from D 

to K?

Is there a path from B to C?



Tree Representation

13

Node

Value (any type)

Children * * * * *

template <type T>
class Tree {
class Node {

T value;
list<Node*> children;

};
Node* root;

};



Parent Representation

14

A

B C D

E

I J

F G H

K

template <type T>
class Tree {
class Node {

T value;
Node* parent;

};
list<Node*> nodes;

};



Left-child Right-sibling

15

A

B C D

E

I J

F G H

K



Left-child Right-sibling

16

A

B C D

E

I J

F G H

K

template <type T>
class Tree {
class Node {

T value;
Node* left_child;
Node* right_sibling;

};
Node* root;

};



Binary Trees

A special case where every node has at most 

two children

Has many applications that make it 

particularly interesting

More restricted  Room for optimization

17

template <type T>
class Tree {
class Node {

T value;
Node* left;
Node* right;

};
Node* root;

};



Application: Expression Tree

18

⨉

3 5

/

4 2

⨉

2+

3 × 5 + 4/2 × 2



Inorder Tree Traversal

19

⨉

3 5

/

4 2

⨉

2+

(3 × 5) + (4/2 ) × 2



Postorder Tree Traversal

20

⨉

3 5

/

4 2

⨉

2+

35 × 42/+2 ×



Preorder Tree Traversal

21

⨉

3 5

/

4 2

⨉

2+

×+×35/422



Implementation of Traversals

22

preorder(Node* root) {
if (root == null)

return;
print(root->value);
preorder(root->left);
preorder(root->right);

}

postorder(Node* root) {
if (root == null)

return;
postorder(root->left);
postorder(root->right);
print(root->value);

}

inorder(Node* root) {
if (root == null)

return;
inorder(root->left);
print(root->value);
inorder(root->right);

}


