Growth of Functions
Learning Objectives

- Understand the meaning of growth of functions.
- Measure the growth of the running time of an algorithm.
- Use the Big-Oh notation to compare the growth of two functions.
Growth of Functions
O-notation

$\exists c > 0, n_0 > 0$

$0 \leq f(n) \leq cg(n)$

$n \geq n_0$

$g(n)$ is an asymptotic upper-bound for $f(n)$

$f(n) = O(g(n))$
Ω-notation

\[f(n) = \Omega(g(n)) \]

\[\exists c > 0, n_0 > 0 \]
\[0 \leq cg(n) \leq f(n) \]
\[n \geq n_0 \]

\(g(n) \) is an asymptotic lower-bound for \(f(n) \)
Θ-notation

$\exists c_1, c_2 > 0, n_0 > 0$\n
$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$\n
$n \geq n_0$

$g(n)$ is an asymptotic **tight** bound for $f(n)$
o-notation

\[f(n) = o(g(n)) \]

\[\forall c > 0 \]
\[\exists n_0 > 0 \]
\[0 \leq f(n) \leq cg(n) \]
\[n \geq n_0 \]

\[g(n) \text{ is a non-tight asymptotic upper-bound for } f(n) \]
\(\omega \)-notation

\[f(n) = \omega(g(n)) \]

\(\forall c > 0 \)
\(\exists n_0 > 0 \)
\(0 \leq cg(n) \leq f(n) \)
\(n \geq n_0 \)

\(g(n) \) is a non-tight asymptotic lower-bound for \(f(n) \)
Analogy to real numbers

<table>
<thead>
<tr>
<th>Functions</th>
<th>Real numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n) = O(g(n)))</td>
<td>(a \leq b)</td>
</tr>
<tr>
<td>(f(n) = \Omega(g(n)))</td>
<td>(a \geq b)</td>
</tr>
<tr>
<td>(f(n) = \Theta(g(n)))</td>
<td>(a = b)</td>
</tr>
<tr>
<td>(f(n) = o(g(n)))</td>
<td>(a < b)</td>
</tr>
<tr>
<td>(f(n) = \omega(g(n)))</td>
<td>(a > b)</td>
</tr>
</tbody>
</table>
Standard Classes of Functions

- Constant: \(f(n) = \Theta(1) \)
- Logarithmic: \(f(n) = \Theta(\lg(n)) \)
- Sublinear: \(f(n) = o(n) \)
- Linear: \(f(n) = \Theta(n) \)
- Super-linear: \(f(n) = \omega(n) \)
- Quadratic: \(f(n) = \Theta(n^2) \)
- Polynomial: \(f(n) = \Theta(n^k); \ k \) is a constant
- Exponential: \(f(n) = \Theta(k^n); \ k \) is a constant
Insertion Sort (Revisit)

Insertion-Sort *(A, n)*

```
for j = 2 to n
    key = A[j]
    // Insert A[j] into the sorted sequence A[1 ... j - 1].
    i = j - 1
    while i > 0 and A[i] > key
        A[i + 1] = A[i]
        i = i - 1
    A[i + 1] = key
```

\[\Theta(n^2) \]
Using L'Hopital's rule

- Determine the relative growth rates by using L'Hopital's rule

 - compute \(\lim_{n \to \infty} \frac{f(N)}{g(N)} \)

- if 0: \(f(N) = o(g(N)) \)
- if constant \(\neq 0 \): \(f(N) = \Theta(g(N)) \)
- if \(\infty \): \(g(N) = o(f(N)) \)
- limit oscillates: no relation
Recursion

- In math:
 - Factorial: \(n! = (n-1)! \cdot n, \quad 0! = 1 \)
 - Fibonacci: \(F(n) = F(n-1) + F(n-2), \quad F(0) = 0, \quad F(1) = 1 \)
- In programming:
  ```
  int fib(int number)
  {
    if (number == 0)
      return 0;
    if (number == 1)
      return 1;
    return fib(number - 1) + fib(number - 2);
  }
  ```

Question: Who is the recursion's worst enemy?
Function calls

- main() {
 F1(...);
}

- F1(...) {
 F2(...);
}

- F2(...) {
 F3(...);
}

Stack

Local variables

Other things you do not want to know