
CS 014: Introduction to Data Structures and Algorithms 

Fall 2017 

Lab 7 

Objectives 
In this lab, you will implement different algorithms for the selection problem and compare them both 

analytically and experimentally. 

Deliverables 
 (10%) attending the lab on Monday. 

 (40%) The final source code. 

 (5%) You must adhere to the following submission format. You need to submit a single file on 

iLearn named “CS014_lab7_<UCR Net IDs>.zip” where <UCR Net IDs> are the students UCR Net 

ID separated by underscores. The ZIP file should contain the source code in .cc and .hh files. The 

ZIP file should also contain a PDF report that contains the filled-in table, the log-log plots, and 

the answers to the questions below. On the cover page, your report should mention: 

o Your TA name. 

o Your lab section number. 

o You names and UCR Net IDs. 

 (25%) The PDF report that contains the answers to all the questions below. 

 (20%) The in-lab assignment on Monday 11/20. 

Groups 
 This lab will be done in groups of two to three members. Deliverables from groups of smaller or 

larger sizes will receive no credits except with an instructor approval prior to the beginning of 

the lab. 

Due date 
 The deliverables are due on Tuesday 11/21 by 11:59 PM Pacific Time. However, you are highly 

encouraged to deliver it during the lab on Monday 11/20 to save your time. 

Problem definition 
Given an unsorted array 𝐴 of size 𝑛 and an integer 𝑘 ∈ [0, 𝑛[, you are required to return the kth smallest 

item in the list. That is, you need to return the value 𝑥 such that there are exactly 𝑘 items in the array 𝐴 

that are less than 𝑥. You can assume that the array has distinct elements. 

The four algorithms that you are required to implement are briefly described below. If you have any 

questions about any of them, you can ask the TAs or the instructor during the office hours. 



1. Select1: This algorithm scans the array k times. In each scan, it selects the minimum element in 

the array that has not been previously selected. That is, at the first iteration, it selects the 

smallest element. At the second iteration, it selects the second smallest element. At the ith 

iteration, it selects the ith smallest item. After running k iterations, it returns the kth smallest 

element in the array. 

2. Select2: This algorithm simply sorts the entire array and returns the kth element in the sorted 

order. You are allowed to sort the array in place and return the kth element afterward. For 

simplicity, you are allowed to use the STL sort function. 

3. Select3: This algorithm uses a heap to keep track of the k smallest elements in the array. After 

scanning the entire array, it returns the kth smallest element in the heap. You are allowed to use 

the three following STL heap functions, make_heap, push_heap, and pop_heap. 

4. Select4: This algorithm runs a variation of the Quick Sort algorithm to select the kth smallest 

element in the array. Initially, it selects the pivot using the median-of-three method. Then, it 

partitions the array around the pivot in the same way done in Quick Sort. After that, it 

recursively processes the side of the array that will contain the kth smallest element. For 

example, if the pivot ends up at position 55 while the required value of k is 35, it recursively 

processes the subarray [0, 55]. Notice that you are NOT allowed to use recursion in 

implementing this algorithm. 

Detailed steps 
1. Create a workspace in Cloud9 for this lab and set the value 

‘https://github.com/aseldawy/CS014-Lab7.git’ in the field ‘Clone from Git or Mercurial URL’ 

when you create a Cloud9 workspace. Instead, you can download the source code from iLearn 

and upload it to an empty workspace in Cloud9. 

2. You will find placeholders for four select functions. Implement the four of them according to the 

description above. 

3. Analyze the worst-case asymptotic running time for the first three algorithms. For the fourth 

algorithm, analyze its best-case asymptotic running time which is similar to the average case for 

this specific algorithm. 

4. The main function has three parts. 

a. The first part runs a few tests to test the correctness of your code. Feel free to extend 

these tests to ensure a better coverage for the corner cases. 

b. The second part runs the four algorithms for different values of k while n is kept 

constant while measuring their running times. 

c. The third part runs the four algorithms for different values of n while k is kept constant. 

The running times are measured as well. 

5. According to the asymptotic running times you analyzed above, how do you expect the four 

algorithms to behave while changing k and n? Make sure to answer this question before running 

the algorithms and collecting their running times. All attempts will be considered correct for this 

specific question. 



6. After you are confident that your implementation is correct, run the program and collect the 

running times when k and n are changed. Write down all the numbers in the report in a tabular 

format. 

7. Fill in the attached Excel Spreadsheet and watch the plots being updated as you enter the 

numbers. Copy both plots to your report. 

8. Compare the actual running times to your analysis in question 4. Do they match? Explain the 

results of the plot based on the asymptotic running time analysis. 


