CS 014: Introduction to Data Structures and Algorithms
Fall 2017
Lab 1
Objectives:
In this lab, you will learn how to measure the running time of an algorithm and compare the growth of
the running times of different algorithms.

Deliverables:
* (10%) You have to attend the lab on Monday.
* (20%) The final code after running all the steps.
* (50%) A final report that includes the answers to all the questions below, the filled-in table
below, and the log-log plot that you create in step 13.
* (20%) There will be a relevant question during the lab on Monday 10/9 that you will be asked
to do during the lab.
Groups:
e This lab should be done individually.
Due date:
* The deliverables are due on Tuesday 10/10 by 11:59 PM Pacific Time. However, you are highly
encouraged to deliver it during the lab on Monday 10/9 to save your time.
Important Note:
* You will need to carry out this lab at home to be able to perform the task that will be given to
you during the lab on Monday 10/9. The official due date is on Tuesday just in case you have
questions for your TA during the lab.

Steps:
1. Get the code in the file ‘time-measure.cc’ and run it on your favorite IDE or from command
line. What does this initial code do?
2. Collect the running times for generating a random list of sizes 10 up to 10,000,000 entries. Fill
them in the table below. (Hint: You can copy this table to a spreadsheet application to help you
with the following steps.)

List size Randomize Std::find Insertion Sort Std::sort Std::binary_se
arch

10

100

1,000

10,000

100,000

1,000,000

10,000,000

3. Move the ‘generate_random_numbers()’ call before the stopwatch block so that its time is not
measured. Inside the stopwatch block, write a code that generates one number and searches for
it in the list. (Hint: Use rand() to generate a number and std::find() to search for it.)

4. Run the code again for lists of sizes 10 to 10,000,000 and fill in the table above under std::find.

10.
11.

12.

13.

14.

Do you think the std::find algorithm will most likely act in best-case, average-case, or worst-
case scenario? Why?

Implement the insertion sort algorithm as shown in the class. Convert the pseudo code shown in
the slides to C++. Do not perform any optimization techniques; just make a line-by-line
translation.

Comment the lines you added in Step 3 and add a new line that sorts the list using your
insertion sort algorithm.

Fill in the table above under insertion sort. (Hint: Since insertion sort takes a long time, you can
fill in that column up-to a list size of 100,000.)

Replace your insertion sort algorithm with a call to the STL std::sort algorithm. Measure the
running times and record the numbers above. (Hint: This time, you can actually run the sort
algorithm up-to a list size of 10,000,000.)

Move the std::sort call before the stopwatch block to avoid measuring its time.

Inside the stopwatch block, add a code that generates a random number and searches for this
number using std::binary_search algorithm. Measure the running times of up-to 10,000,000
entries in the list.

By looking at the numbers in the table, categorize these algorithms based on how the numbers
grow with the list size. (Hint: There are four categories based on the growth rate of the
algorithms.)

Draw a chart for all these algorithms where the x-axis represents the list size and the y-axis
represents the running time. Plot one line for each algorithm in that chart. Make it a log-log plot
so that you can better see the growth. How does the figure match with your categorization in
Step 12.

What does the line ‘srand(0)’ do? Why do you think it can be useful to have this line?

