FSM D Functional Partitioning for L ow Power

Enoch Hwang

Frank Vahid

Y u-Chin Hsu

Department of Computer Science
University of California, Riverside, CA 92521

ehwang@cs.ucr.edu

Abstract

Previous works have shown that dzable power
reductions can be achieved by shutting down sub-circuits
when they are not needed. Howeve, these shutdown
techniques focus on shutting dowmn only portions of the
controller or the datapath of a single custom hardware
procesor. We propcese a higher level shutdown technique
that considers both the ntroller and datapath
simultaneoudy; in particular, we partition a procesor into
multiple simpler mutually exclusve mnunicating
procesors, and then shut down the inactive processors
(i.e, the inactive controller/datapath pairs). Power
reduction is accomplished because only one processor is
active at atime. In addition to power reduction, functional
partitioning also provides solutions to avariety of synthesis
problems and does not require the modification of the
synthesis tod. We present results which show that this
FSVID functional partitioning technique @an save, on
average, 42% ove ungotimized systems in power
reduction.

1. Introduction

Power reduction of VLS| systems is an important goal
for system designs and much work has been done in this
area & surveyed in [1]. While power reduction techniques
can be applied at nealy every design abstraction leve,
many previous works have focused on the lower levels of
abstraction. Recently, there isafocus on power reduction at
the higher levels [2] wherelarge power savings are possble
merely by cutting down on wasted power. High-level
power reduction mainly involves dwtting dwn
unnecessary portions of the drcuit, thereby reducing the
total amount of switching activities. Two areas of shutdown
techniques for power reduction have appeaed in recent
literatures.

In datapath shutdown techniques, portions of the

Controller

Datapath

FSM

Figure 1. Unoptimized RTL design example.

DATE99.doc

vahid@cs.ucr.edu

Last printed 12/07/98 11:13 AM

hsu@cs.ucr.edu

combinationa logic in the datapath can be shut down for
some cycles when those results are either precomputed or
are not required. In [3], the output values are sdedively
precomputed before they are needed and are used to reduce
the switching activity in the next clock cycle. The guarded
ewvaluation technique in [4] tries to determine, on a per
clock cycle basis, which part of a combinational circuit are
computing results that will be used, and which are not. The
sedions that are not needed are then shut off, thus saving
the power used in al the uselesstransitions in that part of
the circuit. The dock gating method used in a popular
synthesis tod considers only static power. Static power,
however, acoounts for less than 10% of the total power
consumption in a drcuit [5].

In controller shutdown techniques [6], the cntroller is
partitioned into two o more mutually exclusive interacting
FSMs and their clocks are sdledively gated. Each FSM
controls the exeaution of one sedion of computation. Only
one of the interacting FSMis is active at any given clock
cycle, while al the others are idle and ther clock is
stopped.

For example, given the FSMD description in Figure 5,
the arresponding RTL description is shown in Figure 1.
Suppose that the input for x is 0 in the FSMD code, then
only states € and s3 will be exeaited, and so neither the
adder nor the multiplier are needed. These two functiona
units will be wasting power in the unoptimized circuit of
Figure 1 because they will have switching activities even
though their results are not needed. Furthermore, the
portions of the wntroller for generating the control signds
for the threeregisters p, i, and t2, and the two multiplexers
mux1 and mux2 can be reduced to save power. Figure 2
shows the result of applying the guarded evaluation
technique to the unoptimized circuit of Figure 1. Latches
are added in front of all the functional units. Sinceonly the
comparator is needed in the exeaution of states O and s3,
the inputs to the adder and multiplier can be latched, thus,

Controller Datapath
(1] ’

FSM

Figure 2. Guarded evaluation technique.

Page 1 of 6

preventing the inputs from changing. Power is saved
because there will be no switching activity in these two
functional units. Fgure 3 shows an example of applying
the seledively-clocked FSM tedhnique. Here we have split
the original FSM into two sub-FSMs. FSM1 controls the
portion of the datapath for the multiplier and adder while
FSM2 controls the portion of the datapath for the
comparator. Sincewe only neel the use of the comparator,
FSM1 can be made inactive by stopping the dock to it.
The power savings from this technique come diredly from
the fact that there ae multiple smaller FSMs ingtead of one
large one. As a result, we have a shorter local clock line,
fewer states, and simpler and smaller next state logic.
While this method prevents unnecessrily power
consumption in the cntrol unit, thereis no power reduction
in the datapath.

While the above mentioned techniques show
significant power reductions, they focus only on either the
datapath or the controller for asingle austom processor. It
was reamgnized in [3] and [4] that the power savings would
be even larger if bath the mntroller and the datapath are
considered together and that the techniques are applied an
the omplete drcuit, rather than on individual blocks. In
this paper, we propose a new shutdown tedhnique for
reducing power where bath the cntroller and the datapath
are shut off together.

The rest of the paper is organized as follows. In
Sedion 2, we will describe the problem. Sedion 3 gives a
detail description of our technique. Sedion 4 shows our
experimental results, and we mncludein Sedion 5.

2. Problem Description

When a circuit is g/nthesized from a behavioral
description to a gate level netlist, only one cntrol unit and
one datapath is generated. What this means is that when
there is a signal change d the primary inpu, the entire
datapath and control unit may be affected. Partitioning the
netlist (as in structural partitioning) does not reduce power
because even though the partitioning creges more than one
physical partition, there is gill logicdly only one datapath
and one @ntrol unit. When aprimary input signa changes,
it may till affect many of the gates in the datapath and/or
controller regardless of which part they are in. Previous
techniques only try to reduce the switching activities within
a localized subset of gates either in the datapath or the
controller.

Controller Datapath

Figure 3. Seledively-clocked FSM technique.

DATE99.doc

Last printed 12/07/98 11:13 AM

Our FSMD functional partitioning technique is applied
before synthesis. The original FSMD is first partitioned
into several smaller mutuall y-exclusive FSMDs. Each of
these smaller FSMIDs is then synthesized to its own custom
processor, having its own controller and datapath. The
reason why FSMD functional partitioning can sgnificantly
reduce power is that each processor is gnaller than the
origina one large processor implementing the entire
process and only one processor is exealting a computation
at any given time while the other processors will be idle.
When a processor is idle, we have, in effect, shut down
both the mntroller and the datapath for that processor.
Thus, greder power savingis posshle.

Figure 4 shows the result of applying the FSMD
functional partitioning technique to the sample drcuit of
Figure 1. Here, we have two smaller mutually exclusive
processors. The firg processor containing the controll er
and datapath for exeauting state sl, and the sewnd
processor containing the ntroller and datapath for
exeadting states €, 2, and s3. Thus, when x=0, only
processor 2 needs to be active. Processor 1 remains
inactive in an idle state waiting for processor 2 to wake it
up if necessary. The datapath of processor 1 is not
consuming power because the inputs are not changing. The
power consumed by both controllers is reduced because of
their smaler size. Furthermore, the power consumed by
processor 1's controller is reduced even more because it is
in an idle state. The overhead in this tedhnique is the
communication and possble dugicaion of registers.

In addition to reducing power, FSMD functional
partitioning also provides lutions to a variety of synthesis
problems. These include 1/0 satisfaction by reducing total
/O by as much as 67% (which could impact physical
design positively), reduced synthesis runtime by as much as
85%, and hardware / software tradeoffs [7]. Furthermore,
our technique does not require the modification of the
synthesis tod. The relevance of using the FSVID mode is
that many circuit designs are still spedfied at the register-
transfer level using this model. However, partitioning
introduces extra power consumption for inter-processor
communication between the smaller FSMDs. Thus, the
problem that must be solved is one of partitioning such that
the reduction in power for computations far outweighs the
power increase for communicdion, while dso minimizing
theincreasein total circuit size and exeaution time.

Processor 1
Controller Datapath

Processor 2

Controller Datapath
M

FSM

Figure 4. FSMID partitioning technique.

Page 2 of 6

Since we based our partitioning technique on the
FSMD modd, we will now define it. An FSMD differs
from atraditional FSM in that it may include variables with
various data types, as well as complex data operationsin its
actions. Formally, a finite-state machine with dataflow [8]
isa6-tuple defined as foll ows:

P=<S s, | OSTAT, OOA, d, A\>
where:

e S={sy, ..., Sy} isafinite set of states

s g isthereset state.

« 1 ={ij} isasetof primary input values.

e STAT ={Re(a, b) |a, b O EXP} isa set of status
signals as logica reations between two
expressons from the set EXP.

o EXP ={f(xy,z..) | Xy,z... 0 VAR} is a set of
expressons.

* VARisaset of storage variables.

e O ={og isaset of primary output values.

« A={x0 e|xOVAR el]EXP} isaset of storage
assgnments.

e 0 is a dtate trandtion function that maps a cross
product of Sandl into S

e A isthe output function that maps a cross product
of Sand | into O for Mealy models or Sinto O for
Moore models.

3. Implementation Details

In contrast to procedura functional partitioning [9]
which performs a marse-grained partitioning of procedures
and functions, FSMD functiona partitioning has no
concept of functions or procedures, but rather states. What
we neal in FSMD functional partitioning is to be able to
determine the variables that need to be passd from one
state to the next. A power partitioning algorithm is then
applied to separate the states into two a more parts.
Finally, communication between the parts is added. The

cae State Varis
whens) =>
p=1;
=1,
tl:=1<x;--xisaprimary input
if t1 then
State Var :=sl;
dse
y<=p;
State Var :=s3;
endif;
whensl =>
p=p*2;
Y<=P,
i=i+1;
State Var :=2;
whens2 =>
t2:=i<x;
if t2 then
State Var :=sl;
dse
State Var :=s3;
endif;
whens3 =>
State Var :=s3;
end case;

detail s are discussed in the foll owing sedions.

3.1 Dataflow analysis

Given an unpartitioned FSMD, we first construct a
control flow graph by asdgning a state in the FSVID to a
node in the graph. For example, given the unpartitioned
FSMID code of Figure 5, we obtain the initial control flow
graph of Figure7 (a). A dataflow analysis, smilar to those
use for compiler optimization [10], is then performed on
the graph to oltain the variables that need to be passed
from one state to another.

When we perform the FSMD partitioning, we ae only
interested in the amount of data that cross between two
parts and not between two states that are in the same part.
Thus, for each part P, we neal to calculate the set of
variables nealed to be passed from the cdler part, P.in,
and the set of variables nealed to passto the allee part,
Pi.out. The dgorithm to evaluate P,.in and P,.out is shown
in Figure 6. Note that before applying this algorithm, we
must aready know how many parts we will have and the
set of nodes in each part. Continuing with our example, if
we put node sl in part P1 and the rest of the nodes in part
PO, then after applying the dgorithm of Figure 6, we obtain
the results shown in Figure 7 (b).

Notice that the variable x is used in state 2 and was
defined (primary input) in state SO, thus, it must be passed
from S0 viasl to s2. However, x isnot in either of the sets
Pl.inor Plout. Thisis beause SO and s2 are in the same
part. If we had put 2 in P1, then x would have to be
pased across the parts, thus increasing the power
consumed by the communication.

3.2 Power partitioning algorithm

For our initid experiments, we have used a smple
algorithm to partition the states such that the overall energy
consumption of the entire circuit is minimized. The
algorithm is based on the following energy estimation
model. Details of the model can be found in [11]. Let Es
be the energy consumed by state 5. The total energy for a
2-part partitioned system (parts A and B) is

E partitioned = AEA *0BER + Ecomm (1)

for each part P do
begin
P.callee= setof allstatesn :nj — n;,i # j,n; OP,andn; OP.
/I setof statesn P that trarsition from statesthatarenotin P.
P.caller = setof allstatesn : 1 - nj,i # j,n; OP,andn; OP.
/I setof statesn P that trarsition to statesthatarenotin P.
Puse=Jnuse OnOP //setof variablesusedin P.

Pdef=Undef OnOP //setof variablesdefinedin P.
P.in = (UP.calleein) - (P.usg

P.out = ((UP.callerout) — (P.def)
end

Figure 5. Sample unpartitioned FSVID code.

DATE99.doc

Last printed 12/07/98 11:13 AM

Figure 6. Partition dataflow analysis algorithm.

Page 3 of 6

where Ep = Y Eg (similarly for Eg) is the sum of the
OsDA
energy of the dtates in part A (part B), and a, is the
complexity for processor A due to its controller and
datapath interconned. aj is approximated by the number of
states in the part. The assumption made for « is that the
complexities of two individual states are summed to get the
complexity for bath states combined, but in redity, the
combined complexity will be lessthan the sum. E.ymis
the communicaion energy. Currently, to simplify the
partitioning heuristic, this term isignored. Let Ey and ay
be defined similarly but for the unpartitioned system, then

@ FSMD state
reset state

@

PO P0.in={i,p}
‘\f’O.out:{i,p}

Pl.in:-(;,p}
P1.out={i,p}

(b)

P0.in={i,p}
PO ™. PO.out={i,p}

[p—

i PR 4

R ey . :
start; start « .
T

Pl.in:.(i-,b—}
P1.out={i,p}

(©

Figure 7. (a) Contral flow graph of Figure5. (b) Result
after dataflow analysis and partitioning. (c) Result after
refinement.

DATE99.doc

Last printed 12/07/98 11:13 AM

sinceE, + Eg = Ey and a, + o = ay, we get
Epartitioned = AEA +(ay —aa)(Ey —Ep) (2

To minimize Epaijones;, We Need to minimize bath
terms. However, we @nnot minimize the first term by
minimizing bath E, and a, becuse this will cause the
second term to be maximized; likewise with the second
term. Thus, to minimize aterm, we @n only minimize
either a or E for the same term. From this observation, the
partitioning algorithm below tries to balance the a and E
between the two parts:

1. CadculateEs for dl states.

2. Sortthe states suchthat Es, < Es, < ... <Es,.

3. Divide the states into two parts between 5 and 5.,

satisfying the foll owing criteria:
s PatA={s;, s, ...,s}

o PartB={S:1, S+ ---» S}

* |Ex—Eg|isminimized.

Basically, this algorithm finds the median of the states
with resped to the energy consumption E. Alternatively,
we @n find the median with resped to a. This dgorithm is
very fast; steps 1 and 3 are O(n) and step 2 is O(nlogn)
where n is the number of states. We ae aurrently working
on amore refined partitioning heuristic using a branch and
bound scheme axd comparing the power reduction results
between them.

3.3 FSMD refinement method

The dgorithm described in the previous <dion
produces a partitioning of the FSVMD states. We now
generate a new communicating FSMD that is functionally
equivalent to the original unpartitioned FSMD. The
resulting communicaing FSMDs from Figure 7 (a) is
shown in Figure 7 ().

For example, to transition from state 5 to s, in the
unpertitioned FSMD shown in Figure 7 (a), the equivalent
trangition in the partitioned FSMDs as shown in Figure 7
(c) isasfallows. Initidly, PO isin 5 and PLlisinitsidle
state Sqe. TO trangition to s;, PO exits § , asErts starty,
and entersitsidle state Sq- Se€@ng that starty is asserted,
P1 exits §qq and enters s;.

The FSMD partitioning can be formally described as
follows. Let P =<S s, | O STAT, O O A, 9, A> be the
origina unpartitioned FSMD. Our method isto pertition P
into n parts, Py, ..., P, such that the cmbined behavior of
the partitioned P’s is functionally equivalent to the
unpertitioned P. Each partitioned FSVID, P, is defined as
follows:

Pi =<S!SJ,i! Sd|e,i! Ii O S-I-'A\-I-I O IPi! q O Al O OPi! a!)\i >

where the symbols are defined similarly to the
unpertitioned FSVID except that they are for each part P.. A

new idle sate Sq0; [§ isadded to each P.. Furthermore,

n-1
Ns =0
1=0

Page 4 of 6

and

n-1 n-1

US =S+ Usideei -

i=0 i=0

Py is the main active part, and the other P’s are the
passve parts. For the main part Py, the idle state is not the
reset state, i.e. S0 # Saeo- Whereas, for the other parts P,-;
on-1, the idle state is the reset state, i.e. S = Sqe;. Besides
the primary inputs and autputs I; and O, each part aso has
datathat is passed between the parts. These aeIP, and OP,;
for datathat is passed from and to ancther part respedively.
IP, = <ipy, ... ips> where a = number of input parameters
for P, and OP, = <op, ... op,> where b = number of output
parameters for P. These parameters and values are
determined from the datafl ow analysis.

For each transition from a state u of P; to a state v of P,
(i #j), anew signal start, is generated. start, is a uni-
diredional signal that goes from P; to P;. Every trangtion
from state uto vin P beames a transtion from u to Sge; in
P; and from Sgej to vin P The trangtion from u to Sge; in
P; assrts the output signal start, of P;. The transition from
Sdej 10 v in P; is performed only when the inpu signél
start, of P; is asserted.

Partitioning the FSMD and introducing the etra idle
state in each part according to the tedhnique described
above do nd change the oycle-by-cycle behavior of the
origina unpartitioned FSMD. When there is a transition
that crosses between two parts, the cdler processor will
trangition to its idle state while at the same time, the cllee
processor trangitions from its idle state to the next state.
The trangitions to and from its respedive idle states for the
two parts happen simultaneoudly, thus, no extra dock cycle
is nealed as shown in Figure 8. However, the critical path
can be dther lengthened (becuse of the added
communication circuitry) or shortened (because of the
smaller circuitry in the smaler part). Thus, the overall
exeadtion time can be longar or shorter than the
unpertitioned system.

4. Experimental Results

We have implemented the FSMD functiond
partitioning tednique described above. We start by
describing a system using the FSVID model with VHDL.
After applying owr partitioning technique, the system is

synthesized and simulated to oltain the switching activity
data. Power results are alculated using the switching
activity and the apacitance of the netlist obtained from the
technology library. The unpartitioned and partitioned
systems are @mpared in terms of their average and tota
power usage, area and exeadtion time.

Table 1 shows the statistics for the FSMD examples.
Fac is a factorization program. Chinese evaluates the
Chinese Remainder Theorem. Diffeq is an example from
the HLSynth MCNC benchmark. Volsyn is a volume-
measuring medical instrument controller. NLoops is an
example with nested loops. MP is a small microprocessor.
DSP is a digital signal processor. The second and third
columns show the size in taems of gate @unt for the
unpertitioned and partitioned systems respedively. For the
partitioned size, the gate count for the individual parts are
further broken down. The states column shows the number
of states in the partitioned system and the last column
shows the total bit width for the communication.

Theresults are summarized in Table 2. Columns 2 and
3 show the percent increase in area ad exeadtion time
respedively. The absolute average and total power for the
partitioned examples are shown in columns 4 and 5. The
percent average and total power savings are shown in
columns 6 and 7. In al cases except for Diffeq, bath the
average and total power isreduced. The savingsin average
power ranges from 2% to as much as 66% with an average
of 42%. The savings in total power range from 33% to
64% with an average of 41%. For the Diffeq example, the
average power is reduced by 2% but the total power is
increased by 3%. A posdsble reason for this is that the
Diffeq example is smply a repetition of a single dgorithm
several times, and thus, is not a good candidate for
partitioning. The tradeoff for the area on the average is
24% and anly 1% on average for the exeaution time. The
reason why the exeaution time overhead is © small is
because the criticd path can be shortened as a result of a
smaller processor. The 24% increase in gates is not as
significant because dhip capacities have mntinued to grow
exponentialy. The results do take into consideration the
fact that the bus capacitance for communications between
parts are larger than internal capacitance In our power

Table 2: Power reduction results.

% Overhead Absolute % Power Savings
Table 1: Example statistics. Partitioned
Example Average| Total
Unpart Partitioned Ag/(s a Tio%]e Fzﬁvv(;r P(?l\{\]/)e ' Av%;Jage Too/toal
Example|
Size Size States | Com Fac 13 5 17.26| 1347.40 66 64
Fac 15251/17208=11166+2758+3284 20 230 Chinese 67 7| 15.85| 3491.43 37 33
Chinese || 19766/33054=14137+2233+1669+15015 44| 485 Diffeq 12 5| 54.74) 8989.34 2 -3
Diffeq 11487|12874=1654+11220 58] 258 Volsyn 3 9 7.54)| 1509.18 49 44
Volsyn 11193|13163=10798+2365 16| 67 NLoops 33 -6 5.19] 2511.00 42 45
NLoops 2622{3484=1988+1496 12| 66 MP 2 4] 13.29] 425.27 51 51
MP 6210/6307=4623+1684 101 98 DSP 39 -9 108 28.38 48 50
DSP 278/386=131+255 13 12 Average 24 1| 16.42| 2614.57 42 41
DATE99.doc Last printed 12/07/98 11:13 AM Page 5 of 6

calculation, we have used a bus capacitance that is four
timesthe interna cgpacitance

Figure 9 shows a comparison of average power savings
between our FSMD partiti oning technique with the guarded
evaluation [4] and seledively-clocked [6] techniques. We
used two approaches to make the amparison and they bath
gave similar results. In the first approach, we analyzed our
set of examples to estimate the power savings using the
localized tedhniques. In the second approach, the power
savings data for the locali zed techniques are taken diredly
from their respedive papers and adjusted to aur
unoptimized examples. Sincetheir savings are with resped
to portions of the whole system, we have adjusted it
accordingly to refled the savings for the entire system. The
data from [4] does not include examples with a power
savings of less than 15%. Hence to compare fairly, we
have dropped all such examples in the @mparison (in our
case, the Diffeq data is dropped.) The percent power
savings for the three tedchniques, guarded evaluation,
sdledively-clocked, and FSMD partitioning, over the
unoptimized design are 31%, 7%, and 49% respedively.
The power usage by the functional units and muxes is less
for FSVID partitioning than for guarded evaluation because
there is power savings from the muxes for the former but
not the latter technique. Power usage by the registers is
more than the unoptimized becuse some registers have to
be dupicated, however, it is dightly less than that of
guarded evaluation because fewer extra latches are nealed.
The ontroll er power usage is about the same as that of the
seledively-clocked technique.

After the FSMD partitioning, we end up with several
smaller processors, thus, we @an further apply the localized
techniques to the individual processors to get even better
results. Our analysis [11] shows that an additional 18%
power savings might be achievable resulting in a total
savings of 58% as $own in the FSMD partitioning and
guarded evaluation plot in Figure 9.

5. Conclusions

We have introduced an FSMD functional partitioning
technique for reducing power consumption. Unlike
previous power reduction shutdown techniques that focus
only on either the datapath or the cntroller, our approach
partitions the entire FSVID to shut down bath the cntroll er
and the datapath. We achieved on average a 42% average
power reduction with a24% increase in gate count and anly

to tl t2 t3

clock

P1 state reg ;
start s1

Figure 8. Partitioned FSMD transition timing dagram.

DATE99.doc

Last printed 12/07/98 11:13 AM

1% increase in exeadtion time. Furthermore, since our
techniqueisapplied at ahigher level andin the ealy stages
of the design process, further power reduction is ill
possble by applying localized power reduction techniques
at the lower levels. In addition to power reduction, FSMD
functional partitioning also provides solutions to a variety
of synthesis problems and does not require the modification
of the synthesistod.

References

[1] Srinivas Devadas & Sharad Malik, “A Survey of Optimization
Techniques Targeting Low power VLSI Circuits,” Procealings of
the Design Automation Conference, pp. 242-247, 1995

[2] Enrico Madi, Massud Pedram, & Fabio Somenzi, “High-Level
Power Modeling, Estimation, and Optimization,” Proceedings of
the Design Automation Conference, pp. 31-38, 1997.

[3] Mazhar Alidina, Jose Monteiro, Srinivas Devadas, & Abhijit
Ghosh, “Precomputation-Based Sequential Logic Optimization
for Low Power,” Proceealings of the International Conference on
Computer Design, pp. 74-81, October 1994

[4] Vivek Tiwari, Sharad Malik, & Pranav Ashar, “Guarded
Evaluation: Pushing Power Management to Logic
SynthesgDesign,” Internationa Symposium on Low Power
Design, 1995

[5] A. Chandrakasan, T. Sheng, & R. Brodersen, “Low Power CMOS
Digital Design,” Journal of Sdid Sate Circuits, Vol. 27, No. 4,
pp. 473484, April 1992

[6] L. Benini, P. Vuillod, G. De Micheli & C. Coeho, “ Synthess of
Low-Power Selectively-Clocked Systems from High-Leve
Specification,” Internationd Symposium on S/stem Synthesis, pp.
57-63, Nov. 1996

[7 F. Vahid, T. Le, & Y.C. Hsu, “A Comparison of Functional and
Structural Partitioning,” International Symposium on System
Synthesis, pp. 121-126, November 1996

[8] D. Gajski, N. Dutt, A. Wu, & S. Lin, High-Levd Synthesis
Introduction to Chip and System Design, Kluwer Academic
Publisher, Boston, 1992

[9] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Spedfication and
design o embedded systems, New Jersey, Prentice Hall, 1994

[10] A. V. Aho, R. Sethi, & J. D. Ullman, Compilers Principles,
Techniques, and Tools, Addison-Wedey Publishing Company,
California, 1988

[17] E. Hwang & F. Vahid, “Energy Edimation for FSMD
Partitioning,” UCR CS98 06 University of California, Riverside.

w
o

communication

S 30 4 mcontroller
2 | o M registers
S 25 1% % FUs + muxes
§ 20 49%
o 151 58%
[=
@ 10
g
z 5
0 - T T T T
Unoptimized Guarded Selectively- FSMD FSMD
Evaluation Clocked Partitioning Part.+
Guard. Eval.

Figure 9. Average power savings compared. Percentages
show power savings. Shorter bars are better.

Page 6 of 6

