
DATE99.doc Last printed 12/07/98 11:13 AM Page 1 of 6

FSMD Functional Partitioning for Low Power

Enoch Hwang Frank Vahid Yu-Chin Hsu
Department of Computer Science

University of Cali fornia, Riverside, CA 92521
ehwang@cs.ucr.edu vahid@cs.ucr.edu hsu@cs.ucr.edu

Abstract

Previous works have shown that sizable power
reductions can be achieved by shutting down sub-circuits
when they are not needed. However, these shutdown
techniques focus on shutting down only portions of the
controller or the datapath of a single custom hardware
processor. We propose a higher level shutdown technique
that considers both the controller and datapath
simultaneously; in particular, we partition a processor into
multiple simpler mutually exclusive communicating
processors, and then shut down the inactive processors
(i.e., the inactive controller/datapath pairs). Power
reduction is accomplished because only one processor is
active at a time. In addition to power reduction, functional
partitioning also provides solutions to a variety of synthesis
problems and does not require the modification of the
synthesis tool. We present results which show that this
FSMD functional partitioning technique can save, on
average, 42% over unoptimized systems in power
reduction.

1. Introduction
Power reduction of VLSI systems is an important goal

for system designs and much work has been done in this
area as surveyed in [1]. While power reduction techniques
can be applied at nearly every design abstraction level,
many previous works have focused on the lower levels of
abstraction. Recently, there is a focus on power reduction at
the higher levels [2] where large power savings are possible
merely by cutting down on wasted power. High-level
power reduction mainly involves shutting down
unnecessary portions of the circuit, thereby reducing the
total amount of switching activities. Two areas of shutdown
techniques for power reduction have appeared in recent
literatures.

In datapath shutdown techniques, portions of the

combinational logic in the datapath can be shut down for
some cycles when those results are either precomputed or
are not required. In [3], the output values are selectively
precomputed before they are needed and are used to reduce
the switching activity in the next clock cycle. The guarded
evaluation technique in [4] tries to determine, on a per
clock cycle basis, which part of a combinational circuit are
computing results that will be used, and which are not. The
sections that are not needed are then shut off, thus saving
the power used in all the useless transitions in that part of
the circuit. The clock gating method used in a popular
synthesis tool considers only static power. Static power,
however, accounts for less than 10% of the total power
consumption in a circuit [5].

In controller shutdown techniques [6], the controller is
partitioned into two or more mutually exclusive interacting
FSMs and their clocks are selectively gated. Each FSM
controls the execution of one section of computation. Only
one of the interacting FSMs is active at any given clock
cycle, while all the others are idle and their clock is
stopped.

For example, given the FSMD description in Figure 5,
the corresponding RTL description is shown in Figure 1.
Suppose that the input for x is 0 in the FSMD code, then
only states s0 and s3 wil l be executed, and so neither the
adder nor the multiplier are needed. These two functional
units will be wasting power in the unoptimized circuit of
Figure 1 because they will have switching activities even
though their results are not needed. Furthermore, the
portions of the controller for generating the control signals
for the three registers p, i, and t2, and the two multiplexers
mux1 and mux2 can be reduced to save power. Figure 2
shows the result of applying the guarded evaluation
technique to the unoptimized circuit of Figure 1. Latches
are added in front of all the functional units. Since only the
comparator is needed in the execution of states s0 and s3,
the inputs to the adder and multiplier can be latched, thus,

*

p

mux1

+

i

1

x

mux3

mux2

t1 t2

F S M
2

y

<

Controller Datapath

Figure 1. Unoptimized RTL design example.

*

p

mux1

+

i

1

x

mux3

mux2

t1 t2

F S M 2

y

latchlatch latch

<

Controller Datapath

Figure 2. Guarded evaluation technique.

DATE99.doc Last printed 12/07/98 11:13 AM Page 2 of 6

preventing the inputs from changing. Power is saved
because there wil l be no switching activity in these two
functional units. Figure 3 shows an example of applying
the selectively-clocked FSM technique. Here we have split
the original FSM into two sub-FSMs. FSM1 controls the
portion of the datapath for the multiplier and adder while
FSM2 controls the portion of the datapath for the
comparator. Since we only need the use of the comparator,
FSM1 can be made inactive by stopping the clock to it.
The power savings from this technique come directly from
the fact that there are multiple smaller FSMs instead of one
large one. As a result, we have a shorter local clock line,
fewer states, and simpler and smaller next state logic.
While this method prevents unnecessaril y power
consumption in the control unit, there is no power reduction
in the datapath.

While the above mentioned techniques show
significant power reductions, they focus only on either the
datapath or the controller for a single custom processor. It
was recognized in [3] and [4] that the power savings would
be even larger if both the controller and the datapath are
considered together and that the techniques are applied on
the complete circuit, rather than on individual blocks. In
this paper, we propose a new shutdown technique for
reducing power where both the controller and the datapath
are shut off together.

The rest of the paper is organized as follows. In
Section 2, we will describe the problem. Section 3 gives a
detail description of our technique. Section 4 shows our
experimental results, and we conclude in Section 5.

2. Problem Description
When a circuit is synthesized from a behavioral

description to a gate level netlist, only one control unit and
one datapath is generated. What this means is that when
there is a signal change at the primary input, the entire
datapath and control unit may be affected. Partitioning the
netli st (as in structural partitioning) does not reduce power
because even though the partitioning creates more than one
physical partition, there is stil l logicall y only one datapath
and one control unit. When a primary input signal changes,
it may still affect many of the gates in the datapath and/or
controller regardless of which part they are in. Previous
techniques only try to reduce the switching activities within
a locali zed subset of gates either in the datapath or the
controller.

Our FSMD functional partitioning technique is applied
before synthesis. The original FSMD is first partitioned
into several smaller mutually-exclusive FSMDs. Each of
these smaller FSMDs is then synthesized to its own custom
processor, having its own controller and datapath. The
reason why FSMD functional partitioning can significantly
reduce power is that each processor is smaller than the
original one large processor implementing the entire
process, and only one processor is executing a computation
at any given time while the other processors wil l be idle.
When a processor is idle, we have, in effect, shut down
both the controller and the datapath for that processor.
Thus, greater power saving is possible.

Figure 4 shows the result of applying the FSMD
functional partitioning technique to the sample circuit of
Figure 1. Here, we have two smaller mutually exclusive
processors. The first processor containing the controller
and datapath for executing state s1, and the second
processor containing the controller and datapath for
executing states s0, s2, and s3. Thus, when x=0, only
processor 2 needs to be active. Processor 1 remains
inactive in an idle state waiting for processor 2 to wake it
up if necessary. The datapath of processor 1 is not
consuming power because the inputs are not changing. The
power consumed by both controllers is reduced because of
their smaller size. Furthermore, the power consumed by
processor 1’s controller is reduced even more because it is
in an idle state. The overhead in this technique is the
communication and possible duplication of registers.

In addition to reducing power, FSMD functional
partitioning also provides solutions to a variety of synthesis
problems. These include I/O satisfaction by reducing total
I/O by as much as 67% (which could impact physical
design positi vely), reduced synthesis runtime by as much as
85%, and hardware / software tradeoffs [7]. Furthermore,
our technique does not require the modification of the
synthesis tool. The relevance of using the FSMD model is
that many circuit designs are still specified at the register-
transfer level using this model. However, partitioning
introduces extra power consumption for inter-processor
communication between the smaller FSMDs. Thus, the
problem that must be solved is one of partitioning such that
the reduction in power for computations far outweighs the
power increase for communication, while also minimizing
the increase in total circuit size and execution time.

*

p

mux1

+

i

1

x

mux3

mux2

t1 t2

F S M
1

2

y

F S M
2 <

Controller Datapath

Figure 3. Selectively-clocked FSM technique.

x

m u x 3

t1 t2

F S M
2 i

1

p

y

<

c o m m

*

p

+

i

1

F S M
1

2

y

m u x 1 m u x 2

Controller Datapath Controller Datapath

Processor 1 Processor 2

Figure 4. FSMD partitioning technique.

DATE99.doc Last printed 12/07/98 11:13 AM Page 3 of 6

Since we based our partitioning technique on the
FSMD model, we will now define it. An FSMD differs
from a traditional FSM in that it may include variables with
various data types, as well as complex data operations in its
actions. Formally, a finite-state machine with dataflow [8]
is a 6-tuple defined as follows:

P = <S, s0, I ∪ STAT, O ∪ A, δ, λ>
where:

• S = { s0, …, sm} is a finite set of states
• s0 is the reset state.
• I = { i j} is a set of primary input values.
• STAT = {Rel(a, b) | a, b ∈ EXP} is a set of status

signals as logical relations between two
expressions from the set EXP.

• EXP = { f(x,y,z,…) | x,y,z,… ∈ VAR} is a set of
expressions.

• VAR is a set of storage variables.
• O = { ok} is a set of primary output values.
• A = {x ⇐ e | x ∈ VAR, e ∈ EXP} is a set of storage

assignments.
• δ is a state transition function that maps a cross

product of S and I into S.
• λ is the output function that maps a cross product

of S and I into O for Mealy models or S into O for
Moore models.

3. Implementation Details
In contrast to procedural functional partitioning [9]

which performs a coarse-grained partitioning of procedures
and functions, FSMD functional partitioning has no
concept of functions or procedures, but rather states. What
we need in FSMD functional partitioning is to be able to
determine the variables that need to be passed from one
state to the next. A power partitioning algorithm is then
applied to separate the states into two or more parts.
Finally, communication between the parts is added. The

detail s are discussed in the following sections.

3.1 Dataflow analysis
Given an unpartitioned FSMD, we first construct a

control flow graph by assigning a state in the FSMD to a
node in the graph. For example, given the unpartitioned
FSMD code of Figure 5, we obtain the initial control flow
graph of Figure 7 (a). A dataflow analysis, similar to those
use for compiler optimization [10], is then performed on
the graph to obtain the variables that need to be passed
from one state to another.

When we perform the FSMD partitioning, we are only
interested in the amount of data that cross between two
parts and not between two states that are in the same part.
Thus, for each part Pi, we need to calculate the set of
variables needed to be passed from the caller part, Pi.in,
and the set of variables needed to pass to the callee part,
Pi.out. The algorithm to evaluate Pi.in and Pi.out is shown
in Figure 6. Note that before applying this algorithm, we
must already know how many parts we will have and the
set of nodes in each part. Continuing with our example, if
we put node s1 in part P1 and the rest of the nodes in part
P0, then after applying the algorithm of Figure 6, we obtain
the results shown in Figure 7 (b).

Notice that the variable x is used in state s2 and was
defined (primary input) in state s0, thus, it must be passed
from s0 via s1 to s2. However, x is not in either of the sets
P1.in or P1.out. This is because s0 and s2 are in the same
part. If we had put s2 in P1, then x would have to be
passed across the parts, thus increasing the power
consumed by the communication.

3.2 Power partitioning algorithm
For our initial experiments, we have used a simple

algorithm to partition the states such that the overall energy
consumption of the entire circuit is minimized. The
algorithm is based on the following energy estimation
model. Details of the model can be found in [11]. Let Esi

be the energy consumed by state si. The total energy for a
2-part partitioned system (parts A and B) is

commBBAAdpartitione EEEE ++= αα (1)

case State_Var is
when s0 =>

p := 1 ;
i := 1 ;
t1 := 1 < x ; -- x is a primary input
if t1 then

State_Var := s1 ;
else

y <= p ;
State_Var := s3 ;

end if ;
when s1 =>

p := p * 2 ;
y <= p ;
i := i + 1 ;
State_Var := s2 ;

when s2 =>
t2 := i < x ;
if t2 then

State_Var := s1 ;
else

State_Var := s3 ;
end if ;

when s3 =>
State_Var := s3 ;

end case;

Figure 5. Sample unpartitioned FSMD code.

for each part P do

end

).()..(.

).()..(.

.in defined variablesofset // ..

.in used variablesofset // ..

.in not are that states sition to that tranin states ofset //

. and,,, : states all ofset .

.in not are that states fromsition that tranin states ofset //

. and,,, : states all ofset .

begin

defPoutcallerPoutP

usePincalleePinP

PPndefndefP

PPnusenuseP

PP

PnPnjinnncallerP

PP

PnPnjinnncalleeP

jijii

jiiji

−=

−=

∈∀=
∈∀=

∉∈≠→=

∉∈≠→=

�

�

�
�

Figure 6. Partition dataflow analysis algorithm.

DATE99.doc Last printed 12/07/98 11:13 AM Page 4 of 6

where ∑
∈∀

=
Ais

iA EsE (similarly for EB) is the sum of the

energy of the states in part A (part B), and αA is the
complexity for processor A due to its controller and
datapath interconnect. αA is approximated by the number of
states in the part. The assumption made for α is that the
complexities of two individual states are summed to get the
complexity for both states combined, but in reality, the
combined complexity will be less than the sum. Ecomm is
the communication energy. Currently, to simpli fy the
partitioning heuristic, this term is ignored. Let EU and αU

be defined similarly but for the unpartitioned system, then

since EA + EB = EU and αA + αB = αU, we get

))((AUAUAAdpartitione EEEE −−+= ααα (2)

To minimize Epartitioned, we need to minimize both
terms. However, we cannot minimize the first term by
minimizing both EA and αA because this wil l cause the
second term to be maximized; likewise with the second
term. Thus, to minimize a term, we can only minimize
either α or E for the same term. From this observation, the
partitioning algorithm below tries to balance the α and E
between the two parts:

1. Calculate Esi for all states.
2. Sort the states such that Es1 < Es2 < … < Esn.
3. Divide the states into two parts between si and si+1

satisfying the following criteria:
• Part A = { s1, s2, …, si}
• Part B = { si+1, si+2, …, sn}
• |EA – EB| is minimized.

Basicall y, this algorithm finds the median of the states
with respect to the energy consumption E. Alternatively,
we can find the median with respect to α. This algorithm is
very fast; steps 1 and 3 are O(n) and step 2 is O(nlogn)
where n is the number of states. We are currently working
on a more refined partitioning heuristic using a branch and
bound scheme and comparing the power reduction results
between them.

3.3 FSMD refinement method
The algorithm described in the previous section

produces a partitioning of the FSMD states. We now
generate a new communicating FSMD that is functionally
equivalent to the original unpartitioned FSMD. The
resulting communicating FSMDs from Figure 7 (a) is
shown in Figure 7 (c).

For example, to transition from state s0 to s1 in the
unpartitioned FSMD shown in Figure 7 (a), the equivalent
transition in the partitioned FSMDs as shown in Figure 7
(c) is as follows. Initially, P0 is in s0 and P1 is in its idle
state sidle1. To transition to s1, P0 exits s0 , asserts starts1,
and enters its idle state sidle0. Seeing that starts1 is asserted,
P1 exits sidle1 and enters s1.

The FSMD partitioning can be formally described as
follows. Let P = <S, s0, I ∪ STAT, O ∪ A, δ, λ> be the
original unpartitioned FSMD. Our method is to partition P
into n parts, P0, …, Pn-1 such that the combined behavior of
the partitioned Pi ’ s is functionally equivalent to the
unpartitioned P. Each partitioned FSMD, Pi, is defined as
follows:

Pi = <Si, s0,i, sidle,i, I i ∪ STATi ∪ IPi, Oi ∪ Ai ∪ OPi, δi, λi >

where the symbols are defined similarly to the
unpartitioned FSMD except that they are for each part Pi. A
new idle state sidle,i ∈ Si is added to each Pi. Furthermore,

� 1

0

−

=
∅=

n

i
iS

FSMD state

reset states0

s1

s0

s1

s2

s3

(a)

P 1

P 0

P1. in={ i ,p }
P1 .ou t= { i , p }

P0 . in={ i ,p }
P0 .ou t= { i , p }s0

s2

s1

s3

(b)

P 1

P 0

star t
s1

star t
s1

star t
s2

P1. in={ i ,p }
P1 .ou t= { i , p }

P0 . in={ i ,p }
P0 .ou t= { i , p }

s0

s2
s1

s3

s
id le1

s
id le0

(c)

Figure 7. (a) Control flow graph of Figure 5. (b) Result
after dataflow analysis and partitioning. (c) Result after
refinement.

DATE99.doc Last printed 12/07/98 11:13 AM Page 5 of 6

and

�� 1

0
,

1

0

−

=

−

=
+=

n

i
iidle

n

i
i sSS .

P0 is the main active part, and the other Pi ’ s are the
passive parts. For the main part P0, the idle state is not the
reset state, i.e. s0,0 ≠ sidle,0. Whereas, for the other parts Pi=1

to n-1, the idle state is the reset state, i.e. s0,i = sidle,i. Besides
the primary inputs and outputs Ii and Oi, each part also has
data that is passed between the parts. These are IPi and OPi

for data that is passed from and to another part respectively.
IPi = <ip1, … ipa> where a = number of input parameters
for Pi, and OPi = <op1, … opb> where b = number of output
parameters for Pi. These parameters and values are
determined from the dataflow analysis.

For each transition from a state u of Pi to a state v of Pj

(i ≠ j), a new signal startv is generated. startv is a uni-
directional signal that goes from Pi to Pj. Every transition
from state u to v in P becomes a transition from u to sidle,i in
Pi and from sidle,j to v in Pj. The transition from u to sidle,i in
Pi asserts the output signal startv of Pi. The transition from
sidle,j to v in Pj is performed only when the input signal
startv of Pj is asserted.

Partitioning the FSMD and introducing the extra idle
state in each part according to the technique described
above do not change the cycle-by-cycle behavior of the
original unpartitioned FSMD. When there is a transition
that crosses between two parts, the caller processor wil l
transition to its idle state while at the same time, the callee
processor transitions from its idle state to the next state.
The transitions to and from its respective idle states for the
two parts happen simultaneously, thus, no extra clock cycle
is needed as shown in Figure 8. However, the critical path
can be either lengthened (because of the added
communication circuitry) or shortened (because of the
smaller circuitry in the smaller part). Thus, the overall
execution time can be longer or shorter than the
unpartitioned system.

4. Experimental Results
We have implemented the FSMD functional

partitioning technique described above. We start by
describing a system using the FSMD model with VHDL.
After applying our partitioning technique, the system is

synthesized and simulated to obtain the switching activity
data. Power results are calculated using the switching
activity and the capacitance of the netlist obtained from the
technology library. The unpartitioned and partitioned
systems are compared in terms of their average and total
power usage, area, and execution time.

Table 1 shows the statistics for the FSMD examples.
Fac is a factorization program. Chinese evaluates the
Chinese Remainder Theorem. Diffeq is an example from
the HLSynth MCNC benchmark. Volsyn is a volume-
measuring medical instrument controller. NLoops is an
example with nested loops. MP is a small microprocessor.
DSP is a digital signal processor. The second and third
columns show the size in terms of gate count for the
unpartitioned and partitioned systems respectively. For the
partitioned size, the gate count for the individual parts are
further broken down. The states column shows the number
of states in the partitioned system and the last column
shows the total bit width for the communication.

The results are summarized in Table 2. Columns 2 and
3 show the percent increase in area and execution time
respectively. The absolute average and total power for the
partitioned examples are shown in columns 4 and 5. The
percent average and total power savings are shown in
columns 6 and 7. In all cases except for Diffeq, both the
average and total power is reduced. The savings in average
power ranges from 2% to as much as 66% with an average
of 42%. The savings in total power range from 33% to
64% with an average of 41%. For the Diffeq example, the
average power is reduced by 2% but the total power is
increased by 3%. A possible reason for this is that the
Diffeq example is simply a repetition of a single algorithm
several times, and thus, is not a good candidate for
partitioning. The tradeoff for the area on the average is
24% and only 1% on average for the execution time. The
reason why the execution time overhead is so small is
because the criti cal path can be shortened as a result of a
smaller processor. The 24% increase in gates is not as
significant because chip capacities have continued to grow
exponentiall y. The results do take into consideration the
fact that the bus capacitance for communications between
parts are larger than internal capacitance. In our power

Table 1: Example statistics.

Unpart Partitioned
Example

Size Size States Com

Fac 15251 17208=11166+2758+3284 20 230

Chinese 19766 33054=14137+2233+1669+15015 44 485

Diffeq 11487 12874=1654+11220 58 258

Volsyn 11193 13163=10798+2365 16 67

NLoops 2622 3484=1988+1496 12 66

MP 6210 6307=4623+1684 101 98

DSP 278 386=131+255 13 12

Table 2: Power reduction results.

% Overhead Absolute
Partitioned

% Power Savings

Example
Area

%
Time

%

Average
Power
(µW)

 Total
Power
(µJ)

Average
%

Total
%

Fac 13 5 17.26 1347.40 66 64

Chinese 67 7 15.85 3491.43 37 33

Diffeq 12 5 54.74 8989.34 2 -3

Volsyn 3 9 7.54 1509.18 49 44

NLoops 33 -6 5.19 2511.00 42 45

MP 2 -4 13.29 425.27 51 51

DSP 39 -9 1.08 28.38 48 50

Average 24 1 16.42 2614.57 42 41

DATE99.doc Last printed 12/07/98 11:13 AM Page 6 of 6

calculation, we have used a bus capacitance that is four
times the internal capacitance.

Figure 9 shows a comparison of average power savings
between our FSMD partitioning technique with the guarded
evaluation [4] and selectively-clocked [6] techniques. We
used two approaches to make the comparison and they both
gave similar results. In the first approach, we analyzed our
set of examples to estimate the power savings using the
localized techniques. In the second approach, the power
savings data for the locali zed techniques are taken directly
from their respective papers and adjusted to our
unoptimized examples. Since their savings are with respect
to portions of the whole system, we have adjusted it
accordingly to reflect the savings for the entire system. The
data from [4] does not include examples with a power
savings of less than 15%. Hence, to compare fairly, we
have dropped all such examples in the comparison (in our
case, the Diffeq data is dropped.) The percent power
savings for the three techniques, guarded evaluation,
selectively-clocked, and FSMD partitioning, over the
unoptimized design are 31%, 7%, and 49% respectively.
The power usage by the functional units and muxes is less
for FSMD partitioning than for guarded evaluation because
there is power savings from the muxes for the former but
not the latter technique. Power usage by the registers is
more than the unoptimized because some registers have to
be duplicated, however, it is slightly less than that of
guarded evaluation because fewer extra latches are needed.
The controller power usage is about the same as that of the
selectively-clocked technique.

After the FSMD partitioning, we end up with several
smaller processors, thus, we can further apply the localized
techniques to the individual processors to get even better
results. Our analysis [11] shows that an additional 18%
power savings might be achievable resulting in a total
savings of 58% as shown in the FSMD partitioning and
guarded evaluation plot in Figure 9.

5. Conclusions
We have introduced an FSMD functional partitioning

technique for reducing power consumption. Unlike
previous power reduction shutdown techniques that focus
only on either the datapath or the controller, our approach
partitions the entire FSMD to shut down both the controller
and the datapath. We achieved on average a 42% average
power reduction with a 24% increase in gate count and only

1% increase in execution time. Furthermore, since our
technique is applied at a higher level and in the early stages
of the design process, further power reduction is still
possible by applying localized power reduction techniques
at the lower levels. In addition to power reduction, FSMD
functional partitioning also provides solutions to a variety
of synthesis problems and does not require the modification
of the synthesis tool.

References
[1] Srinivas Devadas & Sharad Malik, “ A Survey of Optimization

Techniques Targeting Low power VLSI Circuits,” Proceedings of

the Design Automation Conference, pp. 242-247, 1995.

[2] Enrico Macii , Massoud Pedram, & Fabio Somenzi, “High-Level

Power Modeling, Estimation, and Optimization,” Proceedings of

the Design Automation Conference, pp. 31-38, 1997.

[3] Mazhar Alidina, Jose Monteiro, Srinivas Devadas, & Abhij it

Ghosh, “Precomputation-Based Sequential Logic Optimization

for Low Power,” Proceedings of the International Conference on

Computer Design, pp. 74-81, October 1994.

[4] Vivek Tiwari, Sharad Malik, & Pranav Ashar, “Guarded

Evaluation: Pushing Power Management to Logic

Synthesis/Design,” International Symposium on Low Power

Design, 1995.

[5] A. Chandrakasan, T. Sheng, & R. Brodersen, “Low Power CMOS

Digital Design,” Journal of Solid State Circuits, Vol. 27, No. 4,

pp. 473-484, April 1992.

[6] L. Benini, P. Vuil lod, G. De Micheli & C. Coelho, “ Synthesis of

Low-Power Selectively-Clocked Systems from High-Level

Specification,” International Symposium on System Synthesis, pp.

57-63, Nov. 1996.

[7] F. Vahid, T. Le, & Y.C. Hsu, “ A Comparison of Functional and

Structural Partitioning,” International Symposium on System

Synthesis, pp. 121-126, November 1996.

[8] D. Gajski, N. Dutt, A. Wu, & S. Lin, High-Level Synthesis

Introduction to Chip and System Design, Kluwer Academic

Publisher, Boston, 1992.

[9] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and

design of embedded systems, New Jersey, Prentice Hall, 1994.

[10] A. V. Aho, R. Sethi, & J. D. Ullman, Compilers Principles,

Techniques, and Tools, Addison-Wesley Publishing Company,

California, 1988.

[11] E. Hwang & F. Vahid, “Energy Estimation for FSMD

Partitioning,” UCR CS 98 06, University of California, Riverside.

c lock

P1 state reg s 1
s

id le1

t 0

start s1

s 0P0 state reg
s

id le0

t 1 t2 t3

Figure 8. Partitioned FSMD transition timing diagram.

0

5

10

15

20

25

30

35

Unoptimized Guarded
Evaluation

Selectively-
Clocked

FSMD
Partitioning

FSMD
Part.+

Guard. Eval.

A
ve

ra
ge

 P
ow

er
 (

uW
) communication

controller
registers
FUs + muxes

0%

31%

7%

49%

58%

Figure 9. Average power savings compared. Percentages
show power savings. Shorter bars are better.

