
LC-2 Instruction Summary  Page 1 of 8 

LC-2 Instruction Summary 
 
Instruction Assembler Format Example Operation 
Addition 
ADD 

ADD dr, sr1, sr2 
ADD dr, sr1, imm5 

ADD R2, R3, R4 
ADD R2, R3, #7 

R2 ← R3 + R4 
R2 ← R3 + 7 

    
Logical AND 
AND 

AND dr, sr1, sr2 
AND dr, sr1, imm5 

AND R2, R3, R4 
AND R2, R3, #7 

R2 ← R3 AND R4 
R2 ← R3 AND 7 

    
Conditional Branch BR label 

BRn label 
BRz label 
BRp label 
BRnz label 
BRnp label 
BRzp label 
BRnzp label 

 
 
 
 
BRnz loop 
 
 
BRnzp loop 

 
 
 
 
Branch if the last result was 
negative or zero. 
 
Unconditional branch 

    
Jump & Jump to 
Subroutine 
JMP / JSR 

JMP label   (L=0) 
 
JSR label   (L=1) 

JMP foo 
 
JSR foo 

Jump to foo. 
Jump to foo and  put return PC 
into R7 

    
Jump & Jump to 
Subroutine 
Base + Offset 
JMPR / JSRR 

JMPR baseR, offset6  (L=0) 
 
JSRR baseR, offset6  (L=1) 

JMPR R2, #10 
 
JSRR R2, #10 

Jump to R2 + #10 
 
Jump to R2 + #10 and put return 
PC into R7 

    
Load Direct 
LD 

LD dr, label LD R4, count R4 ← mem[count] 

    
Load Indirect 
LDI 

LDI dr, label LDI R4, pointer R4 ← mem[mem[pointer]] 

    
Load 
Base + Offset 
LDR 

LDR dr, baseR, offset6 LDR R4, R2, #10 R4 ← contents of mem[R2+#10] 

    
Load Effective 
Address 
LEA 

LEA dr, label LEA R4, foo R4 ← address of foo 

    
Complement 
NOT 

NOT dr, sr NOT R4, R2 R4 ← NOT(R2) 

    
Return from 
Subroutine 
RET 

RET RET PC ← R7 

    
Return from Interrupt 
RTI 

RTI RTI NZP, PC ← top two values 
popped off stack 

    
Store Direct 
ST 

ST sr, label ST R4, count mem[count] ← R4 

    



LC-2 Instruction Summary  Page 2 of 8 

    
Store Indirect 
STI 

STI SR, label STI R4, pointer mem[mem[pointer]] ← R4 

    
Store 
Base + Offset 
STR 

STR sr, baseR, offset6 STR R4, R2, #10 mem[R2+#10] ← R4 

    
Operating System Call 
TRAP 

TRAP x20 
 
 
 
 
TRAP x21 
 
TRAP x22 
 
TRAP x23 
 
 
 
 
 
 
TRAP x25 

GETC 
 
 
 
 
OUT 
 
PUTS 
 
IN 
 
 
 
 
 
 
HALT 

Get a character from keyboard. 
The character is not echoed 
onto the screen. Its ASCII code 
is copied into R0. The high 
eight bits of R0 are cleared. 

Write a character in R0[7:0] to 
the screen 

Write a string pointed to by R0 
to the screen. 

Print a prompt (pointed to by 
R0) on the screen and read a 
single character from the 
keyboard. The character is 
echoed onto the screen, and its 
ASCII code is copied into R0. 
The high eight bits of R0 are 
cleared. 

Halt execution 
 

General purpose registers: 
The LC-2 has eight 16-bit general purpose registers R0 to R7. 

Special memory locations: 
xF3FC CRT status register (CRTSR). The ready bit (bit 15) indicates if the video device is ready to 

receive another character to print on the screen. 
xF3FF CRT data register (CRTDR). A character written in the low byte of this register will be displayed 

on the screen. 
xF400 Keyboard status register (KBSR). The ready bit (bit 15) indicates if the keyboard has received a 

new character. 
xF401 Keyboard data register (KBDR). Bits [7:0] contain the last character typed on the keyboard. 
xF402 Machine control register (MCR). Bit [15] is the clock enable bit. When cleared, instruction 

processing stops. 
 
Notations: 
baseR – base register 
dr – destination register 
imm5 – a five-bit immediate value 
mem[address] – denotes the contents of memory at the given address 
offset6 – a six-bit immediate value used in a Base+Offset instruction 
sr – source register 
 



LC-2 Instruction Summary  Page 3 of 8 

 
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

ADD* 0001 dr sr1 0 0 0 SR2 
 

ADD* 0001 dr sr1 1 imm5 
 

AND* 0101 dr sr1 0 0 0 sr2 
 

AND* 0101 dr sr1 1 imm5 
 

BR 0000 n z p pageoffset9 
 

JMP 
JSR 0100 0 

1 0 0 pageoffset9 

 
JMPR 
JSRR 1100 0 

1 0 0 baseR offset6 

 
LD* 0010 dr pageoffset9 

 
LDI* 1010 dr pageoffset9 

 
LDR* 0110 dr baseR offset6 

 
LEA* 1110 dr pageoffset9 

 
NOT* 1001 dr sr 1 1 1 1 1 1 

 
RET 1101 0 0 0 0 0 0 0 0 0 0 0 0 

 
RTI 1000 0 0 0 0 0 0 0 0 0 0 0 0 

 
ST 0011 sr pageoffset9 

 
STI 1011 sr pageoffset9 

 
STR 0111 sr baseR offset6 

 
TRAP 1111 0 0 0 0 trapvect8 

x20 = GetC 
x21 = Out 
x22 = PutS 
x23 = In 
x25 = Halt 

Note: * indicates instructions that modify condition codes. 



LC-2 Instruction Summary  Page 4 of 8 

1. Operate instructions 

ADD 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 DR SR1 0 0 0 SR2 
            
0 0 0 1 DR SR1 1 imm5 

if (bit[5] == 0) 
DR = SR1 + SR2 

else 
DR = SR1 + sign-extend(imm5) 

set cc(DR) 

Example: 
ADD R2, R3, R4 ; R2 ← R3 + R4 
ADD R2, R3, #7 ; R2 ← R3 + 7 

AND 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 DR SR1 0 0 0 SR2 
            
0 1 0 1 DR SR1 1 imm5 

if (bit[5] == 0) 
DR = SR1 AND SR2 

else 
DR = SR1 AND sign-extend(imm5) 

set cc(DR) 

NOT 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 DR SR 1 1 1 1 1 1
 
There is no OR instruction. However, using DeMorgan’s law A OR B is: 

A OR B = (A' AND B')' 

2. Data movement instructions 

Load and Store 
Format 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode DR or SR operand specifier 
 



LC-2 Instruction Summary  Page 5 of 8 

Addressing Modes 

Immediate Mode 
The LEA (1110) instruction loads the immediate value formed by concatenating bits [15:9] of the address 
where the instruction is stored (i.e., PC [15:9]) with bits [8:0] of the instruction. Those 16 bits are loaded 
into the register specified by bits [11:9]. 
 
memory address  15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

x4C18  1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 
  LEA only R5 x1FD 

First 7 bits [15:9] of address x4C18 = 0100 1100 0001 1000 is 0100 110. 
Concatenate 0100 110 with 1 1111 1101 to give 0100 1101 1111 1101. This value is loaded into R5. 

1110 101 1111111010100 1100 0001 1000

Memory Address Memory Content

0100 1101 1111 1101
R5

0100110 111111101

 

Direct Mode 
LD (0010) and ST (0011) specify the direct mode. It loads or stores the value that is found in the memory 
address that is formed by concatenating bits [15:9] of the address where the instruction is stored (i.e., PC 
[15:9]) with bits [8:0] of the instruction (i.e., the 9 bits page offset). 
 
memory address  15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

x4C18  0 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 
  LD R5 x1FD 

First 7 bits [15:9] of address x4C18 = 0100 1100 0001 1000 is 0100 110. 
Concatenate 0100 110 with 1 1111 1101 to give 0100 1101 1111 1101. This value forms the address of a 
memory location. Load the contents stored in that memory location into R5. 

1010 1010 1010 1010

0010 101 1111111010100 1100 0001 1000

Memory Address Memory Content

0100110 111111101 1010 1010 1010 1010
R5LD

ST

0100110 111111101

 
Can access only memory locations that are on the same page as the instruction. 

Example 
LD R4, count ; R4 ← mem[count] 



LC-2 Instruction Summary  Page 6 of 8 

Indirect Mode 
LDI (1010) and ST I(1011) specify the indirect mode. An address is first formed like the LD and ST. 
However, the contents form the address of the operand to be loaded or stored. 
 
memory address  15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

x4C18  1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 
  LDI R5 x1FD 

1010 101 1111111010100 1100 0001 1000

Memory Address Memory Content

0100110 111111101 1111 0000 1111 0000

1111 0000 1111 0000 1010 1010 1010 1010 1010 1010 1010 1010
R5LDI

STI

0100110 111111101

 

Example 
LDI R4, pointer ; R4 ← mem[mem[pointer]] 

Base+Offset Mode 
LDR (0110) and STR (0111) specify the base+offset mode. The address of the operand is obtained by 
adding the zero-extended six-bit offset to the content of the base register. The six-bit value is taken as a 
positive value. 
 
memory address  15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

x4C18  0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 
  LDR R5 BaseR Offset 

1111 0000 1111 00001111 0000 1111 0000

0110 101 111 1111010100 1100 0001 1000

Memory Address Memory Content

1010 1010 1110 0111

1010 1010 1010 1010
R7

LDR

STR

   1010 1010 1010 1010
+ 0000 0000 0011 1101

1010 1010 1110 0111

R5

 

Example 
LDR R4, R2, #10 ; R4 ← contents of mem[R2 + #10] 



LC-2 Instruction Summary  Page 7 of 8 

3. Control Instructions 

Branch 
The branch BR (0000) instruction format is 
 
memory address  15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

x4C18  0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 
  BR N Z P page offset 

When a condition bit [11:9] (N, Z, P) is set, that corresponding condition code is checked. If that 
corresponding condition is set, then the PC is loaded with the address that is formed by concatenating 
PC[15:9] with the page offset [8:0]. 

All instructions that write values into registers set the three condition codes (i.e., the single-bit registers N, 
Z, P) depending on whether the value written is negative, zero, or positive. These instructions are ADD, 
AND, NOT, LD, LDI, LDR, and LEA. 

BR Label BRnz Label 
BRn Label BRnp Label 
BRz Label BRzp Label 
BRp Label BRnzp Label 

The BR and BRnzp instructions are the same. Both provides an unconditional branch. 

Jump 
The jump instructions JMP (01000) and JMPR (11000) provide an unconditional jump (like the BR). The 
instruction format is 
 
memory address  15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

x4C18  0 1 0 0 0 0 0          
  JMP L   page offset 
                  

x4C18  1 1 0 0 0 0 0          
  JMPR L   BaseR Offset 

JMP uses the direct addressing mode. The address that it will jump to is obtained by concatenating bits 
[15:9] of the address where the instruction is stored (i.e., PC [15:9]) with bits [8:0] of the instruction (i.e., 
the 9 bits page offset). 

JMPR uses the base+offset addressing mode. The address that it will jump to is obtained by adding the 
zero-extended six-bit offset to the content of the base register. The six-bit value is taken as a positive 
value. 

Jump/Return Subroutine 
The jump subroutine instructions JSR (01001) and JSRR (11001) call a subroutine located at the specified 
address. JSR uses direct addressing and JSRR uses base+offset similar to the JMP and JMPR respectively. 
In addition to the jump, both JSR and JSRR will store the return address (i.e. PC+1) into register R7. 

The return from subroutine instruction RET (1101) copies the content of R7 to the PC. 



LC-2 Instruction Summary  Page 8 of 8 

Trap 
The Trap (1111) instruction invokes a system routine. When the OS is finished performing the service 
call, the program counter is set to the address of the instruction following the TRAP instruction and the 
program continues. 
 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1

TRAP     trap vector 
 
R7 ← PC; 
PC ← mem[ZEXT(trapvector8) 
 
Trap Number Assembler Name Description  
x20 GETC Read a single character from the keyboard. The 

character is not echoed onto the console. Its ASCII 
code is copied into R0. The high eight bits of R0 are 
cleared. 

x21 OUT Write a character in R0[7:0] to the console. 
x22 PUTS Write a string pointed to by R0 to the console. 
x23 IN Print a prompt (pointed to by R0) on the screen and 

read a single character from the keyboard. The 
character is echoed onto the console, and its ASCII 
code is copied into R0. The high eight bits of R0 are 
cleared. 

x25 HALT Halt execution and print a message on the console. 

4. Assembler Directives 
Assembler directives are commands for the assembler telling the assembler how to assemble the program. 
No code is generated for it. All assembler directives start with a period (.). 
 
Directive Format Example Operation 
.ORIG  .ORIG value  .ORIG x3000 sets 3000 hex as the starting 

memory location to store the 
program. 

.END  .END  .END last line in program 

.FILL label .FILL value num .FILL #48 allocates one word of memory 
and store the value 4810 in it. 

.BLKW label .BLKW number array .BLKW 13 reserves a block of 13 words of 
memory. The label name “array” 
refers to the first location. 

.STRINGZ label .STRINGZ “a string” prompt .STRINGZ “Enter a number? ” allocates memory to store the 
string and terminated by a 0. The 
starting location is referred to as 
“prompt.” 

 

 


