
Section 6.8 − Synthesis of Sequential Logic Page 1 of 8

6.8 Synthesis of Sequential Logic
Steps:
1. Given a description (usually in words), develop the state diagram.
2. Convert the state diagram to a next-state / output tables.
3. Minimize the number of states.
4. Encode inputs, states, and outputs. Assign different n-tuples of its flip-flop values to the states.
5. Generate the binary form of the next-state and output equations.
6. Choose memory elements (flip-flop types).
7. Derive excitation equations for each flip-flop input.
8. Optimize the logic implementation of the excitation and output equations.
9. Draw logic schematic that serves as a basis for the generation of a timing diagram.
10. Simulating the logic schematic.
11. Verify the functionality and timing.

6.9 FSM Model Capture
Step 1. Generate a state diagram from a description.
Example 6.4: Derive the state diagram for a modulo-3 up/down-counter. The counter has two inputs: count enable

(C) and count direction (D). When C=1, the counter will count in the direction specified by D, and it will stop
counting when C=0. The counter will count up when D=0 and down when D=1. The counter has one output Y,
which will be asserted when the counter reaches 2 while counting up or when it reaches 0 while counting down.

Solution: Requires at least 2 ffs, since it must remember three digits: 0, 1, and 2.
Need two sequences: up sequence with three states (u0, u1, and u2) and down sequence with three states (d2,

d1, d0). As long as CD = 10, the counter counts from u0, u1, u2 and returning to u0. When CD = 11, the
counter proceeds from d0 to d2 to d1 and returns to d0.

Need to account for the possibility that the counter might change direction while it is counting.
Need to consider when the counter is disabled by a change of C from 1 to 0.

u0 u1 u2

d2d1d0

CD=10 CD=10

C D = 0 XC D = 0 XC D = 0 X

CD=11

CD=11 CD=11

C D = 0 X C D = 0 X C D = 0 X

CD=10

CD=11

CD=10

CD=11

CD=10CD=10
CD=11

Although this state diagram is complete, it does not contain the minimal number of states.

Section 6.8 − Synthesis of Sequential Logic Page 2 of 8

6.10 State Minimization
The purpose of state minimization is to reduce the number of states in a sequential circuit so that the circuit requires

fewer flip-flops.
Reducing a FSM from six states originally to five states will not reduce the number of flip-flops.
State minimization is based on the concept of the behavioral equivalence of FSMs.
We say that two FSMs are equivalent if they produce the same sequence of output symbols for every sequence of

input symbols. They may have different number of states and may also transition through a different sequence
of states for every input sequence.

We can reduce the number of states in the FSM by merging those states that are equivalent.
State equivalence. Two states, sj and sk, in an FSM are said to be equivalent, sj ≡ sk, iff the following two conditions

are true.
1. Both states sj and sk produce the same output symbol for every input symbol i: that is, h(sj, i) = h(sk, i).
2. Both states have equivalent next states for every input symbol i: that is, f(sj, i) = f(sk, i).

State minimization procedure requires partitioning all the states in an FSM into equivalence classes and constructing
the minimal-state FSM in which each state will represent one equivalence class.

Example 6.5: Derive the minimal-state FSM for the modulo-3 counter.
Solution:

Step 1. Start with the next-state / output table obtained from the state diagram of example 6.4.

Step 2. Determine the output values for each combination of input values and states.

Step 3. Combine states into groups in such a way that all states in the same group generate the same output symbol
for each input symbol.

Step 4. Determine the next state for each state in the groups and for every input symbol.

Next StatePresent
State CD = 0x CD = 10 CD = 11
u0 u0 / 0 u1 / 0 d2 / 1
u1 u1 / 0 u2 / 0 d0 / 0
u2 u2 / 0 u0 / 1 d1 / 0
d0 d0 / 0 u1 / 0 d2 / 1
d1 d1 / 0 u2 / 0 d0 / 0
d2 d2 / 0 u0 / 1 d1 / 0

(a) Initial state / output table

Output
values u0 u1 u2 d0 d1 d2
CD=0x 0 0 0 0 0 0

10 0 0 1 0 0 1
11 1 0 0 1 0 0

(b) Output values

Next
State

001
G0={u0,d0}

000
G1={u1,d1}

010
G2={u2,d2}

CD=0x G0 G0 G1 G1 G2 G2

10 G1 G1 G2 G2 G0 G0

11 G2 G2 G0 G0 G1 G1

(c) Partitioning into equivalence classes.

001 000 010

Step 3. The column labels.

Step 4. The table entries.

Section 6.8 − Synthesis of Sequential Logic Page 3 of 8

Step 5. Since each group represents a class of equivalent states, we can rename the groups (G0, G1, G2) as states (s0,
s1, s2).

Next StatePresent
State CD = 0x CD = 10 CD = 11
s0 s0 / 0 s1 / 0 s2 / 1
s1 s1 / 0 s2 / 0 s0 / 0
s2 s2 / 0 s0 / 1 s1 / 0

(d) Final next-state / output table

Section 6.8 − Synthesis of Sequential Logic Page 4 of 8

6.11 State Encoding
To determine how many binary variables are required to represent the states in the state table, and to assign a

specific combination to each named state.
The total number of states in a machine with n flip-flops is 2n, so the number of flip-flops needed to code s states is

 s2log , the smallest integer greater than or equal to s2log .

For example, a four-state FSM with states s0, s1, s2, and s3 could be
implemented with two flip-flops that contain values 00, 01, 10, or 11. In
this case, there would be 4! = 24 possible encodings of the four states to
flip-flop values.

The simplest assignment of s coded states to 2n possible states is to use the first
s binary integers in binary counting order. However, this does not always
lead to the simplest excitation equations, output equations, and resulting logic circuit.

Three most popular heuristics: minimum bit change, prioritized adjacency, and one-hot encoding.

Minimum bit change – assigns Boolean values to the states in such a way that the total number of bit changes for
all state transitions is minimized. In other words, if every arc in the state diagram has a weight that is equal to
the number of bits by which the source and destination encodings differ, this strategy would select the one that
minimizes the sum of all these weights.

00 01

1011

1

1

22

00 01

1110

1

1

11

Encod ing w i th 6 b i t
changes .

M in imum-b i t change
encod ing w i th on ly 4 b i t

changes .

Prioritized adjacency – assigns adjacent encodings, i.e. encodings which differ in one bit only, to all states that
have (in the following order of priority):
priority 1: a common destination – i.e. states that have the same next state for a given input value.
priority 2: a common source – i.e. next states of the same state.
priority 3: a common output – i.e. states that have the same output value for the same input values.

One-hot encoding – uses redundant encoding in which one flip-flop is assigned to each state. i.e. each state is
distinguishable by its own flip-flop having a value of 1 while all others have a value of 0.

In i t ia l s ta te d iagram

s0 s1

s2s3

0/0

0/1

1/0

0/0
0/1, 1/1

One poss ib le encod ing

01 11

1000

0/0

0/1

1/0

0/0
0/1, 1/1

s0 s1 s2 s3
1 00 01 10 11
2 00 01 11 10
3 00 10 01 11
…
24 11 10 01 00

Priority 1: (s1, s2) – the input value
of 0 will move both states into
the same state s3.

Priority 2: (s1, s2) – they are both
next states of the state s0.

Priority 3: (s0, s1), and (s2, s3) –
states s0 and s1 have the same
output value 0 for the same input
value 0.

Example:

Section 6.8 − Synthesis of Sequential Logic Page 5 of 8

Best encoding strategy. To determine the encoding with the minimum cost and delay, we need to:
1) generate Karnaugh maps for next-state and output functions.
2) derive excitation equations from the next-state map.
3) derive output equations from the output functions map.
4) implement above equations using two-level NAND gates, ignoring a variable’s true and complemented

values.
5) calculate cost and delay.

Example 6.7: Using the following next-state / output table for the modulo-3 counter and the three encoding schemes,
find the best encoding scheme:

1) Next-state map and output function map for the minimum bit change encoding strategy.

2&3) Excitation and output equations.

CDQQDCQY

DCQQCDQCQQ

CDQQDCQCQQ

011

0110)next(0

0101)next(1

′′+′=

′′′++′=

′′+′+′=

4) Implementation using NAND gates.

1.8

1.4

2.2

1.8 Q1next 1.8

1.4

2.2

1.8 Q0next

1.8

1.4

2.2

Y

Cos t (Q1) = 24
De lay (Q1) = 4 .0

Cos t (Y) = 18
De lay (Y) = 3 .6

Cos t (Q0) = 24
De lay (Q0) = 4 .0

5) Cost and delay
Encoding A Encoding B Encoding C

Total cost 24+24+18 = 66 24+24+16 = 64 22+22+22+16 = 82
Maximum input delay max(4.0,4.0) = 4.0ns max(4.0,4.0) = 4.0ns max(3.6, 3.6, 3.6) = 3.6
Output delay 3.6ns 3.2ns 3.2ns
Comment easy to encode least expensive fastest, most expensive

Min bit change Prioritized Adj One-hot
State Q1 Q0 Q1 Q0 Q1 Q0

s0 0 0 0 1 0 0 1
s1 0 1 0 0 0 1 0
s2 1 0 1 0 1 0 0

Possible state encodings

Next StatePresent
State CD = 0x CD = 10 CD = 11
s0 s0 / 0 s1 / 0 s2 / 1
s1 s1 / 0 s2 / 0 s0 / 0
s2 s2 / 0 s0 / 1 s1 / 0

Next-state / output table

1 0

X X

C D 0 1

0 0 0 0

0 1 0 1

0 0

0 0

0 1

Q 1 Q 0

0 1

4 5

1 01 1

1 0 0 1

0 0 1 0

3 2

7 6

X X X X

1 0
8 9

X X

0 1 0 0
1 0

1 1

1 0
1 1

1 2 1 3 1 41 5

Q1(next), Q0(next)

0

X

C D 0 1

0 0

0 0

0 0

0 0

0 1

Q 1 Q 0

0 1

4 5

1 01 1

1 0

0 0

3 2

7 6

X X

0
8 9

X

0 1
1 0

1 1

1 0
1 1

1 2 1 3 1 41 5

Y

Ex. If current state is
s0=00 and the input
CD=11, then the next
state is 10=s2.
Thus, for the minimum-
bit change encoding,
s0=00 and s2=10. So
we have the entry 10 in
row 00 and column 11.

Section 6.8 − Synthesis of Sequential Logic Page 6 of 8

6.11 Choice of Memory Elements
We now choose the proper type of flip-flop for implementation of the state encodings.
As we know, there are four types of flip-flops:

Flip-Flop Usage Advantage Disadvantage

T

counter-type circuits in which
the flip-flops must flip from 0
to 1 and back with great
frequency

- requires fewer connections
than SR & JK
- better suited for VLSI
implementation

D

applications where input data
must be stored for some time
and then used later

- requires fewer connections
than SR & JK
- better suited for VLSI
implementation

SR
situations where different
signals set and reset the flip-
flops

- most useful
- reduce the cost of the input
logic

- requires twice as many
connections as T and D ffs

JK
whenever we need to combine
the behavior of a T and an SR
flip-flop

- most useful
- reduce the cost of the input
logic

- requires twice as many
connections as T and D ffs

Example 6.8: Given the modulo-3 counter with encoding A, select the type of flip-flop that will minimize the cost
and/or delay of the input logic.

Step 1. Write down the excitation tables for the various flip-flops. Following example is for the JK flip-flop.

Start with the truth table. Expand to the characteristic table. Switch columns, combine the
don’t cares, and delete duplicate

rows to form excitation table.

The excitation tables for the SR, JK, T, & D flip-flops are summarized below:

Q Qnext J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

JK excitation table

Q J K Qnext

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

JK characteristic table

Q Qnext S R J K T D
0 0 0 X 0 X 0 0
0 1 1 0 1 X 1 1
1 0 0 1 X 1 1 0
1 1 X 0 X 0 0 1

Flip-Flop excitation table

J K Qnext

0 0 Q
0 1 0
1 0 1
1 1 Q’

Section 6.8 − Synthesis of Sequential Logic Page 7 of 8

Step 2. Generate the implementation map. Take each pair of present and next states from the next-state map and
replace their next-state values with the required input values from the excitation table.

The next-state map from example 6.7 is duplicated here on the left:

Step 3. From the implementation map, we can derive minimal expressions for that flip-flop type.

CK

DQDQC

DQDQC

DQDQC

DDCCQQDCQCDQ

DCQCDQJ

CK

DQDQC

DQDQC

DQDQC

DDCCQQCDQDCQ

CDQDCQJ

=
′′+′+′=

′′′′=
+′′+=

′+′+′′+=
′′+=

=
′′′++′=

′′′′=
+′+′=

′+′+′+′=
′+′=

0

11

11

11

1111

110

1

00

00

00

0000

001

DeMorgan //)(

DeMorgan//)()(

DeMorgan //))((

DeMorgan //)(

DeMorgan//)()(

DeMorgan //))((

Step 4. Finally, cost and delay can be calculated from the equations obtained from step 3 above.

Mapping
The next step in a sequential logic synthesis would consist of mapping the input and output logic to the components

in the given library.

x00x

xxxx

C D 01

0x0x 0x0x

0xx0 0xx0

00

00

01

Q 1 Q 0

0 1

4 5

1011

1x0x 0x1x

0xx1 1xx1

3 2

7 6

xxxx xxxx

x00x
8 9

xxxx

x11x x10x
10

11

10
11

12 13 1415

J1, K1 J0, K0

JK implementation map.

1 0

X X

C D 01

0 0 0 0

0 1 0 1

00

00

01

Q 1 Q 0

0 1

4 5

1011

1 0 0 1

0 0 1 0

3 2

7 6

X X X X

1 0
8 9

X X

0 1 0 0
10

11

10
11

12 13 1415

Q1(next), Q0(next)

Next-state map.

e.g. From the next-state
map, the entry for CD=11
and Q1=0 is Q1(next)=1.
Therefore, we look up
Q1Q1(next)=01 in the
excitation table to get
JK=1X. Thus, the
implementation with JK ff
for that entry is 1X.

Section 6.8 − Synthesis of Sequential Logic Page 8 of 8

Schematic Drawing
After mapping, we can draw the schematic to visualize all the counter’s gates and connections. The following is the

logic schematic for the JK implementation.

Q

Q'

J

C lk

K

1

11

1

Q

Q'

J

C lk

K

0

00

0

C D

Q1

Q'1

Q0

Q'0
clk

y

1.8

2 .2

1

1.4

4 .0

4 .0

1

2.4

2 .4

6.13 Optimization and Timing
The final step in the process of sequential synthesis consists of deriving a timing diagram from the schematic and the

given gate and flip-flop delays.

