
Section 8.4 − Synthesis Optimization from ASM Charts Page 1 of 4

8.4 Synthesis Optimization from ASM Charts
Show techniques used to optimize the implementations that we derive from ASM charts.
Since each register-transfer (RT) implementation defines both a control unit and a datapath, we can approach the

optimization of these parts separately:
We have already seen how to minimize the control unit :

• the size of the control unit can be reduced by Boolean minimization and technology mapping techniques.
• minimizing the number of states by merging equivalent states.
• reduce the size of the next-state and output logic by encoding the states properly.

Minimizing the datapath:
Three general techniques based on the three major component types used in the datapath:
• The datapath is defined by variable assignments using storage components.
• Variables will be assigned new values through arithmetic, logic, and shift operations that are performed by

functional units.
• Buses are used to transfer data from storage components to functional units and back to storage

components.
Thus, we want to minimize the storage components, functional units and buses.

Storage components
Not all variables are alive at the same time, thus it is possible for certain variables to share the same register or

the same location in a register file or a memory.
Even if certain variables are alive at the same time, they may not be accessed at the

same time, thus they can share the same I/O port.
Functional units

When operations are executed in different states, they could share the same
functional unit.

Buses
Again, since different connections will be used in different states, we can group

connections into buses, which enables us to reduce the number of wires in the
datapath.

Example: Optimize a small custom ASIC to compute the square-root approximation of
two signed integers, a and b using the formula

)),5.0875.0max((22 xyxba +≈+

where
()
()bay

bax

,min

,max

=

=

Note:
y >> 1 = 0.5y
x >> 2 = 0.25x
x >> 3 = 0.125x
1x – 0.125x = 0.875x

Star t

a = In 1
b = In 2

s0

t1 = |a |
t2 = |b |

s1

x = m ax(t1, t2)
y = m i n(t1, t2)

s2

t3 = x >> 3
t4 = y >> 1

s3

t5 = x - t3

s4

t6 = t4 + t5

s5

t7 = m ax(t6, x)

s6

D o n e = 1
O u t = t7

s7

0

1

Section 8.4 − Synthesis Optimization from ASM Charts Page 2 of 4

(1) Register / memory sharing
The lifetime of a variable is defined as the set of states in which that variable is alive, which includes the state

following the state in which it is assigned a new value (write state), every state in which it is used (read
state), and all the states on each path between the write state and a read state. e.g. t4 was assigned a new
value in s3, so it is alive in s4.

The maximum number of variables alive in a single state – three live
variables – in s4 and s5.

Thus, we can combine variables into three groups so that each group
contains variables that are not alive at the same time.

The left-edge algorithm, tries to pack as many variables as possible into
each register.
• Sort the variables by their write state.
• If two variables have the same write state, the priority is given to

the variable with the longer lifetime.
• If two variables have the same write state and the same lifetime,

the priority will be assigned at random.

Register assignments: R1 = [a, t1, x, t7] R2 = [b, t2, y, t4, t6] R3 = [t3, t5]

Determine variable l i fet imes

Sort variables by write state
and l i fet ime

Allocate a new register

Assign to the register all
nonoverlapping variables

starting from the top of the l ist

Remove al l assigned variables
from the l ist

List empty?No

Yes

Stop

Starts1 s2 s3 s4 s5 s6 s7

a ×
b ×
t1 ×
t2 ×
x × × × ×
y ×
t4 × ×
t3 ×
t5 ×
t6 ×
t7 ×

Number of
live variables

2 2 2 3 3 2 1

Variable usage
(with sorted list of variables – t3 and t4 switched)

Selector Selector

R 1 R 2

Selector

R 3

| a | | b | min max + - >> 1 >> 3

Output

In 1 In 2

Figure 8.14 Datapath schemat ic

Section 8.4 − Synthesis Optimization from ASM Charts Page 3 of 4

We cannot use fewer than three registers in the above design. However, there are many possible datapath designs
with three registers. We can select one that minimizes the connectivity cost.
The total number of selector inputs is 10 for the datapath shown in Figure 8.14.

(2) Functional-unit sharing

Register assignments Functional-unit sharing
R1 = [a, t1, x, t7] FU1 = [|a| , max]
R2 = [b, t2, y, t3, t5, t6] FU2 = [|b| , min , + , –]
R3 = [t4] SH1 = [>> 1]

SH2 = [>> 3]

(3) Bus sharing
Assume that we use one register per variable and single-operation functional units.

a b t1 t2 x y t3 t4 t5 t6 t7
abs1 I O
abs2 I O
min I I O
max I I I O I O
>>3 I O
>>1 I O

– I I O
+ I I O

Of these 23 connections, very few are needed in any one state.
The maximum number of connections is used in state s2 when we need four input connections and two output

connections.
Group connections and assigning one bus to each group so as to minimize the connection cost.
The connection cost includes the cost of bust drivers, which are required for every connection of a unit to a bus,

and the cost of input selectors, which are required whenever two or more buses are connected to the same
input of a storage or functional unit.

Selector Selector

R 1 R 2 R 3

>> 1 >> 3

Output

In 1 In 2

Figure 8.26 Datapath schemat ic

[| a | , max]

Selector

B CA

D E

F G H

I J
K L

M N

[|b| , min , + , -]

Section 8.4 − Synthesis Optimization from ASM Charts Page 4 of 4

Step 1:
Create a connection use table.
An × is used to designate the state in which each connection is to be used.

s0 s1 s2 s3 s4 s5 s6 s7 Operation
A × Out = t7
B × × max(t1,?) ; max(t6, ?)
C × × × |a| ; max(?, t2) ; max(?, x)
D × × min(t1, ?) ; x – ?
E × t4 + ?
F × × × × |b| ; min(?, t2) ; ? – t3 ; ? + t5
G × >> 1
H × >> 3
I × × × t1 = |a| ; x = max() ; t7 = max()
J × × × × t2 = |b| ; y = min() ; t5 = – ; t6 = +
K × t4 = >> 1
L × t3 = >> 3
M × a = In1

N × b = In2

Step 2:
Construct a compatibility graph .
Two nodes are incompatible and thus are connected by an incompatibility edge whenever their corresponding

connections do not originate from the same source but are to be used at the same time.
e.g. B is incompatible with C because they are used at the same time (s2) but do not originate from the same

source.
Two nodes are connected by priority edge whenever their corresponding connections have a common source or

a common destination.
e.g. C and D have a common source.
e.g. D and E have a common destination.

C

A

H

D E

B F

G

M

I K

J L

N

Step 3:
Use a graph-partitioning algorithm to group connections in a way that will maximize the number of priority

edges included in all group – i.e. trying to cut all the incompatibility edges while cutting as few priority
edges as possible.

