
Section 8 − FSMD Page 1 of 6

8.1 Register-Transfer Design Model
Every digital design consists of a control unit and a datapath.

Datapa th inpu ts

Se lec to r

Reg is te r R F M e m o r y

B u s 1
B u s 2

*, /A L U

B u s 3

Da tapa th

Datapa th ou tpu ts

Reg is te r

Cont ro l inpu ts

Cont ro l ou tpu ts

Nex t -
s tate
log ic

Ou tpu t
log ic

Sta te
reg is ter

D Q

D Q

D Q

Cont ro l Un i t

Con t ro l
s igna ls

Sta tus
s igna ls

In the FSM model, each state assigns values to a set of datapath control signals which completely specifies the
behavior of the datapath.

However, when there are too many control signals it is difficult to realize what and how the datapath will operate.
(See figure 7.30)

To improve on the FSM model, we use variable assignment statements to indicate changes in variable values stored
in the datapath.

An FSMD (FSM with datapath) is a FSM model with assignment statements added to each state.
Formally, a finite-state machine with datapath is a 6-tuple defined as follows:

P = <S, s0, I ∪ STAT, O ∪ A, f, h>

compare: FSM is defined as P = <S, s0, I, O, f, h>

where:

• S = {s0, …, sm} is a finite set of states
• s0 is the reset state.
• I = { i j} is a set of primary input values.
• STAT = {Rel(a, b) : a, b ∈ EXP} is a set of status signals as logical relations between two expressions

from the set EXP.
• EXP = {f(x,y,z,…) : x,y,z,… ∈ VAR} is a set of expressions.
• VAR is a set of storage variables.
• O = {ok} is a set of primary output values.
• A = {x ⇐ e : x ∈ VAR, e ∈ EXP} is a set of storage assignments.
• f is a state transition function that maps a cross product of S and I ∪ STAT into S.
• h is the output function that maps a cross product of S and I ∪ STAT into O ∪ A for Mealy models or S

into O ∪ A for Moore models.

Section 8 − FSMD Page 2 of 6

So instead of a separate next-state table and output table, we combine the two to give us a “next-state and output
table with variable assignments.”

Next State
Start, Data=0

Control
Output

Datapath
OutputCurrent

State
00 01 10 11 Done Output

Datapath Variables

s0 s0 s0 s1 s1 0 Z
s1 s2 s2 s2 s2 0 Z Data = Input
s2 s3 s3 s3 s3 0 Z Ocount = 0
s3 s4 s4 s4 s4 0 Z Mask = 1
s4 s5 s5 s5 s5 0 Z Temp = Data AND Mask
s5 s6 s6 s6 s6 0 Z Ocount = Ocount + Temp
s6 s4 s7 s4 s7 0 Z Data = Data >> 1
s7 s0 s0 s0 s0 1 Ocount

Figure 8.3 (b) State and output table with variable assignments –
FSMD specification of one’s counter.

We assume that variables retain their old values if no new value is specified in a particular state.
• Note that although expression evaluation is performed in one state, the new variable value could not be

used until the next state at the earliest.
Similarly, we do not have to specify the next state for every control input and every status signal, but only for those

that affect the next state selection.
• Thus, we can simplify the next-state column by specifying in each state only the condition and the next

state that the control unit will enter if the condition is true.
We can also use assignment statements for datapath and control unit output ports.

• Unlike variables in the datapath, output ports do not retain their value beyond the present state since the
values are not stored in registers or memory.

From the above observations, we obtain a reduced table called a state-action table for specifying FSMDs.

Next State Control and Datapath ActionsCurrent
State Condition, State Condition, Actions

s0









=
=

1

0

,1

,0

sStart

sStart








=

=
ZOutput

Done 0

s1 s2 Data = Input
s2 s3 Ocount = 0
s3 s4 Mask = 1
s4 s5 Temp = Data AND Mask
s5 s6 Ocount = Ocount + Temp
s6









=
≠

7

4

,0

,0

sData

sData Data = Data >> 1

s7 s0









=

=
OcountOutput

Done 1

Figure 8.3 (c) State-action table – FSMD specification of one’s counter.

Section 8 − FSMD Page 3 of 6

8.3 Algorithmic-state machine (ASM) chart
ASM chart is an alternative graphic form for specifying FSMDs and are equivalent to the state-action tables.

Name Definition Example Comment

State box
(Unconditional
assignment)

Uncond i t i ona l
var iab le and ou tpu t

ass ignment

Sta te
n a m e

Sta te
c o d e

T e m p = T e m p A N D M a s k

S3 0 1 1
Each state is
indicated by a state
box.
Contains the set of
unconditional
assignments to
variables and output
ports in the
datapath.

Decision box
01

Cond i t i on
01

Da ta = 0

To select specific
actions in the
datapath and the
next state.

Condition box
(Conditional
assignment)

Cond i t i ona l
var iab le

ass ignment
Ocoun t = Ocoun t + 1

Variable or output
assignments that are
executed under
conditions specified
by one or more
decision boxes.

ASM block

Data = Inpu t

D o n e = 0

start = 10 1

Each ASM block
describes the
operations executed
in one state.
This is equivalent to
a row in the state-
action table.

Section 8 − FSMD Page 4 of 6

Data = Inpu t

s1

Ocoun t = 0

s2

M a s k = 1

s3

T e m p = D a t a A N D M a s k

s4

D o n e = 0

start = 00 1

s0 0 0 0

Da ta = Da ta >> 1

Data = 0
1 0

s6

O c o u n t = O c o u n t + T e m p

s5

D o n e = 0
Ou tpu t = Ocoun t

s7

Figure 8.5 ASM chart for one’s counter.

Example 8.1 Redesign the one’s counter using a custom datapath.

Solution.
• Need only two variables: Data and Ocount.
• Need only two operations: shift the value in Data, and increment the value in Ocount.
• In the state-based (Moore) version of the FSMD:

• all the variable assignments must be executed unconditionally in a state and only next states are to be
selected conditionally.

• has six states → more state registers → next-state logic more complex.
• output logic is simpler since it is dependent only on the present state.

• In the input-based (Mealy) version of the FSMD:
• the variable assignments can be executed conditionally together with the conditional selection of next

states.
• has four states → simpler next-state logic.
• output logic is more complex since it includes external and internal conditions.

Section 8 − FSMD Page 5 of 6

State-base (Moore)

Data = Inpu t
Ocoun t = 0

s1

D o n e = 0

start = 0
0 1

s0 0 0 0

Ocoun t = Ocoun t + 1

s3

D o n e = 1
Ou tpu t = Ocoun t

s5

DataL S B
0 1

s2 0 1 0

Da ta = Da ta >> 1

Data = 0
1 0

s4

Figure 8.6 (a) State-based (Moore) ASM chart.

Next State Control and Datapath ActionsCurrent State
Q2Q1Q0 Name Condition, State Condition, Actions

0 0 0 s0









=
=

1

0

,1

,0

sStart

sStart








=

=
ZOutput

Done 0

0 0 1 s1 s2









=

=
0Ocount

InputData

0 1 0 s2









=
=

4

3

,0

,1

sData

sData

LSB

LSB

0 1 1 s3 s4 Ocount = Ocount +
1

1 0 0 s4









=
≠

5

2

,0

,0

sData

sData Data = Data >> 1

1 0 1 s5 s0









=

=
OcountOutput

Done 1

Figure 8.7 (a) State-based state-action table for the one’s counter.

Q

Q'

D

Clk

2 2

2

Q

Q'

D

Clk

1 1

1

Q

Q'

D

Clk

0 0

0

Star t

Shi f t R igh t w
Para l le l Load

S1

S0

U p / d o w n
coun te r

E

L o a d

D"0"

"0"

Data L S B

Data = 0

Input

Oupu tD o n e

Ouput enab le

Outpu t
logic Datapa th

Next-state logic
Clk

State encodings:
s0=Q2’Q1’Q0’ s1=Q2’Q1’Q0 s2=Q1Q0’
s3=Q1Q0 s4=Q2Q0’ s5=Q2Q0

Next-state equations using D flip-flops, Di = Qi(next)

D2 = Q2(next) = (since Q2 is encoded in s4 and s5, therefore look
for next states being s4 and s5)
= s2DataLSB’ + s3 + s4(Data=0)
= Q1Q0’DataLSB’ + Q1Q0 + Q2Q0’(Data=0)

D1 = Q1(next) = (Q1 is encoded in s2 and s3)
= s1 + s2DataLSB + s4(Data≠0)
= Q2’Q1’Q0 + Q1Q0’DataLSB + Q2Q0’(Data≠0)

D0 = Q0(next) = (Q0 is encoded in s1, s3and s5)
= s0Start + s2DataLSB + s4(Data=0)
= Q2’Q1’Q0’Start + Q1Q0’DataLSB + Q2Q0’(Data=0)

Output equations:
Recall from 7.3 – select lines:

S1S0 = 01 = load data
S1S0 = 11 = shift right

Thus, when S1 = 1 (we want to
do shift which is done in
state s4)

S1 = s4 = Q2Q0’
S0 = 1 (load & shift – in s1&s4)

= s1+s4 = Q2’Q1’Q0 + Q2Q0’
E = 1 (needed in s3)

= s3 = Q1Q0

Load = s1 = Q2’Q1’Q0

Done = Output enable
= s5 = Q2Q0

Section 8 − FSMD Page 6 of 6

Input-base (Mealy)

Next State Control and Datapath ActionsCurrent
State
Q1Q0 Condition, State Condition, Actions
0 0 s0









=
=

1

0

,1

,0

sStart

sStart








=

=
ZOutput

Done 0

0 1 s1 s2









=

=
0Ocount

InputData

1 0 s2









=
≠

3

2

,0

,0

sData

sData








>>=≠

+==
1,0

1,1

DataDataData

OcountOcountDataLSB

1 1 s3 s0









=

=
OcountOutput

Done 1

Figure 8.7 (b) Input-based state-action table for the one’s counter.

Data = Inpu t
Ocoun t = 0

s1

D o n e = 0

start = 0
0 1

s0 0 0 0

Ocoun t = Ocoun t + 1

D o n e = 1
Ou tpu t = Ocoun t

s3

DataL S B
0 1

s2 0 1 0

Da ta = Da ta >> 1

Data = 01 0

Figure 8.6 (b) Input-based (Mealy) ASM chart.

Q

Q'

D

Clk

1 1

1

Q

Q'

D

Clk

0 0

0

Start

Shi f t R ight w
Paral le l Load

S1

S0

U p / d o w n
counter

E

Load

D"0"

"0"Data L S B

Data = 0

Input

Oupu tD o n e

Ouput enab le

Output
logic Datapath

Next-state logic

Clk

State encodings:
s0=Q1’Q0’ s1=Q1’Q0 s2=Q1Q0’ s3=Q1Q0

Next-state equations using D flip-flops, Di = Qi(next)

D1 = Q1(next) = (since Q1 is encoded in s2 and s3, therefore look
for next states being s2 and s3)
= s1 + s2(Data=0) + s2(Data≠0) = s1 + s2
= Q1’Q0 + Q1Q0’

D0 = Q0(next) = (Q0 is encoded in s1 and s3)
= s0Start + s2(Data=0)
= Q1’Q0’Start + Q1Q0’(Data=0)

Output equations:
Recall from 7.3 – select lines:

S1S0 = 01 = load data
S1S0 = 11 = shift right

Thus, when S1 = 1 (we want to
do shift which is done in
state s2 and when
Data≠0)

S1 = s2(Data≠0)
= Q1Q0’(Data≠0)

S0 = 1 (load & shift – in s1&s2)
= s1+s2(Data≠0)
= Q1’Q0 + Q1Q0’(Data≠0)

E = 1 (increment needed in s2

and when DataLSB=1)
= s2(DataLSB)
= Q1Q0’(DataLSB)

Load = s1 = Q1’Q0

Done = Output enable
= s3 = Q1Q0

