Midterm 1 Page 1 of 5

UNIVERSITY OF CALIFORNIA, RIVERSIDE

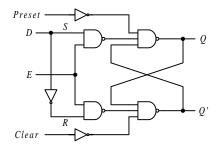
Department of Computer Science and Engineering Department of Electrical Engineering CS/EE120B – Introduction to Embedded Systems Midterm 1

30

January 30, 2000

Name:_	Solution Key		Student ID#:		
	Please print legibl	y			
Lab Secti	on: 21 (WF 6-10):	22 (MW 2-6):	23 (TR 6-10):		
(Numbers in parenthesis denote total possible points for question.)					

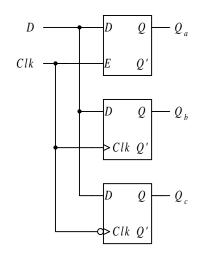
1. Briefly describe the *metastable behavior* of a bistable element.

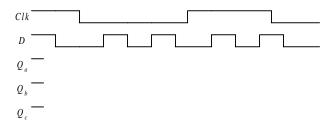

(3)

Answer

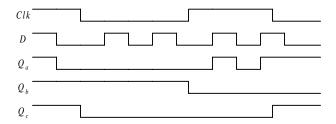
A bistable element has three (3) equilibrium points – Two are stable and the third is metastable. When a circuit is operating at the metastable point, it could theoretically stay there indefinitely if there is no noise whatsoever. However, with a small amount of noise, it will drive the circuit toward one of the two stable points.

2. Use NAND gates and inverters to construct a D latch with active high enable, preset, and clear inputs. (5)

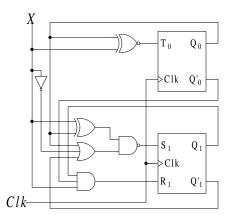

Answer



Midterm 1 Page 2 of 5


(6)

3. Complete the timing diagram below based on the following schematic



Answer

Midterm 1 Page 3 of 5

4. Derive the next state table and state diagram for the sequential circuit represented by the following schematic: (8)

Answer

Excitation equations:

$$T_0 = (X \oplus Q_0)' = X'Q_0' + XQ_0$$

$$S_1 = [(X \oplus Q_0) (X' + Q_1' + Q_0)]'$$

$$= (X \oplus Q_0)' + (X' + Q_1' + Q_0)'$$

$$= (X \oplus Q_0)' + (XQ_1Q_0')$$

$$R_1 = XQ_1Q_0'$$

Characteristic equations:

$$Q_{0next} = T_0 \oplus Q_0$$

$$Q_{1next} = S_1 + R_1'Q_1$$

Next state equations:

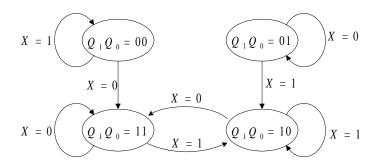
$$Q_{0next} = T_0 \oplus Q_0$$

$$= T_0 Q_0' + T_0' Q_0$$

$$= (X' Q_0' + X Q_0) Q_0' + (X Q_0' + X' Q_0) Q_0$$

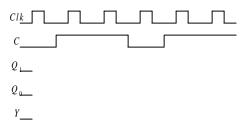
$$= X' Q_0' + X' Q_0$$

$$= X'$$

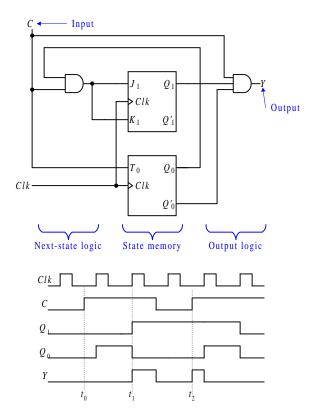

$$\begin{aligned} Q_{1next} &= S_1 + R_1'Q_1 \\ &= (X \oplus Q_0)' + (XQ_1Q_0') + (XQ_1Q_0')'Q_1 \\ &= X'Q_0' + XQ_0 + (XQ_1Q_0') + (X' + Q_1' + Q_0)Q_1 \\ &= X'Q_0' + XQ_0 + (XQ_1Q_0') + X'Q_1 + Q_0Q_1 \end{aligned}$$

Midterm 1 Page 4 of 5

Next state table:


Current State	Next State	
Q_1Q_0	$Q_{1next}Q_{0next}$	
	X = 0	X = 1
00	11	00
01	01	10
10	11	10
11	11	10

State diagram:



Midterm 1 Page 5 of 5

5. Synthesize a modulo-4 counter with a count enable input *C* and an output *Y* signal. The count is to be represented directly by the contents of two flip-flops; a JK flip-flop for the most significant bit and a T flip-flop for the least significant bit. Use the simple sequential binary encoding for the states. The counter counts when *C* is asserted and remains in the current state when *C* is de-asserted. The output *Y* is asserted when the count reaches 2 and the count enable input is enabled. Draw the synthesized circuit and complete the timing diagram below for the circuit.

Answer

