Midterm 2 Page 1 of 4

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Department of Computer Science and Engineering Department of Electrical Engineering CS/EE120B – Introduction to Embedded Systems Midterm 2

20

(2)

Name: Solution Key			Student ID#:	
	Please print legib	ly		
Lab Section	on: 21 (TR 6-10):	22 (WF 6-10):	23 (WF 2-6):	

(Numbers in parenthesis denote total possible points for question.)

1. Given the following state-action table, determine the values of *i* that are outputted.

Current State name, $Q_2Q_1Q_0$	Next State Condition, State	Control and Datapath Actions Condition, Actions
$s_0 = 000$	$\begin{bmatrix} Start = 0, s_0 \\ Start = 1, s_1 \end{bmatrix}$	[Done = 0]
	$\begin{bmatrix} Start = 1, s_1 \end{bmatrix}$	$\left\lfloor Output = Z \right\rfloor$
$s_1 = 001$	s_2	i = 3
s_2 010	$\begin{bmatrix} i \neq 7, s_2 \\ i = 7, s_3 \end{bmatrix}$	[<i>i</i> ++
	$\lfloor i = 7, s_3 \rfloor$	$i \neq 5$, Output i
s_3 011	s_0	

Answer

3, 4, 6, 7.

Midterm 2 Page 2 of 4

2. Derive the next-state equations for the following state-action table. Do not simplify the equations. (6)

Current State name, $Q_2Q_1Q_0$		Next State Condition, State	Control and Datapath Actions Condition, Actions
<i>s</i> ₀	000	$\begin{bmatrix} Start = 0, s_0 \\ Start = 1, s_1 \end{bmatrix}$	$\begin{bmatrix} Done = 0 \\ Output = Z \end{bmatrix}$
s_1	001	<i>S</i> ₂	Input <i>n</i>
<i>s</i> ₂	010	<i>S</i> ₃	Prime = 1
S 3	011	<i>S</i> 4	i = 2
<i>S</i> 4	100	$\begin{bmatrix} n \bmod i \neq 0, s_6 \\ n \bmod i = 0, s_5 \end{bmatrix}$	n mod i
S ₅	101	<i>S</i> ₆	Prime = 0
<i>S</i> ₆	110	$\begin{bmatrix} i \neq 15, s_4 \\ i = 15, s_7 \end{bmatrix}$	i + +
S 7	111	s_0	Output <i>Prime</i>

Answer

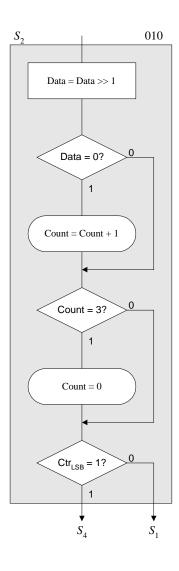
$$\begin{aligned} Q_{0next} &= s_0 Start + s_2 + s_4 (n \bmod i = 0) + s_6 (i = 15) \\ &= Q_2' Q_1' Q_0' Start + Q_2' Q_1 Q_0' + Q_2 Q_1' Q_0' (n \bmod i = 0) + Q_2 Q_1 Q_0' \ (i = 15) \\ Q_{1next} &= s_1 + s_2 + s_4 (n \bmod i = 0)' + s_5 + s_6 (i = 15) \\ &= Q_2' Q_1' Q_0 + Q_2' Q_1 Q_0' + Q_2 Q_1' Q_0' (n \bmod i = 0)' + Q_2 Q_1' Q_0 + Q_2 Q_1 Q_0' \ (i = 15) \\ Q_{2next} &= s_3 + s_4 (n \bmod i = 0) + s_4 (n \bmod i = 0)' + s_5 + s_6 (i = 15) + s_6 (i = 15)' \\ &= s_3 + s_4 + s_5 + s_6 \\ &= Q_2' Q_1 Q_0 + Q_2 Q_1' Q_0' (n \bmod i = 0) + Q_2 Q_1' Q_0' (n \bmod i = 0)' + Q_2 Q_1' Q_0 \\ &+ Q_2 Q_1 Q_0' \ (i = 15) + Q_2 Q_1 Q_0' \ (i = 15)' \\ &= Q_2' Q_1 Q_0 + Q_2 Q_1' Q_0' + Q_2 Q_1' Q_0 + Q_2 Q_1 Q_0' \end{aligned}$$

Midterm 2 Page 3 of 4

3. The state-action table in question 2 is for a Moore machine. Derive the corresponding state-action table for a Mealy machine. Use as few states as possible. Combine actions in multiple states into a single state as much as possible. The functionality of your Mealy machine should be the same as the original Moore machine. The only difference is in the number of states.

Answer

Current State	Next State	Control and Datapath Actions
name, $Q_2Q_1Q_0$	Condition, State	Condition, Actions
$s_0 = 000$	$\begin{bmatrix} Start = 0, s_0 \\ Start = 1, s_1 \end{bmatrix}$	[Done = 0]
	$\lfloor Start = 1, s_1 \rfloor$	$\bigcup Output = Z \bigcup$
$s_1 = 001$		Input n
	s_2	Prime = 1
		$\lfloor i = 2 \rfloor$
s_2 010	$\begin{bmatrix} i \neq 15, s_2 \end{bmatrix}$	
	$\begin{bmatrix} i \neq 15, s_2 \\ i = 15, s_3 \end{bmatrix}$	_i++
s_3 011	s_0	Output Prime


(6)

4. Draw the ASM block for state s_2 in the following state-action table.

Current State	Next State	Control and Datapath Actions
$Q_2Q_1Q_0$	Condition, State	Condition, Actions
000 s ₀	$\begin{bmatrix} Start = 1, s_0 \\ Start = 0, s_3 \end{bmatrix}$	Done = 0
001 s ₁	$\begin{bmatrix} Data \neq 0, s_3 \\ Data = 0, s_2 \end{bmatrix}$	$Data \neq 0, Count = Count - 1$
010 s2	$\begin{bmatrix} Ctr_{LSB} \neq 1, s_1 \\ Ctr_{LSB} = 1, s_4 \end{bmatrix}$	$\begin{bmatrix} Data = Data >> 1 \\ Data = 0, Count = Count + 1 \\ Count = 3, Count = 0 \end{bmatrix}$
011 s ₃	s_1	$\begin{bmatrix} Data = Input \\ Count = 4 \end{bmatrix}$
100 s4	s_0	$\begin{bmatrix} Done = 1 \\ Output = Count \end{bmatrix}$

Midterm 2 Page 4 of 4

Answer:

