Midterm 1 Page 1 of 5

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Department of Computer Science and Engineering Department of Electrical Engineering CS/EE120B – Introduction to Embedded Systems Midterm 1 Version 2

26

Name:_	Solution Key	Student ID#:	
	Please print legibly		

April 25, 2001

Lab Section: 21 (TR 6-10):_____ **22** (WF 6-10):____ **23** (WF 2-6):____

(Numbers in parenthesis denote total possible points for question.)

1. Draw a 4-bit shifter / rotator circuit having the following functional table

(4)

S_1	S_0	Function
0	0	Load
0	1	Shift Left
1	0	Rotate Right
1	1	No Change

Answer

2. Are there any equivalent states in the following next-state/output table and if so, which states are equivalent? Give your reasons. (2)

Current	Next State				Output
State	CD = 00	CD = 01	CD = 10	CD = 11	Output
S1	S2	S 1	S2	S3	0
S2	S4	S 3	S1	S2	0
S3	S2	S 1	S4	S3	0
S4	S4	S3	S1	S2	1

Midterm 1 Page 2 of 5

Answer

There are NO equivalent states.

3. Derive (a) excitation equations, (b) characteristic equations, (c) next-state equations, (d) output equations, (e) next-state/output table, and (f) a state diagram for the circuit shown below. Be consistent with the label order for the inputs, states, and outputs, i.e. use the order CD, Q_1Q_0 , and Y_1Y_0 respectively; and use the state diagram template below to draw your state diagram. (12 points)

$$Q_1Q_0=01$$

Answer

State diagram template to use for part (f).

(a) The excitation equations

$$J_1 = C \oplus Q_1 \oplus Q_0$$

$$K_1 = D$$

$$S_0 = C \oplus Q_1 \oplus Q_0$$

$$R_0 = [(C \oplus Q_1 \oplus Q_0) \ Q_1]'$$

(b) The characteristic equations

For the JK flip-flop: $Q_{1next} = K'Q + JQ'$ For the SR flip-flop: $Q_{0next} = S + R'Q$ Midterm 1 Page 3 of 5

(c) The next-state equations

$$Q_{1next} = K_1'Q_1 + J_1Q_1'$$

$$= D'Q_1 + (C \oplus Q_1 \oplus Q_0)Q_1'$$

$$Q_{0next} = S_0 + R_0'Q_0$$

$$= (C \oplus Q_1 \oplus Q_0) + (C \oplus Q_1 \oplus Q_0) Q_1Q_0$$

$$= (C \oplus Q_1 \oplus Q_0)$$

(d) The output equations

$$Y_1 = Q_0'$$

 $Y_0 = (Q_1'Q_0')' = Q_1 + Q_0$

(e) The next-state/output table

Present	Next State				Outputs
State	$Q_{1\ m next}Q_{0\ m next}$				
Q_1Q_0	CD=00	CD=01	CD=10	CD=11	Y_1Y_0
00	00	00	11	11	10
01	11	11	00	00	01
10	11	01	10	00	11
11	10	00	11	01	01

(f) The state diagram

Midterm 1 Page 4 of 5

4. Use the "almost-one-hot" encoding and D flip-flops to synthesize a modulo-4 up counter with a count enable input C. The state for count 0 is also the initial state. The initial state is the next state for all the unused state combinations. The count is outputted as two bits y_1 and y_0 . You need to do the following:

(a) Derive the next-state/output table and the implementation tables. (2)

(b) Derive the excitation equations for the inputs to the D flip-flops. Do not simplify the equations. (2)

(c) Derive the output equations. Do not simplify the equations. (2)

(d) Draw the circuit. (2)

Answer

(a) The next-state/output table (which is the same as the implementation table is shown below:

Current State	Next State $Q_{2next} Q_{1next} Q_{0next}$		Output
$Q_2Q_1Q_0$	C = 0	<i>C</i> = 1	<i>y</i> ₁ <i>y</i> ₀
000	000	001	00
001	001	010	01
010	010	100	10
100	100	000	11

(b)
$$D_2 = Q_2 Q_1' Q_0' C' + Q_2' Q_1 Q_0' C'$$

 $D_1 = Q_2' Q_1 Q_0' C' + Q_2' Q_1' Q_0 C$
 $D_0 = Q_2' Q_1' Q_0' C + Q_2' Q_1' Q_0 C'$

(c)
$$y_1 = Q_2'Q_1Q_0' + Q_2Q_1'Q_0'$$

 $y_0 = Q_2'Q_1'Q_0 + Q_2Q_1'Q_0'$

Midterm 1 Page 5 of 5

