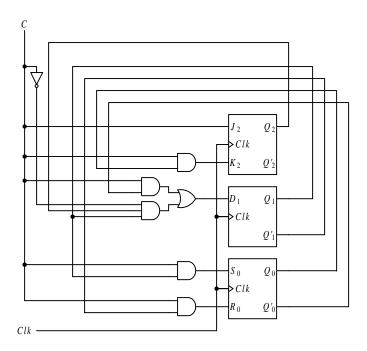
Homework 1 Page 1 of 4

UNIVERSITY OF CALIFORNIA, RIVERSIDE

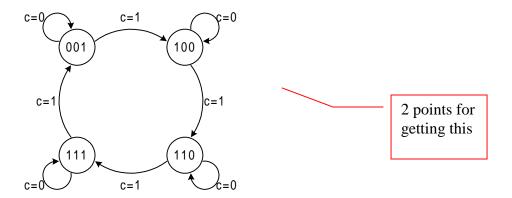

Department of Computer Science and Engineering Department of Electrical Engineering CS/EE120B – Introduction to Embedded Systems

Homework 1

15

Given April 9, 2001, Due April 18, 2001

1. Derive the next-state/output table and state diagram for the following circuit. (5)



Answer

Current State	Next State		
$Q_2Q_1Q_0$	$Q_{2next} \ Q_{1next} \ Q_{0next}$		
	C = 0	<i>C</i> = 1	
001	001	100	
100	100	110	
110	110	111	
111	111	001	

3 points for getting this.

Homework 1 Page 2 of 4

2. Synthesize a circuit that will count the following sequence using only <u>one</u> type of flip-flops:

$$1, 4, 6, 7, 1, 4, 6, 7, \dots$$

The count is to be represented directly by the contents of the flip-flops. The counter is enabled by the input C. The count stops when C=0. Determine which type of flip-flop (D, SR, JK, or T) gives the smallest circuit. You only need to draw the circuit using the flip-flops that gives the smallest circuit. Assume that the circuit size is proportional to the number of 2-input gates and inverters needed in the next-state function. (10)

Answer

The next-state table and D implementation table is:

Current State	Next State	
$Q_2Q_1Q_0$	$Q_{2next} Q_{1next} Q_{0next}$	
	C = 0	<i>C</i> = 1
001	001	100
100	100	110
110	110	111
111	111	001

The equations are:

$$D_2 = CQ_1' + C'Q_2 + Q_1Q_0'$$

$$D_1 = C'Q_1 + CQ_2Q_0'$$

$$D_0 = C'Q_0 + CQ_2Q_1$$

Requires 13 2-input gates + 1 inverter

Homework 1 Page 3 of 4

The SR implementation table is:

Current State	Implementation	
$Q_2Q_1Q_0$	$S_2R_2 S_1R_1 S_0R_0$	
	C = 0	<i>C</i> = 1
001	0×0××0	100×01
100	×0×00×	×0100×
110	×0×00×	×0×010
111	×0×0×0	0101×0

The equations are:

$$S_2 = CQ_2'$$

$$R_2 = CQ_2Q_0$$

$$S_1 = CQ_2Q_1'$$

$$R_1 = CQ_0$$

$$S_0 = CQ_1$$

$$R_0 = CQ_1$$

Requires 8 2-input gates + 0 inverters

The JK implementation table is:

Current State $Q_2Q_1Q_0$	Implementation $J_2K_2 J_1K_1 J_0K_0$		
	C = 0	<i>C</i> = 1	
001	0×0××0	1×0××1	+ 5 points for
100	×0×0×	×01×0×	this
110	×0×00×	×0×01×	
111	×0×0×0	×1×1×0	

The equations are:

$$J_2 = C$$
 $K_2 = CQ_0$
 $J_1 = CQ_2$
 $K_1 = CQ_0$
 $J_0 = CQ_1$
 $K_0 = CQ_2'$
 $+ 2 \text{ points for this}$

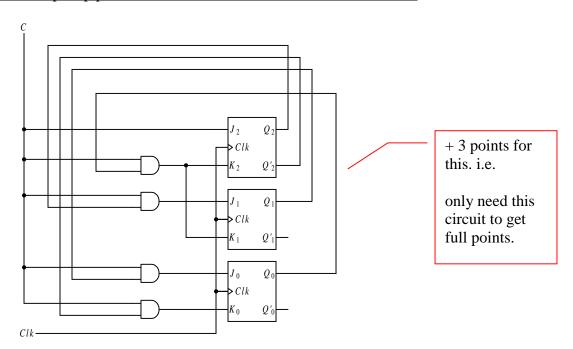
Requires 4 2-input gates + 0 inverters

Homework 1 Page 4 of 4

The T implementation table is:

Current State	Implementation	
$Q_2Q_1Q_0$	$T_2T_1T_0$	
	C = 0	<i>C</i> = 1
001	000	101
100	000	010
110	000	001
111	000	110

The equations are:


$$T_2 = CQ_0$$

$$T_2 = CQ_0$$

 $T_1 = CQ_2Q_1' + CQ_2Q_0$
 $T_0 = CQ_2' + CQ_1Q_0'$

$$T_0 = CO_2' + CO_1O_0'$$

Requires 10 2-input gates + 0 inverters

Using the JK flip-flop produces the smallest circuit size as shown below.

