UNIVERSITY OF CALIFORNIA, RIVERSIDE Department of Computer Science and Engineering Department of Electrical Engineering CS/EE120A –Logic Design Midterm 2 May 14, 2003

Name: Solution Key

Please print legibly

Student ID#:

(Numbers in parenthesis denote total possible points for question.)

1. Given the following 1-minterms and "don't cares" for a 5-variable (v,w,x,y,z) function, list all the prime implicants and essential prime implicants. Use K-map to derive all minimized standard form solutions.

1-minterms: $m_1, m_3, m_4, m_{11}, m_{22}, m_{23}, m_{28}$ don't care minterms: $m_5, m_6, m_9, m_{12}, m_{14}, m_{15}, m_{17}, m_{20}, m_{21}, m_{30}, m_{31}$ (4)

Answer

PIs: *xz'*, *w'y'z*, *vw'x*, *vxy*, *v'x'z*

	Minterms covered						
PI	m_1	m_3	m_4	m_{11}	m_{22}	m_{23}	m_{28}
xz'			\checkmark		\checkmark		\checkmark
w'y'z	\checkmark						
vw'x					\checkmark	\checkmark	
vxy					\checkmark	\checkmark	
v'x'z	\checkmark	\checkmark		\checkmark			

EPIs: xz', v'x'z

Solutions:

$$F_1 = xz' + v'x'z + vxy$$

and

$$F_2 = xz' + v'x'z + vw'x$$

2. Given the following K-maps for the LE, AE, and C_0 of an ALU, determine the ALU operations assigned to each of the select line combinations. Show how each operation is derived. (4)

Answer

S_2	S_1	S_0	LE	AE	C_0	ALU Operation
0	0	0	b_i	1	0	B - 1
0	0	1	$a_i \operatorname{nor} b_i$	0	0	A nor B
0	1	0	a_i	b_i'	1	A - B
0	1	1	$a_i \operatorname{xnor} b_i$	0	0	A xnor B
1	0	0	0	0	1	1
1	0	1	a_i nand b_i	0	0	A nand B
1	1	0	a_i	b_i	0	A + B
1	1	1	a_i'	0	0	A'

3. Write the complete VHDL code at the dataflow level for the AE circuit as given in question 2 above. (4)

Answer

4. Design a circuit that inputs a four (4) bit number. The circuit outputs a 1 if the input number has an even number of zeros. Otherwise, it outputs a 0. The circuit must be as small as possible. Draw the final circuit. (4)

Answer

$$F = w'x'y'z' + w'x'yz + w'xy'z + w'xyz' + wx'y'z + wx'yz' + wxy'z' + wxyz$$

$$= w'x'(y'z' + yz) + wx(y'z' + yz) + w'x(y'z + yz') + wx' (y'z + yz')$$

$$= w'x'(y \oplus z)' + wx(y \oplus z)' + w'x(y \oplus z) + wx' (y \oplus z)$$

$$= (w'x' + wx)(y \oplus z)' + (w'x + wx')(y \oplus z)$$

$$= (w \oplus x)'(y \oplus z)' + (w \oplus x)(y \oplus z)$$

$$= (w \oplus x) \odot (y \oplus z)$$

$$= (w \odot x) \odot (y \odot z)$$

 $(w \oplus x) \odot (y \oplus z) = 1 \Rightarrow (w \oplus x) = (y \oplus z).$ If $(w \oplus x) = (y \oplus z)$ then certainly $(w \oplus x)' = (y \oplus z)'$ which is equal to $(w \odot x) = (y \odot z).$ Hence $(w \oplus x) \odot (y \oplus z) = (w \odot x) \odot (y \odot z).$

5. Design a subtractor circuit where both operands are two (2) bits wide. Design the circuit as one complete unit and not like what we did in class. That is, <u>not</u> as a single bit slice and then daisy chain the two bit slices together. The two 2-bit operands are interpreted as positive numbers. (This is equivalent to a 3-bit number where the leading bit is always a 0.) The result of the subtraction should be interpreted as a two's complement number and should be three bits wide. Derive the truth table, and the minimized standard form equations. You do not have to draw the circuit. (4)

Answer

Difference = x - y

x_1	x_0	<i>y</i> ₁	<i>y</i> ₀	borrow	$difference_1$	$difference_0$
0	0	0	0	0	0	0
0	0	0	1	1	1	1
0	0	1	0	1	1	0
0	0	1	1	1	0	1
0	1	0	0	0	0	1
0	1	0	1	0	0	0
0	1	1	0	1	1	1
0	1	1	1	1	1	0
1	0	0	0	0	1	0
1	0	0	1	0	0	1
1	0	1	0	0	0	0
1	0	1	1	1	1	1
1	1	0	0	0	1	1
1	1	0	1	0	1	0
1	1	1	0	0	0	1
1	1	1	1	0	0	0

 $borrow = x_1'y_1 + x_1'x_0'y_0 + x_0'y_1y_0$

 $difference_1 = x_1 x_0 y_1' + x_1 y_1' y_0' + x_1' x_0 y_1 + x_1' y_1 y_0' + x_1' x_0' y_1' y_0 + x_1 x_0' y_1 y_0$

 $difference_0 = x_0'y_0 + x_0y_0'$