Midterm 1

UNIVERSITY OF CALIFORNIA, RIVERSIDE Department of Computer Science and Engineering Department of Electrical Engineering CS/EE120A –Logic Design Midterm 1 April 22, 2003

Name: Solution Key

_____ Student ID#:_____

(Numbers in parenthesis denote total possible points for question.)

Questions 1 to 3 refer to the following circuit

Please print legibly

Midterm 1

(4)

1. Convert the given circuit to a circuit that uses ONLY 3-input NAND.

Answer

2. Derive the Boolean equation for the give circuit.

(4)

Answer

$$F(x,y,z) = [(xy)' + (x \odot y)] (x' + yz)$$

= x' + yz
= x' + xyz
= (x(yz)')'
= (xy'z')' (xy'z)' (xyz')'

3. Derive the truth table for the circuit.

Answer

x	у	Z.	(<i>xy</i>)'	$(x \odot y)$	$[(xy)' + (x \odot y)]$	<i>x</i> ′	yz.	x' + yz	F	Maxterms
0	0	0	1	1	1	1	0	1	1	M_0
0	0	1	1	1	1	1	0	1	1	M_1
0	1	0	1	0	1	1	0	1	1	M_2
0	1	1	1	0	1	1	1	1	1	M_3
1	0	0	1	0	1	0	0	0	0	M_4
1	0	1	1	0	1	0	0	0	0	M_5
1	1	0	0	1	1	0	0	0	0	M_6
1	1	1	0	1	1	0	1	1	1	M_7

4. Use the truth table from question 3 to derive the Boolean equation in the product-ofmaxterms format. Write the equation using the shorthand notation symbol. (4)

Answer

 $F(x,y,z) = \Pi(4, 5, 6)$ = (x' + y + z) (x' + y + z') (x' + y' + z)

(4)

5. Use Boolean algebra to show that the two equations that you derived in questions 2 and 4 above are equivalent. (4)

Answer

6. Use Boolean algebra to reduce the following function as much as possible in terms of the number of gates needed to implement the function (4).

 $F = (x \odot y) (x + y')'$

Answer

$$F = (x \odot y) (x + y')' = (xy + x'y') (x' y) = xyx'y + x'y'x'y = 0 + 0 = 0$$