CS120A – Homework #1

Spring 2003. Professor Hwang Given April 10, 2003. Due April 17, 2003 at the beginning of class. No late homework accepted.

Your work must be completely typeset with a word processor. Circuit diagrams can be drawn using any drawing program or by hand but it must be very neat. Handwritten works will **NOT** be accepted. (15 points total)

- 1. We said that XOR is the inverse of XNOR, but this is not always true for some number of inputs *n*. For instance, XOR is equal to XNOR for n = 3. Show using Boolean algebra that XOR = XNOR for n = 3. In general, what are the values of *n* where XOR = XNOR? (3)
- 2. Given the following truth table with four inputs (s_2, s_1, s_0, B) , derive the Boolean equation for the output function *F*. (3)

<i>s</i> ₂	s_1	<i>s</i> ₀	F
0	0	0	1
0	0	1	1
0	1	0	B'
0	1	1	B
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

3. Derive the truth table for the function

$$F = ((A+B') \bullet (BC)') \odot (A \oplus B')$$
(3)

(3)

4. Use Boolean algebra to convert the function

 $F = ((A+B') \bullet (BC)') \odot (A \oplus B')$

to its sum-of-products format.

5. Use Boolean algebra to simplify the following equation as much as possible and draw the circuit for it. (3)

$$F = ((A+B') \bullet (BC)') \odot (A \oplus B')$$