# UNIVERSITY OF CALIFORNIA, RIVERSIDE

# Department of Computer Science and Engineering Department of Electrical Engineering CS/EE120A – Logic Design Midterm 2

**30** 

(5)

February 22, 2001

| Name:       | Solution Key            |                     | Student ID#:         |  |  |
|-------------|-------------------------|---------------------|----------------------|--|--|
|             | Please print legibl     | у                   |                      |  |  |
| Lab Section | on: <b>21</b> (MW 3-6): | <b>22</b> (TR 2-5): | <b>23</b> (MF 8-11): |  |  |

(Numbers in parenthesis denote total possible points for question.)

1. Use the tabulation method to find the PI list and the EPI list for the function

$$f = w'x'y'z' + xy'z + w'xz + wxy.$$

### Answer

The 1-minterms are:  $m_0$ ,  $m_5$ ,  $m_7$ ,  $m_{13}$ ,  $m_{14}$ ,  $m_{15}$ .

List of 0-subcubes:

| Group | Subcube  | Sul | ocub | e Va | Subcube |         |
|-------|----------|-----|------|------|---------|---------|
| ID    | Minterms | W   | х    | у    | Z       | Covered |
| $G_0$ | $m_0$    | 0   | 0    | 0    | 0       |         |
| $G_2$ | $m_5$    | 0   | 1    | 0    | 1       | yes     |
| $G_3$ | $m_7$    | 0   | 1    | 1    | 1       | yes     |
|       | $m_{13}$ | 1   | 1    | 0    | 1       | yes     |
|       | $m_{14}$ | 1   | 1    | 1    | 0       | yes     |
| $G_4$ | $m_{15}$ | 1   | 1    | 1    | 1       | yes     |

List of 1-subcubes:

| Group | Subcube     | Sub | ocub | e Va | Subcube |         |
|-------|-------------|-----|------|------|---------|---------|
| ID    | Minterms    | w   | x    | у    | Z       | Covered |
| $G_2$ | $m_{5,7}$   | 0   | 1    | -    | 1       | yes     |
|       | $m_{5,13}$  | -   | 1    | 0    | 1       | yes     |
| $G_3$ | $m_{7,15}$  | -   | 1    | 1    | 1       | yes     |
|       | $m_{13,15}$ | 1   | 1    | -    | 1       | yes     |
|       | $m_{14,15}$ | 1   | 1    | 1    | 1       |         |

List of 2-subcubes:

| Group | Subcube         | Sub | Subcube Value |   |   | Subcube |
|-------|-----------------|-----|---------------|---|---|---------|
| ID    | Minterms        | W   | х             | у | Z | Covered |
| $G_2$ | $m_{5,7,13,15}$ | -   | 1             | - | 1 |         |

The PI list is: xz, wxy, w'x'y'z'

Midterm 2 Page 2 of 6

| Prime<br>Implicant<br>Name | Prime<br>Implicant<br>Expression | Implicant<br>Minterms | Function Minterms |           |           |           |           |    |
|----------------------------|----------------------------------|-----------------------|-------------------|-----------|-----------|-----------|-----------|----|
|                            |                                  |                       | 0                 | 5         | 7         | 13        | 14        | 15 |
| $P_1$                      | XZ                               | (14,15)               |                   |           |           |           | $\otimes$ | ×  |
| P <sub>2</sub>             | wxy                              | (5,7,13,15)           |                   | $\otimes$ | $\otimes$ | $\otimes$ |           | ×  |
| P <sub>3</sub>             | w'x'y'z' (0)                     |                       | $\otimes$         |           |           |           |           |    |
| EPI covered minterms:      |                                  |                       | 0                 | 5         | 7         | 13        | 14        | 15 |
| Not covered minterms:      |                                  |                       |                   |           |           |           |           |    |

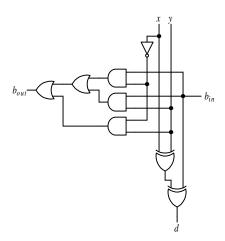
The EPI list is: xz, wxy, w'x'y'z'

<sup>2</sup> points if PI and EPI lists are obtained using K-maps.

Midterm 2 Page 3 of 6

2. Derive the minimized equations for the full subtractor circuit. Draw the full subtractor circuit using only 2-input basic gates (AND, OR, NOT, XOR) from the minimized equations. Your circuit should use as few gates as possible. (5)

### Answer


The full subtractor truth table is

| $b_{in}$ | х | у | $b_{out}$ | d |
|----------|---|---|-----------|---|
| 0        | 0 | 0 | 0         | 0 |
| 0        | 0 | 1 | 1         | 1 |
| 0        | 1 | 0 | 0         | 1 |
| 0        | 1 | 1 | 0         | 0 |
| 1        | 0 | 0 | 1         | 1 |
| 1        | 0 | 1 | 1         | 0 |
| 1        | 1 | 0 | 0         | 0 |
| 1        | 1 | 1 | 1         | 1 |

Thus, the minimized equations are:

$$b_{out} = b_{in}x' + b_{in}y + x'y$$
$$d = b_{in} \oplus x \oplus y$$

The circuit is



Midterm 2 Page 4 of 6

3. Derive the equation for the carry lookahead signal  $c_3$  in terms of the two operand inputs x and y, and  $c_0$ . (5)

### Answer

$$c_{i+1} = g_i + p_i c_i$$

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 c_1$$

$$= g_1 + p_1 (g_0 + p_0 c_0)$$

$$= g_1 + p_1 g_0 + p_1 p_0 c_0$$

$$c_3 = g_2 + p_2 c_2$$

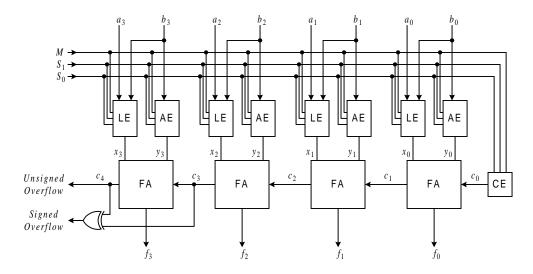
$$= g_2 + p_2 (g_1 + p_1 g_0 + p_1 p_0 c_0)$$

$$= g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$$

Substituting  $g_i = x_i y_i$  and  $p_i = x_i + y_i$  into  $c_3$ , we get

$$c_3 = x_2y_2 + (x_2 + y_2)x_1y_1 + (x_2 + y_2)(x_1 + y_1)x_0y_0 + (x_2 + y_2)(x_1 + y_1)(x_0 + y_0)c_0$$

Midterm 2 Page 5 of 6


4. Design a 4-bit ALU that satisfies the following functional table:

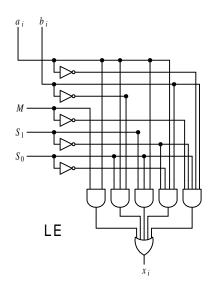
| M | $S_1$ | $S_0$ | Function                       |
|---|-------|-------|--------------------------------|
| 0 | 0     | 0     | A  AND  B                      |
| 0 | 0     | 1     | A XOR B                        |
| 0 | 1     | 0     | All 0's, i.e. clear the output |
| 0 | 1     | 1     | Pass through operand A         |
| 1 | 0     | 0     | Subtract $A - B$               |
| 1 | 0     | 1     | Decrement A                    |
| 1 | 1     | 0     | not used                       |
| 1 | 1     | 1     | not used                       |

The AE and LE circuits must be simplified. You need to draw the complete ALU circuit. (15)

## Answer:

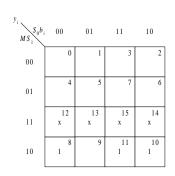
The overall general 4-bit ALU circuit is as follows:

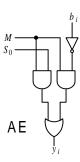



The truth table for the LE, AE, and CE according to the given functions is shown next:

| M | $S_1$ | $S_0$ | Function                       | $LE$ $x_i$           | $\begin{array}{c} \text{AE} \\ y_i \end{array}$ | $c_0$ |
|---|-------|-------|--------------------------------|----------------------|-------------------------------------------------|-------|
| 0 | 0     | 0     | A  AND  B                      | $a_ib_i$             | 0                                               | 0     |
| 0 | 0     | 1     | A XOR B                        | $a_{i} \oplus b_{i}$ | 0                                               | 0     |
| 0 | 1     | 0     | All 0's, i.e. clear the output | 0                    | 0                                               | 0     |
| 0 | 1     | 1     | Pass through operand A         | $a_i$                | 0                                               | 0     |
| 1 | 0     | 0     | Subtract $A - B$               | $a_i$                | $b_i{'}$                                        | 1     |
| 1 | 0     | 1     | Decrement A                    | $a_i$                | all 1's                                         | 0     |
| 1 | 1     | 0     | not used                       | ×                    | ×                                               | ×     |
| 1 | 1     | 1     | not used                       | ×                    | ×                                               | ×     |

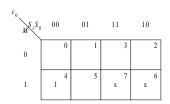
Midterm 2 Page 6 of 6


The K-Map, equation and circuit for the LE is as follows:


| $x_{i}$           | M = 0 |    |         |         | 1       | М       | = 1     |         |
|-------------------|-------|----|---------|---------|---------|---------|---------|---------|
| $S_1S_0$ $a_ib_i$ | 00    | 01 | 11      | 10      | 00      | 01      | 11      | 10      |
| 00                | 0     | 1  | 1 3     | 2       | 16      | 17      | 19<br>1 | 18      |
| 01                | 4     | 5  | 7       | 6       | 20      | 21      | 23      | 1 22    |
| 11                | 12    | 13 | 15<br>1 | 14<br>1 | 28<br>x | 29<br>x | 31<br>x | 30<br>x |
| 10                | 8     | 9  | 11      | 10      | 24<br>x | 25<br>x | 27<br>x | x 26    |



$$x_i = Ma_i + S_0 a_i b_i' + S_1 S_0 a_i + S_1' S_0' a_i b_i + M' S_1' S_0 a_i' b_i$$


The K-Map, equation and circuit for the AE is as follows:





$$y_i = MS_0 + Mb_i'$$

The K-Map, equation and circuit for the CE is as follows:





$$c_0 = MS_0'$$