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Abstract of the Dissertation

Functional Partitioning for Low Power

by

Enoch Oi-Kee Hwang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June, 1999

Dr. Frank Vahid, Chairperson
Dr. Yu-Chin Hsu, Co-Chairperson

Power reductions in VLSI systems have recently become a critical metric for design

evaluation. Although power reduction techniques can be applied at every level of design

abstraction, most automated power reduction techniques apply to the lower levels of

design abstraction. Previous works have shown that sizable power reductions can be

achieved simply by shutting down a system’s sub-circuits when they are not needed.

However, these shutdown techniques focus on shutting down only portions of the

controller or the datapath of a single custom hardware processor. We therefore

investigated the power reduction attainable by the evolving automated technique of

functional partitioning in which a process is automatically divided into multiple simpler,

mutually exclusive, communicating processors, and then shut down the inactive

processors. By shutting down the entire inactive processor, we have in effect shut down

both the controller and datapath. Power reduction is accomplished because only one

smaller processor is active at a time.
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We have applied this functional partitioning technique to either the procedural or the

finite-state machine with datapath (FSMD) behavioral level. From either level, the

original process is partitioned into multiple parts. For the procedural level, a coarse-

grained partitioning of procedures is done. Data transfers between the parts are simply

the parameters in the procedural call. In contrast, FSMD partitioning has no concept of

procedures, but rather states. A dataflow analysis is first performed to determine the data

transfers between the parts. A power partitioning algorithm is then used to separate the

states into multiple parts. The parts are then individually synthesized down to the gate

level netlist. Finally, communication is added between the parts so that they are

functionally equivalent to the original unpartitioned process.

Partitioning introduces extra power consumption for inter-processor communication.

Thus, the problem that must be solved is one of partitioning such that the reduction in

power for computations far outweighs the power increase for communication, while also

minimizing the increase in total circuit size and execution time. Our results show that this

functional partitioning technique can reduce power, on average, by 42% over

unoptimized systems. In addition to power reduction, functional partitioning also

provides solutions to a variety of synthesis problems.
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Chapter 1. Introduction

Electronic circuit optimization for area and timing has been well studied. Recently,

power consumption has become one of the more critical design parameters for very large

scale integration (VLSI) systems. The reduction of area for an integrated circuit (IC),

which was a big issue not too long ago, is not as big an issue today because with new IC

production technologies, many millions of transistors can be put on a single IC. On the

other hand, there is a trend towards portable battery operated devices. The shrinking sizes

of integrated circuits calls for reduced power consumption in order to extend battery life

for these portable devices. Furthermore, in the deep submicron technologies, there is a

limitation of circuit density because of excessive heat generation from high power

dissipation. Hence, power consumption is now one of the most important criteria in

circuit designs.

While power reduction techniques can be applied at every level of design abstraction,

most of the previous power optimization techniques apply to the lower levels of the

design process; namely transistor and logic gate levels [1]. Recently, there is a focus on

power reduction at the higher levels [2] where large power savings are possible merely by

cutting down on wasted power in the circuit. We therefore investigate the power
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reduction attainable by the evolving automated behavioral level technique of functional

partitioning.

Power is consumed when capacitors in the circuit are either charged or discharged

due to switching activities. Power reduction at the higher levels is mainly achieved

through the reduction of these switching activities by shutting down portions of the

system when they are not needed [2]. The idea is that for a large system, not all

components are required to be active at all times and thus, large power savings are

possible merely by cutting down on wasted switching activities. Large VLSI circuits such

as processors contain different components such as the controller, memory and functional

units. Recent high-level shutdown techniques focus on shutting down only portions of the

controller or the functional units of a single custom hardware processor. Two such areas

of shutdown techniques for power reduction have been addressed in recent literature.

In datapath shutdown techniques, portions of the combinational logic in the datapath

can be shut down for some cycles when those results are either precomputed or are not

required. In [3], the output values are selectively precomputed using a few high order bits

one cycle before they are needed. If precomputation (e.g., comparing the highest bits of a

32-bit comparison) indicates that the full computation is not necessary, then the entire

original logic circuit can be turned off in the next clock cycle. Thus, switching activity is

reduced and power is saved. The guarded evaluation technique in [4] tries to determine,

on a per clock cycle basis, which part, of a combinational circuit are computing results
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that will be used, and which are not. The parts that are not needed are then shut off, thus

saving the power used in all the useless transitions in that part of the circuit.

For example, given the FSMD description in Figure 1.1, the corresponding

unoptimized RTL description is shown in Figure 1.2. Suppose that the input for x is 0 in

the FSMD code, then only states s0 and s3 will be executed, and so neither the adder nor

the multiplier will be needed. These two functional units will be wasting power in the

unoptimized circuit of Figure 1.2 because they will have switching activities even though

loop
case State_Var is

when s0   =>
p := 1 ;
i := 1 ;
if (1 < x) then -- x is a primary input

State_Var := s1 ;
else

y <= p ;
State_Var := s3 ;

end if ;
when s1   =>

p := p * 2 ;
y <= p ;
i := i + 1 ;
State_Var := s2 ;

when s2   =>
if (i < x) then

State_Var := s1 ;
else

State_Var := s3 ;
end if ;

when s3   =>
p := p – 1 ;
y <= p ;
i := i – 1 ;
State_Var := s2 ;

end case;
end loop;

Figure 1.1. Sample unpartitioned FSMD code.
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their results will not be needed. Furthermore, the controller can also be reduced to save

power.

Figure 1.3 shows the result of applying the guarded evaluation technique to the

unoptimized circuit of Figure 1.2. Latches are added in front of all the functional units.

Since only the comparator and the subtract unit are needed in the execution of states s0
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and s3, the inputs to the adder and multiplier can be latched, thus, preventing the inputs

from changing. Power is saved because there will be no switching activities in these two

functional units during the execution of states s0 and s3.

In controller shutdown techniques [5][6], the controller is partitioned into two or

more mutually exclusive interacting FSMs and their clocks are selectively gated. Each

FSM controls the execution of one section of computation. Only one of the interacting

FSMs is active at any given clock cycle, while all the others are idle and their clock is

stopped. Figure 1.4 shows an example of applying the selectively-clocked FSM

technique. Here we have split the original FSM into two sub-FSMs. FSM1 includes state

s1 which controls the portion of the datapath for the multiplier and adder while FSM2

includes states s0, s2, and s3, which controls the portion of the datapath for the

comparator and subtract unit. Since we only need the use of the comparator and subtract

unit to execute states s0 and s3, FSM1 can be made inactive by stopping the clock to it.
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Figure 1.4. Selectively-clocked FSM technique.
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The power savings from this technique come directly from the fact that there are multiple

smaller FSMs instead of one large one. As a result, we have a shorter local clock line,

fewer states, and simpler and smaller next state logic. While this method prevents

unnecessary power consumption in the control unit, there is no power reduction in the

datapath.

While the above mentioned techniques show significant power reductions, they focus

only on either the datapath or the controller for a single custom processor. It was

recognized in [4] and [5] that the power savings would be even larger if both the

controller and the datapath were considered together and if the techniques were applied

on the complete circuit, rather than on individual blocks. Hence, we propose a new

functional partitioning shutdown technique for reducing power where both the controller

and the datapath are considered together.

Our functional partitioning technique for power reduction is based on the finite state

machine with datapath (FSMD) model. Instead of trying to separately optimize individual

components of a system and then trying to combine the different optimized circuits

together, our technique optimizes the original monolithic system by partitioning it. The

original FSMD is first partitioned into several smaller mutually exclusive FSMDs. Each

of these smaller FSMDs is then synthesized to its own custom processor, each having its

own controller and datapath. The reason why FSMD functional partitioning can

significantly reduce power is that each processor is smaller than the original one large

processor implementing the entire process, and only one processor is executing a
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computation at any given time while the other processors will be idle. When a processor

is idle, we have, in effect, shut down both the controller and the datapath for that

processor. Thus, greater power saving is possible.

Figure 1.5 shows the result of applying the FSMD functional partitioning technique to

the sample circuit of Figure 1.2. Here, we have two smaller mutually exclusive

processors. The first processor contains the controller and datapath for executing state s1,

and the second processor contains the controller and datapath for executing states s0, s2,

and s3. Thus, when x=0, only processor 2 needs to be active. Processor 1 remains inactive

in an idle state waiting for processor 2 to wake it up if necessary. The datapath of

processor 1 is not consuming power because the inputs are not changing. The power

consumed by both controllers is reduced because of their smaller size. Furthermore, the

power consumed by processor 1’s controller is reduced even more because it is in an idle

state. The overhead in this technique is the communication between the processors and

possible duplication of registers.
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In addition to reducing power, FSMD functional partitioning also provides solutions

to a variety of synthesis problems. These include I/O satisfaction by reducing total I/O by

as much as 67% (which could impact physical design positively), reduced synthesis

runtime by as much as 85%, and hardware / software tradeoffs [7]. Furthermore, the

technique does not require the modification of synthesis tools because it is applied before

synthesis. The relevance of using the FSMD model is that many circuit designs are

specified at the register-transfer level using this model. However, partitioning introduces

extra power consumption for inter-processor communication between the smaller

FSMDs. Thus, the problem that must be solved is one of partitioning such that the

reduction in power for computations far outweighs the power increase for

communication, while also minimizing the increase in total circuit size and execution

time, and preserving the cycle-by-cycle behavior.
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Chapter 2. Previous Work

Power reduction techniques can be applied at every level of design abstraction. In this

chapter, we will review previous significant contributions on power reduction at various

design abstraction level.

2.1. Transistor Level

Power reduction at the transistor level deals with the physical aspect of the transistor

and how they are laid out inside a gate. There are basically two methods for reducing

power dissipation at this level: transistor sizing and transistor reordering.

2.1.1. Transistor Sizing

The size of a transistor can have significant impact on the gate delay and the power

dissipated by the gate. The larger the transistor size, the shorter the delay, but more power

is consumed. Thus, the goal is to find the smallest transistor or gate that will still satisfy

the delay constraint. Work in this area includes [1], [2], [3], [4] and [5].

2.1.2. Transistor Reordering

Gates (such as a NAND gate) have input pins that are functionally equivalent. In such

a case, inputs can be permuted on these pins without affecting the correctness of the
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result. However, ordering the gate inputs will affect both the power and the delay of the

gate. Consider the transistor implementation of a 2-input NAND gate as shown in Figure

2.1. It was observed that the power consumption for the NAND gate is lower when the

inputs to pins A and B are 1 and 0 respectively as opposed to 0 and 1. Thus, an ordering

of the inputs using minimal power can be found. Work in this area include [2], [4], [6],

[7] and [8]. It was reported in [6] that average power reductions of 12% are achievable

using transistor reordering techniques.

2.2. Logic Gate Level

Power reduction at the logic gate level mainly deals with manipulating the logical

expression to reduce the number of gates required to implement the expression and to

reduce the switching activities. By reducing the number of gates, the overall capacitance

in the circuit will also be reduced, thus, the power consumption. Using this technique to

reduce power is basically a side effect from reducing the area. Optimization at this level

occurs in two phases: technology-independent and technology-dependent optimization.

A B

A

B

Out

+5v

0

1

;

1

0

:

1

N A N D

Figure 2.1. Transistor implementation of a 2-input NAND gate.
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2.2.1. Technology-independent

In the technology-independent phase, no knowledge of the actual physical gates is

assumed; only logic equations are manipulated to reduce the area, number of gates, delay

and power consumption. Optimization techniques in this phase include exploiting the

don’t-care sets for reducing the switching activities as in [9] and [10]; path balancing by

adding buffers to reduce glitches as in [11], [12] and [13]; and factorization of logical

expressions presented in [14].

Any gate in a combinational circuit has an associated don’t-care set where the input

combinations either never occur at the gate inputs or that they produce the same values at

the circuit outputs. Since the power dissipation of a gate is dependent on the probability

of the gate evaluating to a 1 or a 0, this probability can be changed by utilizing the don’t-

care sets.

It was observed in [13] that spurious transitions account for 10% to 40% of the

switching activity in typical combinational logic circuits. In path balancing, the idea is to

add delay buffers in a path in order to reduce the glitching activities of a circuit.

Factorization makes use of the fact that factoring an expression can reduce the

number of literals, and therefore, reduce the number of transistors required to implement

the expression. For example, the expression a • c + a • d + b • c + b • d can be factored into

(a + b) • (c + d), thus, reducing the transistor count considerably.
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2.2.2. Technology-dependent

In the technology-dependent phase, logic equations are mapped to the target

technology library gates, again optimizing for area, number, delay and power. A typical

technology library will contain hundreds of gates with different transistor sizes. The

problem is to find suitable gates requiring the least amount of power to satisfy the logic

equations produced from the technology-independent phase. Much work has been done in

this area in terms of area and delay. Work on extending the original approaches to power

dissipation include [3], [15], [16] and [17].

2.3. Register Transfer Level

Register transfer level (RTL) deals with the way data is transferred between registers

from one clock cycle to the next. A circuit at the RT level can be broken down into two

parts: sequential and combinational. The sequential portion contains the finite state

machine (FSM) or controller for the circuit. The combinational or datapath portion

contains the functional units, registers and multiplexers for performing the operations.

The extent to which hardware is shared and the sequence of variables mapped to each

register affect the total switched capacitance in the datapath. Functional units, registers

and portions of the controller can be shut off during certain clock cycles to further reduce

the power consumption.

2.3.1. Sequential Circuit

For a sequential circuit, the states of a finite state machine can be encoded in such a

way that if a state s has a large number of transitions to state t, then the two states should
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be given uni-distant codes, so as to minimize the switching activity at the register output.

Works in this area include [14], [18], [19] and [20].

Recent work in reducing the power consumption in the sequential circuit uses a

partitioning technique on the FSM [21] and [22]. The controller is partitioned into two or

more interacting FSMs. Each FSM controls the execution of one section of computation

and only one sub-FSM is active at any given clock cycle. Power is saved because the

remaining FSMs are idle. This technique was discussed in the introduction.

2.3.2. Combinational Circuit

Switching activity is reduced through appropriate register allocation and binding

techniques such as in [23] and [24]. Operand reordering and operand sharing between

registers can also reduce switching as in [25] and [26]. The goal of operand reordering is

to find an appropriate input operand order for commutative operations in such a way that

switching activity is reduced. The operand sharing technique attempts to schedule and

bind operations to functional units in such a way that the activity of the input operands is

i  < x

latch
L�Q��!
[�Q��!

L�Q��!
[�Q��!

L��!
[��!

(

latch

Figure 2.2. Precomputation example of a comparator.
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reduced. Operations sharing the same operand are scheduled in control steps as near as

possible. Thus, the potential for a functional unit to reuse the same operand value (and,

therefore, to decrease its input activity) is higher. Precomputation logic can be added to

the datapath to compute the output values for a subset of input conditions as in [27] and

[28]. If the output values can be precomputed, then the switching activity in the original

circuit can be reduced. Of course the power savings in the original circuit is offset by the

power consumed in the extra logic.

An example taken from [27] is a n-bit comparator that computes the function i < x.

The optimized circuit with precomputation logic is shown in Figure 2.2. In this example,

the precomputation logic is the exclusive NOR gate. The comparison can be precomputed

using only the most significant bit of the two inputs i<n-1> and x<n-1>. Certainly if i<n-

1> is less than x<n-1> then i < x. Thus, if the output can be determined from this

precomputation, then the remaining bits need not be compared. By latching the remaining

bits when the condition is satisfied, the amount of switching activities in the comparator

is reduced and thus, power is saved.

Similar to disabling portions of the controller, unnecessary functional units and

registers can also be shut off during certain cycles in the execution. During these times of

unnecessary activity, the clock signal to registers can be stopped or the register can be

disabled as in [30] and [31]; inputs to functional units can be latched as in [29].

Figure 2.3 shows an example taken from [29] of an ALU containing an adder and a

shifter. A multiplexer is used to select the result from either one of the functional units. In
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any clock cycle only one of the two functions needs to be computed. However, the

multiplexer does the selection after both units have completed their evaluation. The

proposed guarded evaluation technique to reduce the power from the unnecessary

functional unit is to place a transparent latch with an enable at the input to each of the

functional units. The input to the functional unit that is not required can be latched and

thus unnecessary switching activities can be prevented.

2.4. Behavioral Level

At the behavioral level, power reduction is obtained mainly by reducing the switching

activities using circuit transformations or partitioning. Transformations of the circuit are

typically aimed at reducing either the number of cycles in a computation or the number of

resources used in the computation during high-level synthesis as in [32], [33], [34], [35]

and [36]. The basic idea is to reduce the number of control steps so that slower control

clock cycles can be used for a fixed throughput, allowing for a reduction in supply

voltage. The reduction in control step requirements is most often possible due to the

register

shifter adder

register

mux

latchlatch

register

shifter adder

register

mux

(a) (b)

Figure 2.3. Guarded evaluation technique: (a) unoptimized RTL circuit, and (b) optimized
with transparent latches.
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exploitation of concurrency. Transformations that affect the amount of concurrency

include retiming/pipelining, algebraic transformations, and loop transformations.

Partitioning provides the possibility of disabling mutually exclusive or inactive

portions of the circuit when not needed in the execution during a certain time as in [21],

[22], [29], [37] and [38]. Except for [38], these techniques are applied only to a small

portion of the whole circuit. In [21] and [22], only portions of the finite state machine is

disabled, and in [29] and [37] only portions of the datapath is disabled. In [38] both the

controller and the datapath are disabled.

Coding techniques for reducing the switching activities on the I/O pins and address

busses were presented in [39], [40] and [41]. In [41], different bus interfaces including

bus width and coding schemes are compared for low power. More parallelism in a circuit

can be introduced to speed it up and then reduces the voltage until it realizes its originally

required speed as shown in [42].

2.5. System Level

The main focus for power savings at the system level is from turning off portions of

the system that are not being used and thus minimizing the use of power-intensive

operations. This includes turning off the monitor and the disk drive [43]; turning off

inactive hardware modules [44] and providing optimum supply voltage and/or mixed

voltages to the modules [44] and [45]. Communications to and from memory modules

can also be minimized as in [46]. Software may be compiled so as to minimize the power

dissipation when it is executed on a given hardware platform as shown in [47] and [48].
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2.6. Summary

In this chapter, we have reviewed previous significant contributions on power

reduction at various design abstraction levels. Recent research in power reduction is

focusing more at the higher design abstraction levels.
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Chapter 3. Power Consumption

In this chapter, we will look at the various factors affecting power consumption in a

circuit, how power is calculated in a circuit, and finally show how partitioning a circuit

can reduce power consumption.

3.1. Power Dissipation

Power consumption of a CMOS circuit is composed of three components [1]: 1)

dynamic power consumption due to capacitive charging and discharging when a signal

toggles (Pd); 2) dynamic power consumption due to short circuit dissipation (Psc); and 3)

static power consumption due to leakage currents (Ps). Thus, the total power consumption

P of a CMOS circuit is

sscd PPPP ++= (3.1)

Every time when the output of a gate switches from a ‘0’ to a ‘1’ or vice versa, the

loading capacitors (from the gates that are connected to this output) need to be charged or

discharged. This gives the dynamic power term Pd. Also during this time when the gate

switches, there is a moment when there is a path created between the power supply and

ground, thus, causing the short circuit dissipation Psc. During times of inactivity, current
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is still being drawn because of parasitic diodes within a gate. This contributes to the static

leakage current Ps. The following sections will look at these three terms in more detail.

3.1.1. Static Power Dissipation

Consider a complementary CMOS gate as shown in Figure 3.1. If the input Vin = ‘0,’

the associated n-device is “OFF” and the p-device is “ON.” The output voltage is VDD or

logic ‘1.’ When the input Vin = ‘1,’ the associated n-channel device is biased “ON” and the

p-channel device is “OFF.” In this case the output voltage is 0 volts (VSS). Since one of the

transistors is always “OFF” when the gate is in either of these logic states, there is no DC

current path from VDD to VSS, and the resultant quiescent (steady-state) current, and hence

the static power Ps, is zero.

However, there is some small static dissipation due to reverse bias leakage between

diffusion regions and the substrate. A profile of an inverter shown in Figure 3.2 shows

how the source-drain diffusions and the n-well diffusion form parasitic diodes with the p-

substrate. Since parasitic diodes are reverse-biased, their leakage current contributes to

the static power dissipation. The static power dissipation is the product of the device

Vout = 1Vin = 0

n-device

p-device

Vout = 0Vin = 1

n-device

p-device

Figure 3.1. CMOS inverter model for static power dissipation evaluation.
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leakage current and the supply voltage. Thus, the total static power dissipation, Ps, is

obtained from

∑ ×=
n

DDs VcrrentleakageP
1

(3.2)

where

n = number of devices.

A useful estimate is to allow a leakage current of 0.1nA to 0.5nA per device at room

temperature.

3.1.2. Dynamic Power Dissipation due to Short-Circuit

When a gate switches from a ‘0’ to a ‘1’ or vice versa, there is a moment when there

is a path created between the power supply and ground, thus, causing the short circuit

dissipation Psc. The short-circuit power dissipation is given by

p+ n+ n+ p+ p+ n+

Vin

Vout

n-well

p-substrate

Figure 3.2. Parasitic diodes in a CMOS inverter.
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p

rf
tDDsc t

t
VVP 3)2(

12
−β= (3.3)

where

β = gain factor of the transistor which is dependent on both the transistor

manufacturing process parameters and the device geometry, and is given by






µε=β

L

W

tox

where µ is the dielectric constant, ε is the permittivity of the gate insulator, tox is

the thickness of the gate insulator, W is the width of the channel, and L is the

length of the channel.

Vt = threshold voltage ≈ 0.7v.

trf = rising and falling time of the input waveform (assuming that they are equal).

tp = period of the input waveform.

As the load capacitance on the output of the gate is increased, the significance of the

short-circuit dissipation is reduced by the capacitive dissipation Pd.

3.1.3. Dynamic Power Dissipation due to Capacitive Charging and
Discharging

Each time during a signal transition from either ‘0’ to ‘1’ or, alternatively, from ‘1’ to

‘0’, current is required to charge or discharge the output capacitive load. This dynamic

dissipation can be modeled by assuming that the rise and fall time of the step input is

much less than the repetition clock period tp. The average dynamic power Pd dissipated
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during switching for a square-wave input Vin, and having a repetition frequency of fp =

1/tp, is given by

∫∫ −+=
pt

pt
outDDp

pt

p
outn

p
d dtVVti

t
dtVti

t
P

2/

2/

0

))((
1

)(
1

(3.4)

where

in = n-device transient current.

ip = p-device transient current.

For a step input and with in(t) = CL dVout/dt, and ip(t) = CL d(VDD - Vout)/dt where CL = load

capacitance, we get the equation
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In the behavioral context, this translates to

NfVCP DDd
2

2

1=  watt (3.6)

where C is the total loading capacitance of the gate output, VDD is the supply voltage, f is

the clock frequency, and N is the transition probability of the gate output. The transition

probability or switching frequency is defined as the average number of gate output

transitions per clock cycle and is given by
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exec

ip
i T

nt
N = (3.7)

where tp = 1/f is the clock period, ni is the total number of toggles at net i, and Texec is the

total execution time. These values are illustrated in Figure 3.3.

3.2. Power Calculation

To simplify the total power calculation, many of the power calculation tools for

complex circuits only consider Pd as an approximation to the total power because it has

been shown that Pd accounts for over 90% of the total power [2].

Given a digital circuit, Pd is calculated for all the nets in the circuit and the sum of

them is the average power consumption for the entire circuit

+5v V D D

C

N

f

Figure 3.3. Variables affecting power consumption.
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where i is an individual net in the circuit.

The total energy consumed for the entire circuit is

joules     
2
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Hence, to evaluate the energy usage of a circuit, we need to know the number of

toggles and the loading capacitance for each net in the circuit, and the voltage used. The

number of toggles can be obtained by simulation and counting the number of times the

signal switches for each net. The capacitance for each gate can be obtained from the

technology library used for the synthesis of the circuit. Knowing the capacitance for each

gate, the loading capacitance for each net can be calculated from analyzing the netlist to

see how the gates are connected.
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For example, the netlist of Figure 3.4 has four gates and six nets. The nets are

annotated with the toggle count and the gates are annotated with the gate capacitance.

Assuming that the operating voltage is 5V, the energy consume by this netlist is:
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3.3. Power Reduction

Power reduction for a system can be achieved from all levels of the system design. At

the lower levels of the design process, power reduction is obtained mainly through the

reduction of the capacitance in the circuit. At the behavioral level, power reduction is

obtained mainly from reducing the switching activities within the circuit.

175

150

100

125

90

125

280pF

200pF

300pF300pF

Figure 3.4. Sample netlist with four gates and six nets. The gates are annotated with the
gate capacitance and the nets are annotated with the toggle count.
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Switching activities in a circuit are reduced primarily by eliminating useless

switching activities through proper power management. This can be accomplished either

by disabling portions of the system that are not performing useful work, or by

partitioning the system into several parts such that the switching activities are localized in

only one part at a time. Partitioning is possible if the parts are mutually exclusive in their

execution. Thus, only one part needs to be active at any one time while the remaining

parts are inactive. This is analogous to deactivating certain devices in the system that is

not needed, for example, powering down the disk drive when not in use.

An easy and effective method to disable a part is to prevent any changes to the inputs

of the part. This in turn will prevent switching activities within the part. Thus, when the

inputs to the circuit do not change, then there will be no switching activities in the entire

circuit. For example, if the initial inputs to a NAND gate are all 1’s, then the output is a

0. This output will remain at a 0 if the inputs do not change. Since this output is

connected to the inputs of other logic gates, all the outputs to the other gates will also

remain the same. Thus, there will be switching activities in the circuit only if the inputs

+ -

A B

Switch

+ -
latch latch

A BA B

+ -

(a) (b) (c)

Figure 3.5. Combinational logic with: (a) common inputs, (b) latched inputs, and (c)
partitioned inputs.
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change in value. Of course the reverse is not always true. For example, for a two input

NAND gate, the output is a 1 for inputs {0,0}, {0,1}, and {1,0}.

Consider a combinational logic circuit containing two functional units with common

inputs as shown in Figure 3.5(a). Assume that the computation requires the evaluation of

an addition followed by a subtraction. While performing the addition, the input signals

will also propagate to the gates in the subtraction unit. Thus, the subtraction unit is using

power even though the result from the subtraction unit is not needed. Similarly when the

subtraction is being performed, the addition unit is consuming power but the result from

the addition unit is not needed.

There are basically two general methods to reduce the useless switching activities. In

the first method, we can insert transparent latches at the inputs of the two functional units

as shown in Figure 3.5(b). The latches can prevent the inputs to the functional unit that is

not needed for a particular cycle from changing. For this method, the two functional units

and the newly added latches are all within the same part. In the second method, we can

partition the circuit such that the switching activities are localized in only one part at a

time. Thus, we would put the addition unit and the subtraction unit in two different parts

so that the input to one will not affect the input to the other as shown in Figure 3.5(c).

The switch will control which part gets the input. When the inputs to a part remain

constant there will be no switching activities within the entire part thus power is reduced.

As we will see in the following sections, the second method will result in more power

reductions than the first method because the first method is only applied to the
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combinational logic in the datapath, whereas, the second method is applied to the entire

processor, namely the datapath and the controller. Thus, we want to apply this

partitioning idea to the whole processor.

3.4. Summary

In this chapter, we have shown how power is consumed and calculated in a CMOS

circuit. The idea of partitioning a circuit was also introduced for power reduction.
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Chapter 4. Procedural Functional
Partitioning

In this chapter, we will look at procedural functional partitioning and how power is

reduced using this technique. In order to understand this, we need to have a general

concept of the behavioral synthesis process. We will then show why the traditional

method of structural partitioning does not reduce power and then show how functional

partitioning is different and thus can reduce power.

4.1. Behavioral Synthesis

Synthesis is the process of transforming and optimizing a digital circuit design from a

high level of abstraction to a lower level of abstraction. In behavioral synthesis, the input

is a behavioral description of the design specified in a Hardware Description Language

(HDL) such as VHDL or Verilog. The synthesis process translates the behavioral

description first into a structural description and finally to a physical gate level circuit

netlist as shown in Figure 4.1. Figure 4.1(a) shows a behavioral description of a sample

segment of code. Figure 4.1(b) shows the corresponding structural description with the

separate FSM control unit and the datapath. Figure 4.1(c) shows the physical layout. The

(FILLER ENOCH HWANG)
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i f IR(3) = '0' then
   PC := PC + 1;
else
   BUF := MEM(PC);
   MEM(SP) := PC + 1;
   SP := SP - 1;
   PC := BUF;
end if;

(a)

M E M

SP

mux2

mux1

PC

BUF

+ / -

1

Address Bus

Data Bus

Datapath

State
Register

Next-state
function

Output
function

Control
inputs

Datapath
control

Status

Control
outputs

FSM Control  Unit

(b)

M E M

BUF

Address Bus

Data Bus

PC

ADD/SUB

SP

mux2

mux1

(c)

Figure 4.1. Example of the three levels of abstraction: (a) behavioral, (b) structural, and (c)
physical.
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major steps in the synthesis process include scheduling, allocation, and finally the

generation of the gate level circuit netlist.

The internal data representation of a behavioral description is usually a control data

flow graph (CDFG), which captures all the control and data-flow dependencies of the

given behavioral description. Scheduling algorithms then partition this CDFG into

subgraphs so that each subgraph is executed in one control step. Each control step

corresponds to one state of the controlling finite state machine. Within a control step, a

separate functional unit is required to execute each operation assigned to that step. Thus,

the total number of functional units required in a control step directly corresponds to the

number of operations scheduled in it. If more operations are scheduled into each control

step, more functional units are necessary, which results in fewer control steps for the

design implementation.

Allocation consists of two tasks: unit selection and unit binding. Unit selection

determines the number and types of components to be used in the design. These

components can be either functional units, storage elements, or interconnect wires. Unit

binding maps the variables and operations in the scheduled CDFG to the selected

components. For every operation in the CDFG, we need a functional unit that is capable

of executing the operation. For every variable that is used across several control steps in

the scheduled CDFG, we need a storage unit to hold the data values during the lifetime of

the variable. Finally, for every data transfer in the CDFG, we need a set of

interconnection units to effect the transfer.
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When a circuit is synthesized from a behavioral description to a gate level netlist,

only one FSM control unit and one datapath is generated as shown in Figure 4.1(b). The

control unit consists of the state register, logic for generating the next state, and logic for

generating control signals to control the operation of the datapath. The datapath consists

of the data registers, functional units, multiplexers, and connecting wires for executing

the operations of the specified behavioral instructions. At each cycle or time step, control

signals from the control unit is sent to the datapath to perform the operations scheduled

for that cycle. The state register is then updated by the next-state function in the control

unit and the cycle repeats.

4.2. Structural Partitioning

Partitioning a design has been used as a solution to many circuit packaging problems.
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Traditionally, partitioning a circuit is performed at the structural level. In structural

partitioning (also known as circuit or netlist partitioning), as shown in Figure 4.2(a), a

circuit is first synthesized from the behavioral level to the structural or gate level netlist.

The partitioning is then performed at the gate level.

From a power reduction perspective, structural partitioning does not reduce switching

activity. The reason is that behavioral synthesis, as mentioned in the previous section,

generates only one control unit and one datapath from the design specification. Even

though partitioning the netlist creates more than one physical partition, there is still

logically only one processor consisting of one datapath and one control unit. When a

primary input signal changes, the entire datapath may be affected regardless of which

partition they are in. Moreover, all the gates in the control unit must also be active in

order to provide the correct control signals to the datapath. Thus, even though, we have

more than one part, the switching activities are not localized within a part. This results in

much unnecessary switching activities and so power is not reduced.

Consider an unpartitioned processor containing two procedures, Procedure1 and

Procedure2, with common primary inputs as shown in Figure 4.3(a). Suppose we want to

evaluate Procedure1 followed by Procedure2 sequentially. While performing

Procedure1, the input signals will also propagate to the gates in Procedure2 because they

are all interconnected. A hypothetical switching activities for the gates of the control unit

and datapath for both Procedure1 and Procedure2 are shown in Figure 4.3(b). Thus,

power is being used by Procedure2 although the result from it is not needed. In fact, the
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amount of power used by Procedure2 is the same regardless of whether the result is

needed or not. Similarly when Procedure2 is being performed, Procedure1 is consuming

power but the result from it is not needed.

If we take a hypothetical situation where both procedures require 1µW of power and

1µsec to execute, then for both procedures to execute sequentially, a total of 2µW of
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power is required for 2µsec resulting in a total of 4µJ of energy being consumed by the

single large processor as illustrated in Figure 4.3(c).

Figure 4.3(d) shows the result of structural partitioning the large processor of Figure

4.3(a). Here, the single datapath and control unit netlist is divided into two parts resulting

in gates from both Procedure1 and Procedure2 to be spread across the two parts. As a

result, even if we need the result from only one procedure, there will still be switching

activities from both parts. Thus, the switching activities and energy consumption are

decreased only slightly from the single large processor as shown in Figure 4.3(e) and

Figure 4.3(f).

4.3. Procedural Functional Partitioning

In procedural functional partitioning, the focus is on partitioning coarse-grained

functions and procedures [1]. The behavioral process is first partitioned into several

smaller mutually exclusive parts. Each of these smaller parts is then synthesized to its

own custom processor, having its own controller and datapath as shown in Figure 4.2(b).

From a power reduction perspective, functional partitioning can significantly reduce

switching activity. The main reason is that partitioning occurs before synthesis, hence

each part is a processor containing its own control unit and datapath. Each processor is

now smaller than the original large processor implementing the entire process, and only

one processor is executing a computation at any given time. Thus, at a given time,

switching activity is limited to only one small processor; the other processors will be idle.

A processor is made idle by preventing its primary inputs from changing as discussed in
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Section 3.3. When a processor is idle, we have, in effect shut down both the controller

and the datapath for that processor. Thus, power reduction is possible through functional

partitioning because it reduces the overall switching activities of the entire system by

localizing the activities within smaller processors, hence, power consumed per operation

is less.

In our hypothetical example, we would first partition Procedure1 and Procedure2.

Synthesis is then applied to the two parts individually resulting in two separate processors

having there own control units and datapaths as shown in Figure 4.3(g). Being two

separate processors, the inputs to one will now have no effect to the inputs of the other.

With two smaller mutually exclusive processors, the total amount of switching activities

at any one time is reduced by about half as shown in Figure 4.3(h). However, partitioning

introduces new switching activities for inter-processor communication. It is only during

inter-processor communication that both processors will have switching activities at the

same time. Thus, in our hypothetical example, each processor might now consume

1.25µW of power, resulting in a total energy of 2.5µJ as shown in Figure 4.3(i).

4.4. Procedural Functional Partitioning Example

We performed an experiment to compare the switching activities between an

unpartitioned and a partitioned system. The example shown is for a factorization

problem. Given the pseudo-code shown in Figure 4.4, we can partition it into three parts

as shown in Figure 4.5. The program calls three separate procedures, mod, divide, and

FILLERSP
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input x;
count := 2;
while ((count * count) <= x) loop
mod(x,count,mod_result);
divide(x,count,divide_result);
is_prime(count,prime_result1);
is_prime(divide_result,prime_result2);
if (mod_result = 0) and (prime_result1 = 1) and

(prime_result2 = 1) then
answer1 <= divide_result;
answer2 <= count;
exit;

else
count := count + 1;

end if;
end loop;

Figure 4.4. Sample unpartitioned pseudo-code.

part 1
…
while ((count * count) <= x) loop

call and wait for result from part 2;
call and wait for result from part 3;
if …

end loop;

part 2
wait for part 1 to call;
get parameters x and count;
mod(x,count,mod_result);
divide(x,count,divide_result);
return mod_result and divide_result;

part 3
wait for part 1 to call;
get parameters count and divide_result;
is_prime(count,prime_result1);
is_prime(divide_result,prime_result2);
return prime_result1 and prime_result2;

Figure 4.5. Sample partitioned pseudo-code.
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is_prime. We can put mod and divide in part two, is_prime in part three and the

remaining code in part one. Part one controls the entire program flow. It performs the

primary I/O, and calls the other parts when required. The part call includes the activation

of the called part and passing the parameters to the called part. The part return will pass

the results back to part one.

Figure 4.6 and Figure 4.7 show a plot of the switching activities for the unpartitioned

and partitioned Fac example as shown in Figure 4.4 and Figure 4.5 respectively. Here we

actually see the decrease in switching activities as a result of the partitioning. In the

unpartitioned case, Figure 4.6, the number of toggles can go as high as 1601 in a clock

cycle with an average of 141. The total power consumption is 19 mWatt. In the

partitioned case, Figure 4.7, the maximum number of toggles in a clock cycle is only
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1353 with an average of 66. The total power consumption for this case is only 11 mWatt,

a 41% reduction in power consumption.

In the partitioned plot, Figure 4.7, we can see that part two is called four times (at

clock cycle 60, 380, 680, and 900). Part three is called nine times (at clock cycle 290,

550, 600, 790, 840, 1010, 1070, 1130, and 1190). Part one is the main controlling

module, which is active only during the communication with the other two parts. We see

that while part two is active, parts one and three do not have any switching activities

whatsoever. Similarly, when part three is active, parts one and two are completely

inactive. The only time when all three parts have switching activities is when

handshaking signals are occurring over the communication bus. Notice also that the

number of clock cycles is the same for both the unpartitioned and the partitioned system.
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4.5. Summary

In this chapter, we have presented a procedural functional partitioning technique for

reducing power consumption. We showed that the traditional structural partitioning

technique cannot reduce power, whereas, the procedural functional partitioning technique

can reduce power by as much as 41%.
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Chapter 5. FSMD Functional
Partitioning

Many circuit designs are still specified at the register-transfer level using the finite-

state machine with datapath (FSMD) model in which the behavior has been scheduled

into states. The reason is that designers feel that they need more control over the cycle-

by-cycle execution of the circuit, and this is something that a behavioral description and

synthesis does not offer. In this chapter, we will describe a FSMD functional partitioning

technique where we will apply the procedural functional partitioning technique described

in the previous chapter to the FSMD model. We will first give a formal definition of a

FSMD and then our FSMD functional partitioning technique will be described.

5.1. FSMD Definition

A finite state machine with datapath differs from a traditional FSM in that it may

include variables with various data types, as well as complex data operations in its

actions. We can think of an FSMD as a behavioral process that has been scheduled, able

to represent both control and data. Synthesis of the FSMD will split it into an FSM

(representing control only) and a datapath (representing data only). A sample behavioral

description of an FSMD is shown in Figure 5.1.
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Formally, a finite state machine with datapath is a 6-tuple [1]

P = <S, s0, I ∪ STAT, O ∪ A, δ, λ> (5.10)

where:

S = {s0, …, sm} is a finite set of states.

s0 ∈ S is the reset state.

I = { i j} is a set of primary input values.

STAT = {Rel(a, b) : a, b ∈ EXP} is a set of status signals as logical relations between

loop
case State_Var is

when s0  =>
p := 1 ;
i := 1 ;
if (1 < x) then -- x is a primary input

State_Var := s1 ;
else

y <= p ;
State_Var := s3 ;

end if ;
when s1  =>

p := p * 2 ;
y <= p ;
i := i + 1 ;
State_Var := s2 ;

when s2  =>
if (i < x) then

State_Var := s1 ;
else

State_Var := s3 ;
end if ;

when s3  =>
p := p – 1;
y <= p ;
i := i – 1;
State_Var := s2 ;

end case;
end loop;

Figure 5.1. Sample unpartitioned FSMD code.
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two expressions from the set EXP.

EXP = {f(x, y, z, …) : x, y, z, … ∈ VAR} is a set of expressions.

VAR is a set of storage variables.

O = {ok} is a set of primary output values.

A = {x ⇐ e : x ∈ VAR, e ∈ EXP} is a set of storage assignments.

δ is a state transition function that maps a cross product of S and I ∪ STAT into S.

λ is the output function that maps a cross product of S and I ∪ STAT into O ∪ A for

Mealy models or S into O ∪ A for Moore models.

5.2. FSMD Functional Partitioning Technique

The algorithm for our FSMD functional partitioning technique is listed in Figure 5.2.

The input to the algorithm is a behavioral description of an FSMD such as the one shown

in Figure 5.1. The output is multiple FSMDs with interconnections between them. In the

first step of the algorithm the internal energy for each state is calculated using the internal

energy power estimation technique described in Section 6.1. A dataflow analysis is then

performed on the FSMD to determine the data transfer and communication bus width

between them. This information is used in the evaluation of the communication energies

FSMD_Functional_Partitioning(FSMD){
Calculate_State_Energy;
Dataflow_Analysis;
FSMD_Partitioning;
Synthesis;
FSMD_Refinement;

}

Figure 5.2. FSMD functional partitioning algorithm.
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between states. Having the internal state energy and the state communication energy, the

next step is to perform the actual partitioning of the FSMD. This is described in Chapter

7. After partitioning, each of these smaller FSMDs is then synthesized to its own custom

processor, having its own controller and datapath. Finally, in the refinement step, a

communication bus is added to connect the processors together so that they are

functionally equivalent to the original unpartitioned FSMD.

The architectural model after partitioning and refinement is shown in Figure 5.3.

5.3. Dataflow Analysis

In contrast to procedural functional partitioning [1] as described in the previous

chapter, which performs a coarse-grained partitioning of procedures and functions,

FSMD functional partitioning has no concept of functions or procedures, but rather states.

What we need in FSMD functional partitioning is to be able to determine the variables

that need to be passed from one state to the next. After partitioning, this information will

be used to determine the data that need to be passed between the parts. This in turn will

determine the maximum bus width required to connect the parts together.
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5.3.1. Basic Dataflow Analysis

Given an unpartitioned FSMD, we first construct a control flow graph by assigning a

state in the FSMD to a node in the graph. The edges in the graph correspond to the

transitions between the states. For example, given the unpartitioned FSMD code of

Figure 5.1, we obtain the initial control flow graph of Figure 5.5(a).

A dataflow analysis, similar to that use for compiler optimization [3], is then

performed on the control flow graph to obtain the variables that need to be passed from

one state to another. The algorithm for the basic dataflow analysis is shown in Figure 5.4.

For each node n, four sets of variables are used: n.def, n.use, n.in, and n.out. The set n.def

contains all variables defined in node n. A variable is defined when it is written to, for

example, when it occurs on the left side of an assignment statement. The set n.use

contains all variables first used in node n. A variable is used when it is read from, for

example, when it occurs on the right side of an assignment statement or in an IF

statement. A variable is first used in a block if it is used before it is defined, if any, in that

block. For example, given the following two statements in a block:

j := i * 2;
k := j + 1;
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the set n.def will contain the two variables j and k because both of them are defined. Both

variables i and j are used but the set n.use will contain only i because even though j is

used in statement two, it is not first used; j is defined in statement one before it is used in

statement two. However, if the two statements are switched around:

k := j + 1;
j := i * 2;

then both i and j will be in n.use.

From the sets n.def and n.use, the remaining two sets n.in and n.out are evaluated. n.in

is the set of variables needed to be passed from the preceding node, and n.out is the set of

variables needed to pass to the succeeding node.

The algorithm starts by initializing the sets n.in, n.def, and n.use for every node n. For

each iteration of the WHILE loop, the two sets n.in and n.out are evaluated for every node.

for each node n do
begin
// initialization
n.in = ∅;
n.def = set of all variables defined in n;
n.use = set of all variables first used in n; (a variable is first used in a block if it is used before it is

defined, if any, in that block.)
end

while changes to any of the in’s occur do
begin
for each node n from last to first do

end

)..(..

. of nodesuccessor  a is   where..

begin

defnoutnuseninn

nminmoutn

−=
=

�

�

end

Figure 5.4. Basic dataflow analysis algorithm.
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This looping continues as long as there are changes to any of the in sets. At the

termination of the algorithm, each node n will have the two sets n.in and n.out defined.

Figure 5.5(b) shows the variables in the four sets after applying the algorithm to the

sample code in Figure 5.1.

5.3.2. Partition Dataflow Analysis

When we perform the FSMD partitioning, we are only interested in the amount of

data that cross between the parts and not between two states that are in the same part.

Thus, for each part Pi, we need to calculate the set of variables needed to be passed from

the caller part, Pi.in, and the set of variables needed to pass to the callee part, Pi.out. The

algorithm to evaluate Pi.in and Pi.out is shown in Figure 5.6. Note that before applying

this algorithm, we must already know how many parts we will have and the set of nodes

in each part. This is discussed further in Chapter 6 and Chapter 7. The four sets: def, use,

in, and out are defined similarly as in the basic dataflow analysis but for the whole part.

In addition, we define for each part a callee and caller set. P.callee is the set of states in P

that transition from states that are not in P. P.caller is the set of states in P that transition

to states that are not in P.

Continuing with our example, if we put node s1 in part P1 and the rest of the nodes in

part P0, then after applying the algorithm of Figure 5.6, we obtain the results shown in

Figure 5.5(c). Notice that the variable x is used in state s2 and was defined (primary

input) in state s0, thus, it must be passed from s0 via s1 to s2. However, x is not in

FILLER
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1.def={p,y, i }
1 .use={p, i }
1. in={ p, i ,x}
1.out={p, i ,x}

2.def={ t2}
2.use={ i ,x}
2. in={ p, i ,x}
2.out={p, i ,x}

3.def={p,y, i }
3 .use={p, i }
3. in={ p, i ,x}
3.out={p, i ,x}

Figure 5.5. (a) Control flow graph for Figure 5.1, (b) after basic dataflow analysis, (c)  after
partition dataflow analysis, and (c) result after refinement.
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either of the sets P1.in or P1.out. This is because s0 and s2 are in the same part. If we had

put s2 in P1 then x would have to be passed across the parts, thus increasing the bus

width and therefore power consumed by the communication.

5.4. FSMD Refinement

The technique for actually partitioning the FSMD states is described in Chapter 7.

After partitioning the FSMD states into mutually exclusive parts, each part is then

individually synthesized down to the gate level. The next step in the process is to

generate new communicating FSMDs such that they are functionally equivalent to the

original unpartitioned FSMD. The resulting communicating FSMDs from Figure 5.5(a)

are shown in Figure 5.5(d).

For example, to transition from state s0 to s1 in the unpartitioned FSMD shown in

Figure 5.5(a), the equivalent transition in the partitioned FSMDs is shown in Figure

5.5(d). Initially, P0 is in s0 and P1 is in its idle state sidle1. To transition to s1, P0 exits s0,

for each part P do

end

).()..(.

).()..(.
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Figure 5.6. Partition dataflow analysis algorithm.
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asserts starts1, and enters its idle state sidle0. Seeing that starts1 is asserted, P1 exits sidle1

and enters s1.

The FSMD partitioning can be formally described as follows. Let

P = <S, s0, I ∪ STAT, O ∪ A, δ, λ>

be the original unpartitioned FSMD. Our method is to partition P into n parts, P0, …, Pn-1

such that the combined behavior of the partitioned Pi’s is functionally equivalent to the

unpartitioned P. Each partitioned FSMD, Pi, is defined as follows:

Pi = <Si, s0,i, sidle,i, I i ∪ STATi ∪ IPi, Oi ∪ Ai ∪ OPi, δi, λi > (5.11)

where the symbols are defined similarly to the unpartitioned FSMD except that they are

for each part Pi. A new idle state sidle,i ∈ Si is added to each Pi. Furthermore,
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P0 is the main active part, and the other Pi’s are the passive parts. For the main part

P0, the idle state is not the reset state, i.e. s0,0 ≠ sidle,0. Whereas, for the other parts Pi=1 to n-

1, the idle state is the reset state, i.e. s0,i = sidle,i. Besides the primary inputs and outputs Ii

and Oi, each part also has data that is passed between the parts. These are IPi and OPi for

data that is passed from and to another part respectively. IPi = <ip1, … ipa> where a =
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number of input parameters for Pi, and OPi = <op1, … opb> where b = number of output

parameters for Pi. These parameters and values are determined from the dataflow

analysis.

For each transition from a state u of Pi to a state v of Pj (i ≠ j), a new signal startv is

generated. startv is a uni-directional signal that goes from Pi to Pj. Every transition from

state u to v in P becomes a transition from u to sidle,i in Pi and from sidle,j to v in Pj. The

transition from u to sidle,i in Pi asserts the output signal startv of Pi. The transition from

sidle,j to v in Pj is performed only when the input signal startv of Pj is asserted.

5.5. Preserving the Cycle-By-Cycle Behavior

Partitioning the FSMD and introducing the extra idle state in each part according to

the technique described above do not change the cycle-by-cycle behavior of the original

unpartitioned FSMD. When there is a transition that crosses between two parts, the caller

processor will transition to its idle state while at the same time, the callee processor

transitions from its idle state to the next state. The transitions to and from respective idle

states for the two parts happen simultaneously, thus, no extra clock cycle is needed. A

graphical representation of the execution of the partitioned FSMD is shown in Figure

5.7(a). The edges are annotated with the signals and data that are being sent across the

communication bus. The corresponding transition timing diagram is shown in Figure

5.7(b).
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5.6. Critical Path Analysis

Communication involves driving buffers. Even though the delay to drive buffers is

much shorter than the delay for all other operations, it is still possible that this added

delay will lengthen the critical path. There are three cases where this may happen as

shown in Figure 5.8. In the first case, Figure 5.8(a), the communication operation extends

the critical path. If a state already contains the critical path and we need to add

P 1

if  s tar t_s1 = 0

i f  s tar t_s1 = 0
da ta1  :=  FB

star t_s2  <= 1
F B  < =  d a t a 1

P 0
star t_s1  <= 1
F B  < =  d a t a 0

i f  s tar t_s2 = 0

i f  s tar t_s2 = 1
da ta0  :=  FB

s3s2s0 s
id le0

s
id le1 s1 s

id le1

(a)

c lock

P1 state reg

start  s1

P0 state reg

start  s2

t0 t1 t2 t3

s0 s2 s3s
idle0

s
idle1 s1 s

idle1
s

idle1

(b)

Figure 5.7. Cycle-by-cycle behavior preservation: (a) execution, and (b) transition timing
diagram.
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communication to this state, then of course the critical path will be lengthened. In the

second case, Figure 5.8(b), the communication is added to a non-critical path. However,

with the added communication delay, the non-critical path is now longer than the original

critical path. Again, we have extended the critical path. In the third case, Figure 5.8(c),

the communication is added to a non-critical path, but the total delay is still less than the

original critical path. In this case, the critical path is not changed.

Even though the communication can extend the critical path in the partitioned system,

it is still possible that this extended critical path is actually shorter than the critical path in

the unpartitioned system. The reason is that because of the smaller circuitry in the smaller

parts of the partitioned system, the critical path in the partitioned system is often actually

shorter than the critical path in the unpartitioned system.

(a)

(b)

(c)

or ig ina l
cr i t ica l  path

non-cr i t ica l  path commun ica t i on

Figure 5.8. Three different situations for adding the communication operations: (a)
extending the critical path from original critical path, (b) extending the critical path from
non-critical path, and (c) not extending the critical path.
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Thus the critical path can be either lengthened (because of the added communication

circuitry) or shortened (because of the smaller circuitry in the smaller part). Hence, the

overall execution time can be longer or shorter than the unpartitioned system.

5.7. Preserving the Critical Path

An alternative to extending the critical path is to add the communication operation in

a separate state. The original state will go to this new state to perform the communication

P 1

if  s tar t_s1 = 0

i f  s tar t_s1 = 0
da ta1  :=  FB

star t_s2  <= 1
F B  < =  d a t a 1

P 0

star t_s1  <= 1
F B  < =  d a t a 0

s0

s
id le1 s1 s

id le1

i f  s tar t_s2 = 0

i f  s tar t_s2 = 1
da ta0  :=  FB

s3s2s
id le0

s0
ext ra

s1
ext ra

 (a)

c lock

P1 state reg

start  s1

P0 state reg

start  s2

t0 t1 t2 t3 t4 t5

s
idle0

s
idle0 s2 s3s0 s0

extra

s1
extras1s

idle1
s

idle1
s

idle1

(b)

Figure 5.9. Critical path preservation: (a) execution, and (b) transition timing diagram.
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before entering the idle state. The tradeoff here is that an extra state is needed and so the

execution time will be lengthen by one clock cycle for each transition between the parts.

This is shown in Figure 5.9(a) with the extra states s0_extra and s1_extra added in parts

P0 and P1 respectively for sending the data over the communication bus. The

corresponding transition timing diagram is shown in Figure 5.9(b).

This method is usually not used at the FSMD functional partitioning level because at

this level, preserving the cycle-by-cycle behavior of the system is more important.

However, this method can be used if such preservation is not necessary.

5.8. Summary

In this chapter, we described a FSMD functional partitioning technique for power

reduction. A processor is partitioned into two or more mutually exclusive parts before

synthesis. After synthesis of the individual parts, the parts are reconnected via a

communication bus so that they are functionally equivalent to the original unpartitioned

FSMD. A dataflow analysis algorithm was used to find the data transfers between the

parts and the communication bus width. This FSMD functional partitioning technique can

be used to preserve either the cycle-by-cycle behavior of the circuit or to preserve the

critical path.



63

References
[1] D. Gajski, N. Dutt, A. Wu, & S. Lin, High-Level Synthesis Introduction to Chip and

System Design, Kluwer Academic Publisher, Boston, 1992.

[2] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and design of
embedded systems, New Jersey, Prentice Hall, 1994.

[3] A. V. Aho, R. Sethi, & J. D. Ullman, Compilers Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, California, 1988.



64

Chapter 6. Power Estimation Model

The power cost of a particular partitioning can be obtained either using a simulated

approach or an estimated approach. While the simulated approach is much more accurate,

it is also very time consuming because the switching activities of each node in the circuit

is collected by simulating the entire design. Working at the FSMD level, the solution

space is very large and so the simulated approach will drastically limit our exploration of

the solution space. Much work has been done on performing very accurate but time

consuming power estimation [1]. However, for our purposes, using these elaborate power

estimation techniques is still impractical because it has to be evaluated many times during

the partitioning optimization process. What we require is a very fast estimation technique

that will give us a consistent relative evaluation of each partitioning. We therefore

describe an efficient power estimation model and define theoretical energy bounds, which

are used by the partitioning algorithm and heuristic.

Recall from Chapter 3 that the dynamic power consumption of a general design is

given by

NfVCP 2

2

1=
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where C is the average capacitance switched per access, V is the supply voltage, f is the

clock frequency, and N is the switching frequency of the unit (or the activity factor).

From this equation, we see that power estimation depends on several factors that are

known only after hardware assignment, scheduling and/or placement. Furthermore, the

activity factor is known only after executing the design. At the FSMD level, much of the

information is not known. For example, in order to calculate the power consumption of a

bus, the bus capacitance must be known. However, the bus capacitance is dependent on

the length of the wire and proximity to other wires, and this information is not known

until after placement and routing. Fortunately, for high-level optimization, relative

evaluation of different designs is more important than absolute evaluation, and

consistency is more important than accuracy.

Our power estimation model is divided into two parts: the internal and external

energy models. The internal energy is the energy consumed by a single processor while

the external energy is the energy consumed by the communication between the

processors. The total energy consumed by a partitioned FSMD system is, therefore, the

sum of the internal and the external energy. For the remaining discussion, we will restrict

to partitioning the FSMD into two parts. The idea can be easily generalized to more than

two parts.

6.1. Internal Energy

We define the internal energy as the total amount of energy consumed by all the

states in a part.  This excludes the communication energy between states.  The energy for
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a state is the amount of power consumed by the state multiplied by the amount of time

the state spends executing.

Let U = {s1, s2, …, su} be the set of u states in the unpartitioned FSMD. Let A and B

be two partitions of the FSMD such that A ∩ B = ∅, A ∪ B = U, and a and b be the

number of states in A and B respectively so that a+b=u. Let Esi be the energy consumed

by state si. From [2] we see that the power for a state can be approximated by the number

of functional units and registers, and the amount of time spent executing in a state can be

found by profiling. Furthermore, let

∑
∈∀

=
Us

iU

i

EsE (6.1)

be the sum of the energy of the states in the unpartitioned FSMD,

∑
∈∀

=
As

iA

i

EsE (6.2)

be the sum of the energy of the states in the partitioned FSMD A, and

∑
∈∀

=
Bs

iB

i

EsE (6.3)

be the sum of the energy of the states in the partitioned FSMD B. We claim that the total

energy for an n-state FSMD is equal to

∑
∈∀

α
FSMDs

in

i

Es (6.4)

where αn is determined by the complexity of the n-state FSMD. More detail on the

complexity is given in Section 6.2. Therefore, the total energy usage for the unpartitioned
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FSMD Eunpartitioned is

Uunedunpartitio EE α= , (6.5)

and the total internal energy for the partitioned FSMD Einternal is

BbAainernal EEE α+α= . (6.6)

Figure 6.1 shows the results of an experiment where the energy usage for a FSMD

with different numbers of states with identical actions is evaluated. The plot shows that

adding the energy for an n-state FSMD with an m-state FSMD is less than the energy for

an n+m state FSMD. For example, using the 4 FU line, the energy for the 20-state and

28-state FSMDs (152+241=393) is less than the energy for the 48-state FSMD (467). In

other words, when the complexities of two individual states are summed, the result will

be less than the complexity of the two states combined. Thus, we have the inequality
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Figure 6.1. Energy versus the number of identical states for a FSMD with one and four
functional units.
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UuBbAa EEE α<α+α . (6.7)

6.2. FSMD Complexity

The FSMD complexity α addresses the issues of the internal interconnect and the size

of the FSMD in terms of energy usage. The internal interconnect deals with the

complexity of the datapath, whereas, the number of states deals with the complexity of

the control unit. It was observed in [33] that smaller capacitance is achieved in smaller

designs because there are fewer and/or shorter interconnects, and fewer functional units

and registers, which are obstacles during floorplanning and routing, which indirectly

influence interconnect capacitance, and therefore, power usage.  Thus, the internal

interconnect capacitance is dependent on, among other factors, the internal bus length

which in turn is dependent on the number of functional units, multiplexers, registers, etc.

that need to be connected together, and the final layout area.

Working at the FSMD level, this interconnect can be approximated by the number of

states and functional units required in a state. Figure 6.1 shows that the energy usage of

the FSMD is also related to its size and is approximated by the number of states in the

FSMD. A similar relationship was also found in [2]. Figure 6.1 also shows how the

number of states relates to the energy usage for different number of functional units.

Thus, an approximation of the complexity, αn, for an n-state FSMD is

)( regmuxFUnn ++×=α (6.8)
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where n is the number of states in the FSMD, and FU, mux and reg are the average

number of functional units, multiplexers, and registers respectively per state. α1 is the

complexity for one state.  If the α1s for two different states are not equal, then we use the

smaller number.

6.3. External Energy

The total energy of the partitioned system is not just Einternal. When there are two or

more parts, communication must be added between the parts. We define the external

energy as the energy consumed by the communication between parts. Thus, the total

energy for the partitioned system is

commBBAAdpartitione EEEE +α+α= . (6.9)

The communication energy Ecomm, is simply the sum of the energy (weights) of all the

edges crossing between the parts, Exedge, multiply by their activity factor, β:

∑
−∀

×β=
iedgecross

iicomm ExedgeE
 

)( (6.10)

In our architectural model shown in Figure 5.3, only one external common bus is used

to connect the two parts.  All communication between parts occurs over this bus. Thus,

the external bus is used every time when there is a transition from state si to sj such that si

and sj are in different parts. A major factor that affects the bus energy is its length as

reported in [33]. The bus length is approximated by the number of parts being connected

together. The bus width is derived from the maximum data size crossing the parts. If the

data is multiplexed over the bus, then the smaller data size is multiplied by the number of
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times required to transmit all the data. The data size is obtained from the dataflow

analysis.

Although in equation (6.7) we claim that

UuBbAa EEE α<α+α .

However, with the added communication, the claim is not always true. In other words, it

is possible that

UucommBbAa EEEE α>+α+α .

Fortunately as we have found in most situations, there will be a partitioning such that

UucommBbAa EEEE α<+α+α . (6.11)

6.4. Finding the Energy Bounds

We will now evaluate lower (best) and upper (worst) bounds for the internal energy

Einternal, the external communication energy Ecomm, and finally the partitioned energy

Epartitioned. These bounds will be used in our optimal partitioning algorithm.

6.4.1. Internal energy bounds

The following internal energy bounds progressively get tighter.  We start with

[0, αuEu] as the first bound.  The lower bound is obvious.  The upper bound is for an

unpartitioned system.  The second, tighter bound is [α1EU, (αu - α1)EU]. The reason for

this second lower bound is that the minimum energy for a partition is when there is no

added complexity when all the states are added into the part. Thus, Einternal = α1EA + α1EB



71

= α1EU.  The upper bound comes from the fact that we need at least one state in one part

in order to have a 2-way partition.  Thus, we subtract the least energy for one state from

the unpartitioned energy.

If some states are already assigned to either of the parts, we can get an even tighter

third bound. Given the fact that some states are already assigned, we can calculate the

internal energy for the current partitioning (i.e. currently known assigned states) using

equation (6.6). From equation (6.7), we see that the worst that can happen is to put all the

states in the same part.  Thus, to get the upper bound, we put all the remaining unassigned

states together in the same part.  The resulting energy will be either (αa+αrs)(EA+Ers), or

(αb+αrs)(EB+Ers), where αrs is the complexity of the combined remaining states and Ers is

the total internal energy of the remaining states. Since we know that some states are

already assigned to another part, therefore, Einternal can be either [(αa+αrs)(EA+Ers) +

αbEB] or [(αb+αrs)(EB+Ers) + αaEA]. We select the one that is the largest. Thus, the upper

bound, ubEinternal, is









α++α+α
α++α+α

=
)())((

),())((
int

AarsBrsb

BbrsArsa
ernalE EEE

EEE
maxub (6.12)

In fact, this is the exact maximum for Einternal given that some states are already assigned

to the parts because (αa+αb+αrs)(EA+EB+Ers) = αuEU is the absolute maximum.
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For the lower bound, we add to the current partitioning energy the total energy for the

remaining unassigned states, Ers, using the least complexity (i.e. α1).  Thus, the lower

bound, lbEinternal, is

rsBbAaernalE EEElb 1int α+α+α= . (6.13)

To get an even tighter lower bound, we note that all the remaining states must be

assigned to either of the two parts, thus, the complexity for these remaining states must

be at least min(αa, αb). Thus,

rsbaBbAaernalE EEElb ⋅αα+α+α= )],min[(int . (6.14)

Furthermore, since at least one of the remaining states must be added to one part, the

complexity of that part must at least be increased by α1.  Thus, an even tighter lower

bound is

rsbaBbAaernalE EEElb ⋅α+αα+α+α= )],min[( 1int (6.15)

6.4.2. External energy bounds

We will now provide bounds for the external communication energy, Ecomm.  Recall

from equation (6.10) that Ecomm is the sum of the energy (weights) of all the edges

crossing between the parts. Thus, the first lower and upper bounds are when no edges and

all edges respectively cross between parts. However, given the fact that some states are

already assigned to either of the parts, therefore, some edges are already determined as to

whether they cross between parts or not. Thus, knowing the current communication
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energy, Ecc, the upper bound for the communication energy, ubEcomm, is when all the

remaining edges, Erc, will cross between parts:

∑+= rcccEcomm EEub (6.16)

The lower bound for the communication energy, lbEcomm, is the sum of the currently

known communication energy, Ecc, plus the minimum of all the remaining

communication edges, Erc,

)(min rcccEcomm EElb += (6.17)

6.4.3. Partitioned energy bounds

The bounds for the partitioned FSMD are simply the sum of the internal and

communication energy bounds. Thus, the lower bound for the partitioned energy,

lbEpartitioned, is

[ ] [ ])min()],[(min 1

int

rcccrsbaBbAa

EcommernalEedEpartition

EEEEE

lblblb

++⋅α+αα+α+α=

+=
(6.18)

and the upper bound for the partitioned energy, ubEpartitioned, is
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6.5. Model accuracy

We have compared the accuracy of the results obtained using our power estimation

model with that of the simulated approach. For the simulated approach, we used an event-
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driven simulator to simulate the execution of the design to collect the switching

frequency of each node in the circuit. The loading capacitance for each node is obtained

from the synthesized gate level netlist and a low-power technology library. The power

equation, P = ½CV2fN, is then used to calculate the total energy consumed.

Comparing the simulated results shown in Table 8.4 and the estimated results shown

in Table 8.7, we see that on average the difference between the estimated data and the

simulated data is only 17%.

6.6. Summary

We have presented an efficient power estimation model and defined theoretical

energy bounds for the FSMD model. This power estimation model is used by our branch-

and-bound partitioning algorithm and simulated annealing heuristic.
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Chapter 7. Partitioning Algorithm
and Heuristic

We will now describe a branch-and-bound optimal algorithm and a near optimal

simulated annealing heuristic for functional partitioning the FSMD for low power. Our

objective is to find a partitioning among the FSMD states such that the total energy for

the partitioned system is minimized.

The cost function used by the algorithm and heuristic is based on the power

estimation model described in the previous chapter. Using the power estimation model

and the dataflow analysis, we can evaluate the internal energy usage for each state and

the communication energy between any two states in the FSMD.

7.1. Branch-and-Bound

Our optimal algorithm is based on a branch-and-bound technique. In this algorithm, a

binary tree structure is used. Nodes that are promising are kept for further processing and

those that are guaranteed to be worst are pruned. We start with the root having only one

state. At each successive level, we add a new state and assign to the nodes in that level all

possible combinations of the states for the two parts. Using equations (6.18) and (6.19)



77

from the previous chapter, an upper and lower bound is calculated for each node.

Depending on the bounds, a node is either kept or pruned. The most promising node for a

particular level is the one with the minimum energy for that level. Nodes that satisfy one

of the following two conditions are guaranteed to be inferior and are therefore pruned:

Condition 1: if LBni ≥ UBmin then prune ni.

Condition 2: if LBni ≥ Emin then prune ni.

where LBni is the lower bound for the node ni, UBmin is the current minimum upper

bound, and Emin is the current minimum energy for a complete solution seen so far.

For example, assume that we have the state energy and the communication energy

between any two states obtained from the basic dataflow analysis for four states as shown

in Table 7.1. The resulting branch-and-bound binary tree is shown in Figure 7.1. Each

node is annotated with the node number, the FSMD states in each of the two partitions,

Ep (the current energy for that partitioning), lb (the lower bound for that partitioning),

and ub (the upper bound for that partitioning). For example, for node 7, part A contains

state s0 and part B contains states s1 and s2. Using equation (6.9), the current energy for

this three state partitioning is:

Table 7.1. Sample energy data.

States s0 s1 s2 s3
State Energy 110 80 60 80

State Comm Energy
s0 30 0 30
s1 30 0
s2 30
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420

30  60)2(80  1(110)

=
+++=

+α+α= commBBAAdpartitione EEEE

Note that this is not the energy for the complete solution. Epartitioned is the energy for the

complete solution only for the nodes at the lowest level. Using equation (6.18), the lower

bound is:
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Figure 7.1. Sample branch-and-bound binary tree.
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After evaluating nodes 1 to 7, we have UBmin = 860. Since the lower bound for node

4, LBn4 = 860, therefore, condition one is satisfied and we can prune the subtree rooted at

node 4.

T = initial_temperature;
c_old = InitialCost(initial_partition);
while stopping_criterion is not satisfied do
while inner_loop_criterion is not satisfied do

i = RANDOM(1,number_of_states); // next state to move
MOVE{ Si}; // move Si from current part to other part
c_new = IncrementalCost(Si);
∆c = c_new – c_old;
x = F(∆c, T);
r = RANDOM(0,1);
if r < x then

c_old = c_new;
end if

end while
T = Update(T);

end while

Figure 7.2. Simulated annealing heuristic.



80

In this example, we have two optimal solutions. The first solution is at node 11 where

the partitioning is A = {s0, s1} and B = {s2, s3}, and Epartitioned = 720. The second solution

is at node 14 with the partitioning A = {s0, s3} and B = {s1, s2}.

7.2. Simulated Annealing

To tradeoff accuracy with speed, we implemented a simulated annealing heuristic.

Near optimal solution is possible with this simple and fairly fast heuristic as first

introduced in [1] and further discussed in [2].

The simulated annealing heuristic, as shown in Figure 7.2, starts with a random initial

partition. For each move, the heuristic randomly selects a state to be moved from one

partition to another. The acceptance of the new partition depends on the function F and a

random number. The function F is defined as

),1(),(
)(

T
c

eminTcF
∆−=∆ .

where ∆c is the change in cost from the old to the new partition, and T is the annealing

temperature. If the cost for the new partitioning is better than the old (i.e., ∆c is negative)

then F returns a 1 and so the new partitioning is definitely accepted; otherwise, it is

accepted with a probability determined by the annealing temperature and a random

number. The annealing temperature, T, is high at the beginning and is decreased during

each iteration by the function Update which is defined as

Update(T) = αT
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where 0 < α < 1.  The stopping_criterion is satisfied when T is approximately zero.  The

inner_loop_criterion is satisfied when the solution does not improve for a certain number

of iterations. The accuracy of the heuristic is determined by the annealing temperature T,

stopping_criterion, inner_loop_criterion, and α for updating T.

The heuristic starts by calling the InitialCost function shown in Figure 7.3 for

calculating the initial energy cost of the starting random partitioning. After each move in

the heuristic, the total energy is re-calculated using the IncrementalCost function shown

in Figure 7.4. The global variables (EA, EB, sizeA, sizeB, and Ecomm) used in the

IncrementalCost function are also initialized in the InitialCost function. Both of these

cost functions are based on the energy estimation model described in the last chapter. The

InitialCost(partitioning){
EA = EB = 0;
sizeA = sizeB = 0;
Ecomm = 0;
for all states Si do { // calculate EA,

if Si.part = A then { // EB,
EA = EA + ESi // sizeA,
sizeA = sizeA + 1; // and sizeB

} else {
EB = EB + ESi

sizeB = sizeB + 1;
}

for all edges edgei,j do { // calculate Ecomm
if Si.part ≠ Sj.part then

Ecomm = Ecomm + edgei,j.weight
}

Epartitioned = sizeA*EA + sizeB*EB + Ecomm;
return Epartitioned;
}

Figure 7.3. Initial cost function.
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complexity for the IncrementalCost function is O(k) where k is the maximum number of

adjacent edges for a node.  The worst is when k equals the number of states.

The annealing parameters used in the experiments are as follows: annealing

temperature = 30; random seed = fixed for all examples; outer loop stopping criterion =

1x10-6; inner loop stopping criterion = 10000; alpha for updating the annealing

temperature = 1x10-6.

7.3. Summary

In this chapter, we have presented an optimal branch-and-bound algorithm and a near

optimal simulated annealing heuristic for partitioning the FSMD states such that the total

energy for the partitioned system is minimized.

IncrementalCost(Smove){
if Smove.part = A then { // moved to part A

sizeA++;
sizeB--;
EA = EA + ESmove;
EB = EB – ESmove;
}

else { // moved to part B
sizeA--;
sizeB++;
EA = EA - ESmove;
EB = EB + ESmove;
}

for all states Si adjacent to Smove { // update Ecomm
if Si.part ≠ Smove.part then {

Ecomm = Ecomm + edgei,move.weight;
}

}

return sizeA*EA + sizeB*EB + Ecomm;
}

Figure 7.4. Incremental cost function.
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Chapter 8. Experiments and Results

We implemented the techniques discussed in the preceding chapters. We will now

present the results from the experiments that we have performed.

8.1. Power Reduction for Procedural Functional Partitioning

For our procedural functional partitioning experiments, we described five examples at

the behavioral level using VHDL. We applied the procedural functional partitioning

technique described in Chapter 4. After partitioning, the system is synthesized and

simulated to obtain the switching activity data. NSYN [1], a behavioral synthesizer, was

used to synthesize the partitioned and unpartitioned systems from the behavioral level to

the gate level. Purespeed [2], an event-driven simulator, was used to collect the switching

frequency data for the power calculation. Loading capacitance was obtained from the

synthesized gate level netlist and a low-power technology library. Power results are

calculated using the switching activity and the loading capacitance for each node. The

unpartitioned and partitioned systems are compared in terms of their average and total

power usage, area, and execution time.
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Table 8.1 shows the statistics for these examples. Fac is a factorization program.

Chinese is to evaluate the Chinese Remainder Theorem. Diffeq is an example from the

HLSynth MCNC benchmark. Volsyn is a volume-measuring medical instrument

controller. NLoops is an example with nested while loops. For the Fac example, two

different ways of partitioning the system was done. The first way is shown in Figure 4.5.

For the Chinese example, three different ways of partitioning the system was done. The

gate count column shows the gate count for the unpartitioned and partitioned system. In

the partitioned column, the gate count for the individual modules are further broken

down. The function calls column shows the number of times each part is called via the

communication bus. For example, for the Fac1 example, part one is called one time and

parts two and three are called n times to denote that it is dependent on the input value.

The loops column shows whether there is a loop in that part and if so how many times it

loops around. Again, n denotes that it is dependent on the input value.

The results are summarized in Table 8.2. The table shows the gate count, the

execution time, the average and total power used as a ratio of the partitioned to

Table 8.1. Procedural functional partitioning example statistics.

Gate CountExamples
Unpartitioned Partitioned= P1+P2+P3+...

Function
Calls

Loops

Fac 1 15251 17172=8918+3051+5203 1/n/n 1/2/2
Fac 2 15251 15802=9260+1349+1695+3498 1/n/n/n 1/1/1/1
Chinese 1 19766 32460=14965+3679+13816 1/1/1 4/3/n
Chinese 2 19766 34111=11116+5499+3679+13817 1/1/1/1 1/3/3/n
Chinese 3 19766 29551=11694+2345+1695+13817 1/3/3/1 1/1/1/n
Diffeq 11487 12245=1340+10905 1/12 1/n
Volsyn 11193 13163=10798+2365 1/n n/n
NLoops 2622 3307=1811+1496 1/n n/n
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unpartitioned examples. Columns six and seven are the absolute power for the partitioned

system.  Since the switching frequency is dependent on the inputs, the results shown are

averages from several runs.  The average power column shows the average power used in

one clock period and the total power is the total power used for the entire execution.

In all cases, both the average and total power is reduced.  The reduction in average

power ranges from 27% to as much as 78% as in the case for Fac2. The reduction in total

power ranges from 12% to 66%. Even with this drastic power reduction, the tradeoff is

not too terrible. The gate count is increased by 32% on average.  If we consider only the

best partitioning for the Fac and Ch examples, then the gate count is only increased by

21% on average and 49% in the worse case.  Execution time is increased by 22% on

average and 53% in the worse case. The reason for the size and execution time increase is

because of the extra communication overhead. The execution time overhead should be

Table 8.2. Procedural functional partitioning power reduction results.

% Overhead Absolute
Partitioned

% Power Savings

Examples Area
%

Time
%

Average
Power
(µW)

 Total
Power
(µJ)

Average
Power

%

Total
Power

%

Fac 1 13% 23% 22.65 2242.95 64% 55%
Fac 2 4% 53% 13.84 1694.67 78% 66%
Chinese 1 64% 2% 16.03 3604.99 45% 43%
Chinese 2 73% 5% 15.16 3352.01 48% 47%
Chinese 3 49% 16% 13.12 3035.78 55% 52%
Diffeq 7% 30% 40.76 7771.52 27% 15%
Volsyn 18% 24% 10.38 2587.22 29% 12%
Nloops 26% 20% 3.70 2157.51 59% 50%

Average 32% 22% 16.96 3305.83 51% 42%



87

less than reported because we used a fixed clock in the calculation, but the critical path

for the parts are actually less. See section 8.4 for more detail on this.

It is interesting to note that in the Fac2 example, the gate count for the partitioned

system is increased by only 4%. This increase is very insignificant. In fact, a decreased

was observed in [3]. A possible reason is that NSYN can optimize a small design much

better than a large design.

From Chinese1 to Chinese2, the total power is reduced by 4% and the gate count is

increased by 9%. The difference between Chinese1 and Chinese2 is that part one in

Chinese1 is divided into two parts in Chinese2. Parts two and three in Chinese1 are the

same as parts three and four in Chinese2 respectively. By adding an extra part, we have

increased the total size because of the communication overhead. However, the individual

size of each part is smaller. This causes the switching activity to be even more localized

and confined within fewer gates. Thus, a reduction in the power is seen.

The total power is further reduced by another 5% from Chinese2 to Chinese3. The

main difference between Chinese2 and Chinese3 is that parts two and three are further

reduced in size. The tradeoff is that more communication is added as can be seen from

the size increase in part one and the longer execution time. However, the total size did not

increase, but rather decreased by 13%.

From this result, we can see that it is better to have more smaller parts rather than few

bigger parts, as long as the size and performance overhead is kept within the limit. The
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rationale is that smaller parts will have less switching activities when the part is active.

The rest of the dormant parts do not contribute any dynamic power due to capacitive

charging and discharging because there are no switching activities. Of course, more parts

mean more communication on the communication bus and longer execution time.

8.2. Power Reduction for FSMD Functional Partitioning

We implemented the FSMD functional partitioning technique described in Chapter 5

and applied it to seven examples. We start by describing the system using the FSMD

model with VHDL. After applying our FSMD partitioning technique, the system is

synthesized and simulated to obtain the switching activity data. NSYN [1], a behavioral

synthesizer, was used to synthesize the partitioned and unpartitioned systems from the

behavioral level to the gate level. Purespeed [2], an event-driven simulator, was used to

collect the switching frequency data for the power calculation. Loading capacitance was

obtained from the synthesized gate level netlist and a low-power technology library.

Power results are calculated using the switching activity and the loading capacitance for

Table 8.3. FSMD functional partitioning example statistics.

Unpartitioned PartitionedExamples

Size Size States Bit Width

Fac 15251 17208=11166+2758+3284 20 230
Chinese 19766 33054=14137+2233+1669+15015 44 485
Diffeq 11487 12874=1654+11220 58 258
Volsyn 11193 13163=10798+2365 16 67
NLoops 2622 3484=1988+1496 12 66
MP 6210 5307=3890+1417 101 98
DSP 278 386=131+255 13 12
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each node. The unpartitioned and partitioned systems are compared in terms of their

average and total power usage, area, and execution time.

Table 8.3 shows the statistics for the FSMD examples. Fac, is a factorization

program. Chinese evaluates the Chinese Remainder Theorem. Diffeq is an example from

the HLSynth MCNC benchmark. Volsyn is a volume-measuring medical instrument

controller. NLoops is an example with nested loops. MP is a small microprocessor. DSP

is a digital signal processor. The second and third columns show the size in terms of gate

count for the unpartitioned and partitioned systems respectively. For the partitioned size,

the gate count for the individual parts are further broken down. The states column shows

the number of states in the partitioned system and the last column shows the total bit

width for the communication.

The results are summarized in Table 8.4. Columns 2 and 3 show the percent increase

in area and execution time respectively. The absolute average and total power for the

Table 8.4. FSMD functional partitioning power reduction results.

% Overhead Absolute
Partitioned

% Power Savings

Examples Area
%

Time
%

Average
Power
(µW)

 Total
Power
(µJ)

Average
Power

%

Total
Power

%

Fac 13% 5% 17.26 1347.40 66% 64%
Chinese 67% 7% 15.85 3491.43 37% 33%
Diffeq 12% 5% 54.74 8989.34 2% -3%
Volsyn 3% 9% 7.54 1509.18 49% 44%
NLoops 33% -6% 5.19 2511.00 42% 45%
MP 2% -4% 13.29 425.27 51% 51%
DSP 39% -9% 1.08 28.38 48% 50%

Average 24% 1% 16.42 2614.57 42% 41%
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partitioned examples are shown in columns 4 and 5. The percent average and total power

savings are shown in the last two columns. In all cases except for Diffeq, both the average

and total power is reduced. The savings in average power ranges from 2% to as much as

66% with an average of 42%. The savings in total power ranges from 33% to 64% with

an average of 41%. For the Diffeq example, the average power is reduced by 2% but the

total power is increased by 3%. A possible reason for this is that the Diffeq example is

simply a repetition of a single algorithm several times, and thus, is not a good candidate

for partitioning because of frequent communication. The tradeoff for the area on the

average is 24% and only 1% on average for the execution time. The reason why the

execution time overhead is so small is because the critical path can be shortened as a

result of a smaller processor, thus compensating for the critical path lengthening from

communication. The 24% increase in gates is not as significant because chip capacities

continue to grow exponentially. The results do take into consideration the fact that the

bus capacitance for communications between parts are larger than internal capacitance. In

our power calculation, we have used a bus capacitance that is four times the internal

capacitance.

Table 8.5. Breakdown of power consumption by components.

Processor Unpartitioned Partitioned
Components Power (uW) % Power (uW) % % Savings

FUs + muxes 28.0 87.0% 11.8 71.7% 57.8%
Registers 1.7 5.3% 2.1 13.0% -23.5%
Controller 2.5 7.7% 1.4 8.7% 44.0%
Communication 0.0 0.0% 1.1 6.6% -
Total 32.2 100.0% 16.4 100.0% 49.1%
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8.3. Power Usage Breakdown by Processor Components

We evaluated the power usage of major components in a processor. The breakdown

of components includes the functional units and multiplexers, registers, controller, and

communication. Table 8.5 shows the breakdown results. The unpartitioned and

partitioned power columns are averages of power usage from the examples from section

8.2 except that the Diffeq example was not included in these averages. The two

percentage columns reflect the percentages of power usage by the different components.

The percent savings column shows the percentage of power saved as a result of

partitioning for the different components. Figure 8.1 shows the power usage breakdown

graphically.

Clearly, functional units and multiplexers consume the most power in both the

unpartitioned and partitioned system. However, in the partitioned system it is decreased

by more than 57%. Power consumed by the registers is greater in the partitioned system

87%

5%
8%

71.7%

3.0%

8.7%
6.6%

functional units & muxes

registers

controller

communication

(a) (b)

Figure 8.1. Breakdown of power consumption by parts for: (a) unpartitioned, and (b)
partitioned system.
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than the unpartitioned system because in the partitioned system, registers have to be

duplicated across the parts. Therefore, there are more registers in the partitioned system.

Power consumed by the controller is 44% less in the partitioned system than in the

unpartitioned system because the controllers in each part of the partitioned system are

smaller and only one has to be active at a time. Overall, the partitioned system has a

power savings of 49.1%.

8.4. Critical Path

Table 8.6 compares the critical path and execution time between the unpartitioned

system with the partitioned system. For the partitioned system, the results for the two

partitioning methods, cycle-by-cycle behavior preservation (cbc) and critical path

preservation (cp), described in section 5.4 and section 5.6 respectively are shown. The

Table 8.6. Critical path and execution time results.

Clock Cycles Critical Path (ns) Execution Time (ns)
Examples Max CP Var CPPart1 Part2 Part3 Part4 Part1 Part2 Part3 Part4

(ns) ratio (ns) ratio
Fac cp 35 44 53 9.4 4.1 6.9 1244 1.50 883 1.07
Fac cbc 23 29 36 9.9 4.5 7.7 869 1.05 629 0.76
Fac unpart 88 9.4 827 1.00 827 1.00
Ch cp 13 11 72 169 11.9 7.9 7.8 11.4 3150 1.19 2736 1.03
Ch cbc 11 9 60 141 12.3 8.3 8.4 12.8 2829 1.07 2528 0.96
Ch unpart 221 12.0 2646 1.00 2646 1.00
Dif cp 91 125 8.0 6.1 1740 1.24 1498 1.06
Dif cbc 69 95 8.2 6.3 1345 0.96 1160 0.82
Dif unpart 164 8.6 1407 1.00 1407 1.00
Vol cp 103 142 5.5 18.7 4579 1.21 3228 0.86
Vol cbc 84 117 7.0 18.9 3793 1.01 2789 0.74
Vol unpart 201 18.8 3773 1.00 3773 1.00
NL cp 207 458 4.4 4.6 3027 1.29 2998 1.27
NL cbc 151 334 4.5 4.6 2209 0.94 2203 0.94
NL unpart 485 4.8 2353 1.00 2353 1.00
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Clock Cycles columns show the number of clock cycles required to execute each part.

The Critical Path columns show the critical path period for each part. The Max CP

column shows the total execution time if the slowest clock period (i.e. longest critical

path) is used for all the parts. The Max CP column is further broken down to the actual

execution time in nano-seconds (ns) and as a ratio with that of the unpartitioned system

(ratio). The Var CP column shows the total execution time if each part uses a clock

period that is equal to the critical path for that part. Hence the clocks for each part might

be different. Again it is further broken down into the actual execution time and as a ratio

with that of the unpartitioned system.

8.5. Partitioning Algorithm and Heuristic

We implemented the branch-and-bound optimal algorithm and the simulated

annealing heuristic. The results are shown in Table 8.7. The first column shows the

examples used. Fac is a factorization program. Chinese evaluates the Chinese Remainder

Theorem. Diffeq is an example from the HLSynth MCNC benchmark. Volsyn is a

Table 8.7. Results from Branch-and-Bound and Simulated Annealing partitioning.

Energy (uJ) Time (s) % Savings
Examples States Unpart B&B SA B&B SA B&B SA
Fac 20 3,503 1,454 1,454 2 1 58.5% 58.5%
Chinese 44 4,831 1,614 1,672 10hr 1 66.6% 65.4%
Diffeq 58 7,928 4,083 4,106 10hr 2 48.5% 48.2%
Volsyn 16 2,465 1,634 1,634 1 1 33.7% 33.7%
NLoops 12 4,275 1,116 1,120 1 1 73.9% 73.8%
MP 101 728 - - 14+hr 5 - -
DSP 13 52 44 45 1 1 13.8% 12.7%

Average 49.2% 48.7%
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volume-measuring medical instrument controller. NLoops is an example with nested

loops. MP is a small microprocessor. DSP is a digital signal processor. The St column

shows the number of states for the examples. The energy columns show the energy for

the unpartitioned, the branch-and-bound partitioned system, and the simulated annealing

partitioned system respectively. The time column shows the execution time in seconds for

the branch-and-bound and simulated annealing. The % Savings columns show the percent

energy savings obtained from the branch-and-bound and simulated annealing partitioning

respectively. There is no result for the MP example because the CPU run time took more

than 14 hours.

An average of 49.2% energy reduction was achieved using the branch-and-bound

algorithm, and 48.7% using the simulated annealing heuristic. We see that the solution

obtained by the simulated annealing heuristic is on average only 0.5% worst than that

obtained by the branch-and-bound algorithm, yet it is an order of magnitude faster. The

same random seed for the simulated annealing heuristic was used for all the examples.

These results compare favorably with the 41% average energy savings shown in Table

8.4.

Table 8.8 shows the statistics for the branch-and-bound algorithm. The first and

second columns show the number of states and the total number of nodes in the binary

search tree respectively. The third column shows the percentage of nodes pruned. The

Branches Pruned columns show the number of branches pruned as a result of satisfying

conditions one and two respectively as discussed in section 7.1. Finally, the Time column
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shows the execution time for the algorithm. Although more than 99.9% of the nodes are

pruned for the 50 state example, the execution time is still quite long.

8.6. Internal to External Energy Ratios

Table 8.9 compares the effect of different internal and external capacitance ratios.

The six columns labeled E/I= show the percent energy reduction achieved for the external

to internal energy ratio of 10, 50, 100, 200, and 500 respectively. The percentages show

the energy reduction from the unpartitioned FSMD.  Depending on the external to

internal energy ratio, the average energy reduction can range from 10.9% to as much as

49.2%.

The amount of power reduction is greatly affected by the external to internal energy

ratio. As the ratio increases, it becomes harder to find a partitioning that reduces the

overall power. Although our sizable power savings are dependent on this ratio, there are

two factors that may help to keep this ratio small. First, the new copper technology for

integrated circuits will slow down the increase of this ratio. Second, the bus between the

partitioned FSMDs may be very short because it exists within a component, rather than

Table 8.8. Branch-and-Bound statistics.

Total % Nodes Branches Pruned Time
States Nodes Pruned Condition 1 Condition 2 (sec)

20 1.0 x 106 99.7% 0 21 1

25 3.3 x 107 99.8% 81 28,551 281

50 1.1 x 1015 99.968% 1,137 495,915 36,719
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the typical on-chip busses that connect large numbers of components and must span large

portions of the chip.

8.7. Power Saving Techniques Compared

Figure 8.2 shows a comparison of average power savings between our FSMD

partitioning technique with the guarded evaluation [4] and selectively-clocked [5]

techniques. We used two approaches to make the comparison and they both gave similar

results. In the first approach, we analyzed our set of examples to estimate the power

savings using the localized techniques. In the second approach, the power savings data

for the localized techniques are taken directly from their respective papers and adjusted to

our unoptimized examples. Since their savings are with respect to portions of the whole

system, we have adjusted it accordingly to reflect the savings for the entire system. The

data from [4] does not include examples with a power savings of less than 15%. Hence,

to compare fairly, we have dropped all such examples in the comparison (in our case, the

Diffeq data is dropped.) The percent power savings for the three techniques, guarded

evaluation, selectively-clocked, and FSMD partitioning, over the unoptimized design are

31%, 7%, and 49% respectively.

Table 8.9. Effects of different external to internal energy ratios.

Examples E/I=10 E/I=50 E/I=100 E/I=200 E/I=500

FAC 58.5% 43.2% 30.5% 15.9% 0.0%
Chinese 66.6% 60.8% 57.7% 52.2% 19.5%
Diffeq 48.5% 41.9% 0.0% 0.0% 0.0%
Volsyn 33.7% 0.0% 0.0% 0.0% 0.0%
NLoops 73.9% 71.6% 68.7% 63.0% 45.7%
DSP 13.8% 0.0% 0.0% 0.0% 0.0%

Average 49.2% 36.2% 26.1% 21.8% 10.9%
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In the guarded evaluation technique, all the savings come from the reduced switching

activity of the functional units. This is accomplished by adding latches in front of the

functional units. Hence the power consumption for the functional units is reduced by 41%

but the power consumption for the registers (which includes latches) is increased by 74%

over the unoptimized technique. The power usage by the controller is about the same as

the unoptimized technique.

In the selectively-clocked technique, most of the savings are from the FSM and is

about 45%. However, because the power consumption for the FSM accounts for less than

14% of the total power consumption, the overall power reduction is very small. The

power usage by the registers and functional units are about the same as the unoptimized

technique.

In the FSMD partitioning technique, we have 58% power savings for the functional

units and muxes, and 42% for the controller. This is offset by an increase of 24% for the
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registers and 10% by communication. The power usage by the functional units and muxes

is less for the FSMD partitioning technique than for the guarded evaluation technique

because there is power savings from the muxes for the former technique but not the latter

technique. The power usage by the registers is more than the unoptimized technique

because some registers have to be duplicated. However, it is slightly less than that of the

guarded evaluation technique because fewer extra latches are needed. The controller

power usage is about the same as that of the selectively-clocked technique.

After the FSMD partitioning, we end up with several smaller processors, thus, we can

further apply the localized techniques to the individual processors to get even better

results. Our analysis shows that an additional 18% power savings might be achievable

resulting in a total savings of 58% as shown in the FSMD partitioning and guarded

evaluation plot in Figure 8.2.

In our analysis, we count the maximum number of functional units used in any clock

cycle and the actual total number of functional units synthesized. From this, we get the

ratio of functional units that are doing useful and useless work. This is done for both the

unpartitioned and partitioned circuits. We found that in the unpartitioned circuit

approximately 1/3 of the functional units are doing useless work and approximately 1/5

for the partitioned circuit.
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8.8. Summary

In this chapter, we have presented our results from various experiments that we

performed on testing our functional partitioning technique. We found that our FSMD

functional partitioning technique can reduce power by about 50%.
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Chapter 9. Conclusion

Power reduction is a critical metric for circuit design. We have introduced a new

functional partitioning technique for reducing power consumption either at the procedural

behavioral level or at the finite-state machine with datapath behavioral level. Unlike

previous power reduction shutdown techniques that focus only on either the datapath or

the controller, our approach partitions the entire processor to shut down both the

controller and the datapath.

An optimal branch-and-bound algorithm and a near optimal simulated annealing

heuristic for performing FSMD functional partitioning for low power were presented.

The algorithm and heuristic make use of our power estimation model and the theoretical

energy bounds for functional partitioning. The branch-and-bound algorithm and

simulated annealing heuristic were both able to achieve roughly a 49% energy savings.

This compares favorably with our simulated average energy savings of 41%.

In addition to power reduction, FSMD functional partitioning also provides solutions

to a variety of synthesis problems and does not require the modification of the synthesis

tool.
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