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Abstract of the Dissertation

Functional Partitioning for Low Power

by
Enoch Oi-Kee Hwang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June, 1999
Dr. Frank Vahid, Chairperson
Dr. Yu-Chin Hsu, Co-Chairperson

Power reductions in VLSI systems have recently become a critical metric for design
evaluation. Although power reduction techniques can be applied at every level of design
abstraction, most automated power reduction techniques apply to the lower levels of
design abstraction. Previous works have shown that sizable power reductions can be
achieved simply by shutting down a system’s sub-circuits when they are not needed.
However, these shutdown techniques focus on shutting down only portions of the
controller or the datapath of a single custom hardware processor. We therefore
investigated the power reduction attainable by the evolving automated technique of
functional partitioning in which a process is automatically divided into multiple simpler,
mutually exclusive, communicating processors, and then shut down the inactive
processors. By shutting down the entire inactive processor, we have in effect shut down
both the controller and datapath. Power reduction is accomplished because only one

smaller processor is active at a time.
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We have applied this functional partitioning technique to either the procedural or the
finite-state machine with datapath (FSMD) behavioral level. From either level, the
original process is partitioned into multiple parts. For the procedural level, a coarse-
grained partitioning of procedures is done. Data transfers between the parts are simply
the parameters in the procedural call. In contrast, FSMD partitioning has no concept of
procedures, but rather states. A dataflow analysis is first performed to determine the data
transfers between the parts. A power partitioning algorithm is then used to separate the
states into multiple parts. The parts are then individually synthesized down to the gate
level netlist. Finally, communication is added between the parts so that they are

functionally equivalent to the original unpartitioned process.

Partitioning introduces extra power consumption for inter-processor communication.
Thus, the problem that must be solved is one of partitioning such that the reduction in
power for computations far outweighs the power increase for communication, while also
minimizing the increase in total circuit size and execution time. Our results show that this
functional partitioning technique can reduce power, on average, by 42% over
unoptimized systems. In addition to power reduction, functional partitioning also

provides solutions to a variety of synthesis problems.
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Chapter 1. Introduction

Electronic circuit optimization for area and timing has been well studied. Recently,
power consumption has become one of the more critical design parameters for very large
scale integration (VLSI) systems. The reduction of area for an integrated circuit (IC),
which was a big issue not too long ago, is not as big an issue today because with new IC
production technologies, many millions of transistors can be put on a single IC. On the
other hand, there is a trend towards portable battery operated devices. The shrinking sizes
of integrated circuits calls for reduced power consumption in order to extend battery life
for these portable devices. Furthermore, in the deep submicron technologies, there is a
limitation of circuit density because of excessive heat generation from high power
dissipation. Hence, power consumption is now one of the most important criteria in

circuit designs.

While power reduction techniques can be applied at every level of design abstraction,
most of the previous power optimization techniques apply to the lower levels of the
design process; namely transistor and logic gate levels [1]. Recently, there is a focus on
power reduction at the higher levels [2] where large power savings are possible merely by

cutting down on wasted power in the circuit. We therefore investigate the power



reduction attainable by the evolving automated behavioral level technique of functional

partitioning.

Power is consumed when capacitors in the circuit are either charged or discharged
due to switching activities. Power reduction at the higher levels is mainly achieved
through the reduction of these switching activities by shutting down portions of the
system when they are not needed [2]. The idea is that for a large system, not all
components are required to be active at all times and thus, large power savings are
possible merely by cutting down on wasted switching activities. Large VLSI circuits such
as processors contain different components such as the controller, memory and functional
units. Recent high-level shutdown techniques focus on shutting down only portions of the
controller or the functional units of a single custom hardware processor. Two such areas

of shutdown techniques for power reduction have been addressed in recent literature.

In datapathshutdown techniques, portions of the combinational logic in the datapath
can be shut down for some cycles when those results are either precomputed or are not
required. In [3], the output values are selectiyglgcomputedising a few high order bits
one cycle before they are needed. If precomputation (e.g., comparing the highest bits of a
32-bit comparison) indicates that the full computation is not necessary, then the entire
original logic circuit can be turned off in the next clock cycle. Thus, switching activity is
reduced and power is saved. Thearded evaluationechnique in [4] tries to determine,

on a per clock cycle basis, which part, of a combinational circuit are computing results



that will be used, and which are not. The parts that are not needed are then shut off, thus

saving the power used in all the useless transitions in that part of the circuit.

For example, given the FSMD description in Figure 1.1, the corresponding
unoptimized RTL description is shown in Figure 1.2. Suppose that the inputsf@ in
the FSMD code, then only states sO and s3 will be executed, and so neither the adder nor
the multiplier will be needed. These two functional units will be wasting power in the

unoptimized circuit of Figure 1.2 because they will have switching activities even though

loop
case State_Var is
whens0 =>
p:=1;
i=1;
if (1 <x) then -- x is a primary input
State_Var :=sl;
else
y<=p;
State_Var :=s3;
end if ;
whensl =>
p=p*2;
y<=p;
i=i+1l;
State_Var :=s2;
whens2 =>
if (i <x) then
State_Var :=s1;
else
State_Var :=s3;
end if ;
when s3 =>
p=p-1;
y<=p;
i=i-1;
State_Var :=s2;
end case;
end loop;

Figure 1.1. Sample unpartitioned FSMD code.



their results will not be needed. Furthermore, the controller can also be reduced to save

power.

Figure 1.3 shows the result of applying the guarded evaluation technique to the
unoptimized circuit of Figure 1.2. Latches are added in front of all the functional units.

Since only the comparator and the subtract unit are needed in the execution of states sO

Controller Datapath

FSM

Figure 1.2. Unoptimized RTL design exmple.

Controller

Datapath

FSM

Figure 1.3. Guarded evaluation technique.



and s3, the inputs to the adder and multiplier can be latched, thus, preventing the inputs
from changing. Power is saved because there will be no switching activities in these two

functional units during the execution of states sO and s3.

In controller shutdown techniques [5][6], the controller is partitioned into two or
more mutually exclusive interacting FSMs and their clocks are selectively gated. Each
FSM controls the execution of one section of computation. Only one of the interacting
FSMs is active at any given clock cycle, while all the others are idle and their clock is
stopped. Figure 1.4 shows an example of applying the selectively-clocked FSM
technique. Here we have split the original FSM into two sub-FSMs. FSM1 includes state
s1 which controls the portion of the datapath for the multiplier and adder while FSM2
includes states s0O, s2, and s3, which controls the portion of the datapath for the
comparator and subtract unit. Since we only need the use of the comparator and subtract

unit to execute states sO and s3, FSM1 can be made inactive by stopping the clock to it.

Controller Datapath
N [ 1] i

FSM

(

Figure 1.4. Selectively-clocked FSM technique.



The power savings from this technique come directly from the fact that there are multiple
smaller FSMs instead of one large one. As a result, we have a shorter local clock line,
fewer states, and simpler and smaller next state logic. While this method prevents
unnecessary power consumption in the control unit, there is no power reduction in the

datapath.

While the above mentioned techniques show significant power reductions, they focus
only on either the datapath or the controller for a single custom processor. It was
recognized in [4] and [5] that the power savings would be even larger if both the
controller and the datapath were considered together and if the techniques were applied
on the complete circuit, rather than on individual blocks. Hence, we propose a new
functional partitioning shutdown technique for reducing power where both the controller

andthe datapath are considered together.

Our functional partitioning technique for power reduction is based on the finite state
machine with datapath (FSMD) model. Instead of trying to separately optimize individual
components of a system and then trying to combine the different optimized circuits
together, our technique optimizes the original monolithic system by partitioning it. The
original FSMD is first partitioned into several smaller mutually exclusive FSMDs. Each
of these smaller FSMDs is then synthesized to its own custom processor, each having its
own controller and datapath. The reason why FSMD functional partitioning can
significantly reduce power is that each processor is smaller than the original one large

processor implementing the entire process, and only one processor is executing a



computation at any given time while the other processors will be idle. When a processor
is idle, we have, in effect, shut down both the controller and the datapath for that

processor. Thus, greater power saving is possible.

Figure 1.5 shows the result of applying the FSMD functional partitioning technique to
the sample circuit of Figure 1.2. Here, we have two smaller mutually exclusive
processors. The first processor contains the controller and datapath for executing state s1,
and the second processor contains the controller and datapath for executing states sO, s2,
and s3. Thus, whex=0, only processor 2 needs to be active. Processor 1 remains inactive
in an idle state waiting for processor 2 to wake it up if necessary. The datapath of
processor 1 is not consuming power because the inputs are not changing. The power
consumed by both controllers is reduced because of their smaller size. Furthermore, the
power consumed by processor 1's controller is reduced even more because it is in an idle
state. The overhead in this technique is the communication between the processors and

possible duplication of registers.

Processor 1 Processor 2
Controller Datapath ﬂ Controller Datapath

) mim

FSM FSM

2

=

<
<

Figure 1.5. FSMD functional partitioning technique.
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In addition to reducing power, FSMD functional partitioning also provides solutions
to a variety of synthesis problems. These include 1/O satisfaction by reducing total 1/0O by
as much as 67% (which could impact physical design positively), reduced synthesis
runtime by as much as 85%, and hardware / software tradeoffs [7]. Furthermore, the
technigue does not require the modification of synthesis tools because it is applied before
synthesis. The relevance of using the FSMD model is that many circuit designs are
specified at the register-transfer level using this model. However, partitioning introduces
extra power consumption for inter-processor communication between the smaller
FSMDs. Thus, the problem that must be solved is one of partitioning such that the
reduction in power for computations far outweighs the power increase for
communication, while also minimizing the increase in total circuit size and execution

time, and preserving the cycle-by-cycle behavior.
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Chapter 2. Previous Work

Power reduction techniques can be applied at every level of design abstraction. In this
chapter, we will review previous significant contributions on power reduction at various

design abstraction level.

2.1. Transistor Level

Power reduction at the transistor level deals with the physical aspect of the transistor
and how they are laid out inside a gate. There are basically two methods for reducing

power dissipation at this level: transistor sizing and transistor reordering.

2.1.1. Transistor Sizing

The size of a transistor can have significant impact on the gate delay and the power
dissipated by the gate. The larger the transistor size, the shorter the delay, but more power
is consumed. Thus, the goal is to find the smallest transistor or gate that will still satisfy

the delay constraint. Work in this area includes [1], [2], [3], [4] and [5].

2.1.2. Transistor Reordering

Gates (such as a NAND gate) have input pins that are functionally equivalent. In such

a case, inputs can be permuted on these pins without affecting the correctness of the

10



result. However, ordering the gate inputs will affect both the power and the delay of the
gate. Consider the transistor implementation of a 2-input NAND gate as shown in Figure
2.1. It was observed that the power consumption for the NAND gate is lower when the
inputs to pins A and B are 1 and O respectively as opposed to 0 and 1. Thus, an ordering
of the inputs using minimal power can be found. Work in this area include [2], [4], [6],
[7] and [8]. It was reported in [6] that average power reductions of 12% are achievable

using transistor reordering techniques.

2.2. Logic Gate Level

Power reduction at the logic gate level mainly deals with manipulating the logical
expression to reduce the number of gates required to implement the expression and to
reduce the switching activities. By reducing the number of gates, the overall capacitance
in the circuit will also be reduced, thus, the power consumption. Using this technique to
reduce power is basically a side effect from reducing the area. Optimization at this level

occurs in two phases: technology-independent and technology-dependent optimization.

NAND

+3v

0 1aH
1 08
X o =

Figure 2.1. Transistor implementation of a 2-input NAND gate.
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2.2.1. Technology-independent

In the technology-independent phase, no knowledge of the actual physical gates is
assumed; only logic equations are manipulated to reduce the area, number of gates, delay
and power consumption. Optimization techniques in this phase include exploiting the
don’t-care sets for reducing the switching activities as in [9] and [10]; path balancing by
adding buffers to reduce glitches as in [11], [12] and [13]; and factorization of logical

expressions presented in [14].

Any gate in a combinational circuit has an associated don’t-care set where the input
combinations either never occur at the gate inputs or that they produce the same values at
the circuit outputs. Since the power dissipation of a gate is dependent on the probability
of the gate evaluating to a 1 or a 0, this probability can be changed by utilizing the don't-

care sets.

It was observed in [13] that spurious transitions account for 10% to 40% of the
switching activity in typical combinational logic circuits. In path balancing, the idea is to

add delay buffers in a path in order to reduce the glitching activities of a circuit.

Factorization makes use of the fact that factoring an expression can reduce the
number of literals, and therefore, reduce the number of transistors required to implement
the expression. For example, the expresaion+a-d+b. c+b. dcan be factored into

(a+Db) - (c+d), thus, reducing the transistor count considerably.
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2.2.2. Technology-dependent

In the technology-dependent phase, logic equations are mapped to the target
technology library gates, again optimizing for area, number, delay and power. A typical
technology library will contain hundreds of gates with different transistor sizes. The
problem is to find suitable gates requiring the least amount of power to satisfy the logic
equations produced from the technology-independent phase. Much work has been done in
this area in terms of area and delay. Work on extending the original approaches to power

dissipation include [3], [15], [16] and [17].

2.3. Register Transfer Level

Register transfer level (RTL) deals with the way data is transferred between registers
from one clock cycle to the next. A circuit at the RT level can be broken down into two
parts: sequential and combinational. The sequential portion contains the finite state
machine (FSM) or controller for the circuit. The combinational or datapath portion
contains the functional units, registers and multiplexers for performing the operations.
The extent to which hardware is shared and the sequence of variables mapped to each
register affect the total switched capacitance in the datapath. Functional units, registers
and portions of the controller can be shut off during certain clock cycles to further reduce

the power consumption.

2.3.1. Sequential Circuit

For a sequential circuit, the states of a finite state machine can be encoded in such a

way that if a state has a large number of transitions to statben the two states should
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be given uni-distant codes, so as to minimize the switching activity at the register output.

Works in this area include [14], [18], [19] and [20].

Recent work in reducing the power consumption in the sequential circuit uses a
partitioning technique on the FSM [21] and [22]. The controller is partitioned into two or
more interacting FSMs. Each FSM controls the execution of one section of computation
and only one sub-FSM is active at any given clock cycle. Power is saved because the

remaining FSMs are idle. This technique was discussed in the introduction.

2.3.2. Combinational Circuit

Switching activity is reduced through appropriate register allocation and binding
techniques such as in [23] and [24]. Operand reordering and operand sharing between
registers can also reduce switching as in [25] and [26]. The goal of operand reordering is
to find an appropriate input operand order for commutative operations in such a way that
switching activity is reduced. The operand sharing technique attempts to schedule and

bind operations to functional units in such a way that the activity of the input operands is

R latch
| < X
i£ni-2> L
<-Z>
ko latch |- |
<()> E

Figure 2.2. Precomputation example of a comparator.
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reduced. Operations sharing the same operand are scheduled in control steps as near as
possible. Thus, the potential for a functional unit to reuse the same operand value (and,
therefore, to decrease its input activity) is higher. Precomputation logic can be added to
the datapath to compute the output values for a subset of input conditions as in [27] and
[28]. If the output values can be precomputed, then the switching activity in the original
circuit can be reduced. Of course the power savings in the original circuit is offset by the

power consumed in the extra logic.

An example taken from [27] is bit comparator that computes the functioq x.
The optimized circuit with precomputation logic is shown in Figure 2.2. In this example,
the precomputation logic is the exclusive NOR gate. The comparison can be precomputed
using only the most significant bit of the two inpitse-1> andx<n-1>. Certainly ifi<n-
1> is less tharx<n-1> theni < x. Thus, if the output can be determined from this
precomputation, then the remaining bits need not be compared. By latching the remaining
bits when the condition is satisfied, the amount of switching activities in the comparator

is reduced and thus, power is saved.

Similar to disabling portions of the controller, unnecessary functional units and
registers can also be shut off during certain cycles in the execution. During these times of
unnecessary activity, the clock signal to registers can be stopped or the register can be

disabled as in [30] and [31]; inputs to functional units can be latched as in [29].

Figure 2.3 shows an example taken from [29] of an ALU containing an adder and a

shifter. A multiplexer is used to select the result from either one of the functional units. In
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any clock cycle only one of the two functions needs to be computed. However, the
multiplexer does the selection after both units have completed their evaluation. The
proposedguarded evaluationtechnique to reduce the power from the unnecessary

functional unit is to place a transparent latch with an enable at the input to each of the
functional units. The input to the functional unit that is not required can be latched and

thus unnecessary switching activities can be prevented.

2.4. Behavioral Level

At the behavioral level, power reduction is obtained mainly by reducing the switching
activities using circuit transformations or partitioning. Transformations of the circuit are
typically aimed at reducing either the number of cycles in a computation or the number of
resources used in the computation during high-level synthesis as in [32], [33], [34], [35]
and [36]. The basic idea is to reduce the number of control steps so that slower control
clock cycles can be used for a fixed throughput, allowing for a reduction in supply

voltage. The reduction in control step requirements is most often possible due to the

l l l l
‘ register ‘ ‘ register ‘ ‘ register ‘ ‘ register ‘
[ Tatch | [ Tatch |
shifter @
\mux /
(a) (b)

Figure 2.3. Guarded evaluation technique: (a) unoptimized RTL circuit, and (b) optimized
with transparent latches.
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exploitation of concurrency. Transformations that affect the amount of concurrency

include retiming/pipelining, algebraic transformations, and loop transformations.

Partitioning provides the possibility of disabling mutually exclusive or inactive
portions of the circuit when not needed in the execution during a certain time as in [21],
[22], [29], [37] and [38]. Except for [38], these techniques are applied only to a small
portion of the whole circuit. In [21] and [22], only portions of the finite state machine is
disabled, and in [29] and [37] only portions of the datapath is disabled. In [38] both the

controller and the datapath are disabled.

Coding techniques for reducing the switching activities on the I/O pins and address
busses were presented in [39], [40] and [41]. In [41], different bus interfaces including
bus width and coding schemes are compared for low power. More parallelism in a circuit
can be introduced to speed it up and then reduces the voltage until it realizes its originally

required speed as shown in [42].

2.5. System Level

The main focus for power savings at the system level is from turning off portions of
the system that are not being used and thus minimizing the use of power-intensive
operations. This includes turning off the monitor and the disk drive [43]; turning off
inactive hardware modules [44] and providing optimum supply voltage and/or mixed
voltages to the modules [44] and [45]. Communications to and from memory modules
can also be minimized as in [46]. Software may be compiled so as to minimize the power

dissipation when it is executed on a given hardware platform as shown in [47] and [48].
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2.6. Summary

In this chapter, we have reviewed previous significant contributions on power
reduction at various design abstraction levels. Recent research in power reduction is

focusing more at the higher design abstraction levels.
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Chapter 3. Power Consumption

In this chapter, we will look at the various factors affecting power consumption in a
circuit, how power is calculated in a circuit, and finally show how partitioning a circuit

can reduce power consumption.

3.1. Power Dissipation

Power consumption of a CMOS circuit is composed of three components [1]: 1)
dynamic power consumption due to capacitive charging and discharging when a signal
toggles Pgy); 2) dynamic power consumption due to short circuit dissipaBgy @nd 3)
static power consumption due to leakage currdfys Thus, the total power consumption

P of a CMOS circuit is
P=P, +P, +P, (3.1)

Every time when the output of a gate switches from a ‘0’ to a ‘1’ or vice versa, the
loading capacitors (from the gates that are connected to this output) need to be charged or
discharged. This gives the dynamic power t&gmAlso during this time when the gate
switches, there is a moment when there is a path created between the power supply and

ground, thus, causing the short circuit dissipakgn During times of inactivity, current
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is still being drawn because of parasitic diodes within a gate. This contributes to the static

leakage currer®s. The following sections will look at these three terms in more detail.

3.1.1. Static Power Dissipation

Consider a complementary CMOS gate as shown in Figure 3.1. If theMpput0,’
the associated n-device ioFF’ and the p-device iSON.” The output voltage i¥pp or
logic ‘1.” When the inpu¥i, = ‘1,” the associated n-channel device is biased and the
p-channel device isGFF.” In this case the output voltage is 0 voNgd. Since one of the
transistors is alwaysoFF’ when the gate is in either of these logic states, there is no DC
current path from/pp to Vss and the resultant quiescent (steady-state) current, and hence

the static powePs, is zero.

However, there is some small static dissipation due to reverse bias leakage between
diffusion regions and the substrate. A profile of an inverter shown in Figure 3.2 shows
how the source-drain diffusions and the n-well diffusion form parasitic diodes with the p-
substrate. Since parasitic diodes are reverse-biased, their leakage current contributes to

the static power dissipation. The static power dissipation is the product of the device

p-device — T\‘ p-device

Vout =1 Vin=1 T Vout =0

Vin =0

n-device L n-device

)

Figure 3.1. CMOS inverter model for static power dissipation evaluation.
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leakage current and the supply voltage. Thus, the total static power dissipgtitn,

obtained from

n
P, = ;Ieakage:rrentvaD (3.2)

where

n = number of devices.

A useful estimate is to allow a leakage current ohA.tb 0.5A per device at room

temperature.

3.1.2. Dynamic Power Dissipation due to Short-Circuit

When a gate switches from a ‘0’ to a ‘1’ or vice versa, there is a moment when there
is a path created between the power supply and ground, thus, causing the short circuit

dissipationPs.. The short-circuit power dissipation is given by

Vciut J
LU %‘ i +my|

n-well

. . ZF p-substrate

Figure 3.2. Parasitic diodes in a CMOS inverter.
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t
P =P (Voo - )% (3.3)
12 t,

where

B = gain factor of the transistor which is dependent on both the transistor
manufacturing process parameters and the device geometry, and is given by

_ e
B_toxg%@

wherep is the dielectric constan,is the permittivity of the gate insulatdgy is
the thickness of the gate insulat@y,is the width of the channel, andis the
length of the channel.

V; = threshold voltage 0.7v.

t+ = rising and falling time of the input waveform (assuming that they are equal).

t, = period of the input waveform.

As the load capacitance on the output of the gate is increased, the significance of the

short-circuit dissipation is reduced by the capacitive dissip&ion

3.1.3. Dynamic Power Dissipation due to Capacitive Charging and
Discharging

Each time during a signal transition from either ‘0’ to ‘1’ or, alternatively, from ‘1’ to
‘0’, current is required to charge or discharge the output capacitive load. This dynamic
dissipation can be modeled by assuming that the rise and fall time of the step input is

much less than the repetition clock perigdThe average dynamic powegy dissipated
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during switching for a square-wave inpgt, and having a repetition frequency fef=

14y, is given by

t t
1P 1P
I:)d = J. In(t)voutdt t = II p(t)(VDD _Vout)dt (34)
tp 0 tpt /12
p

where
in = n-device transient current.
ip = p-device transient current.
For a step input and witla(t) = C_ dvou/dt, andiy(t) = C. d(Vpp - Vou)/dt whereC, = load

capacitance, we get the equation

Pd =t_L J.Vout dVout + t_L J.(VDD _Vout)d(VDD _Vout)
P 0 P vdd

C, Vo2

=—Lt DD (3.5)
p
_ 2
=C/ Vo fp
In the behavioral context, this translates to
1 2

whereC is the total loading capacitance of the gate ouys,is the supply voltagd,is
the clock frequency, and is the transition probability of the gate output. The transition
probability or switching frequency is defined as the average number of gate output

transitions per clock cycle and is given by
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t,n
N =P 37)

exec

wheret, = 1£ is the clock periody; is the total number of toggles at meandTeyecis the

total execution time. These values are illustrated in Figure 3.3.

3.2. Power Calculation
To simplify the total power calculation, many of the power calculation tools for
complex circuits only considd?y as an approximation to the total power because it has

been shown thd&y accounts for over 90% of the total power [2].

Given a digital circuitPq is calculated for all the nets in the circuit and the sum of

them is the average power consumption for the entire circuit

+5v \V
DD

T I°

f

Figure 3.3. Variables affecting power consumption.
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Power= L v/?2 > CN;  watts
2t

p Ui
t,n
:LVZZQ pr (3.8)
2tp Ui Téxec
\/2

=2_|_ ZCini

exec Ui

wherei is an individual net in the circuit.

The total energy consumed for the entire circuit is

Energy= PowerxT, watt- second

exec

= ZC‘ nT (3.9)

1 " exec

C.n joules

Hence, to evaluate the energy usage of a circuit, we need to know the number of
toggles and the loading capacitance for each net in the circuit, and the voltage used. The
number of toggles can be obtained by simulation and counting the number of times the
signal switches for each net. The capacitance for each gate can be obtained from the
technology library used for the synthesis of the circuit. Knowing the capacitance for each
gate, the loading capacitance for each net can be calculated from analyzing the netlist to

see how the gates are connected.
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For example, the netlist of Figure 3.4 has four gates and six nets. The nets are
annotated with the toggle count and the gates are annotated with the gate capacitance.

Assuming that the operating voltage is 5V, the energy consume by this netlist is:

Energy= %175x 3x107°F) + (150x3x10°F) + (100 2.8x10 *°F) D
2 E3(125x(2xlo*°F-+28x10*°F)+(125x3xloﬂ°F)+(90x3xloﬂ°F)D
2E$25x104°F-+450x1040F-+280x1040F D

2 E1600x1040F-+375x10*°F-+270x1040FE
2
== [250G0gglesx107°F

=3.125x107%J
=3.1251J

3.3. Power Reduction

Power reduction for a system can be achieved from all levels of the system design. At
the lower levels of the design process, power reduction is obtained mainly through the
reduction of the capacitance in the circuit. At the behavioral level, power reduction is

obtained mainly from reducing the switching activities within the circuit.

2E%gi

175 125

E P T e

150 300pF 300pF
280pF

Figure 3.4. Sample netlist with four gates and six nets. The gates are annotated with the
gate capacitance and the nets are annotated with the toggle count.
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Switching activities in a circuit are reduced primarily by eliminating useless
switching activities through proper power management. This can be accomplished either
by disabling portions of the system that are not performing useful work, or by
partitioning the system into several parts such that the switching activities are localized in
only one part at a time. Partitioning is possible if the parts are mutually exclusive in their
execution. Thus, only one part needs to be active at any one time while the remaining
parts are inactive. This is analogous to deactivating certain devices in the system that is

not needed, for example, powering down the disk drive when not in use.

An easy and effective method to disable a part is to prevent any changes to the inputs
of the part. This in turn will prevent switching activities within the part. Thus, when the
inputs to the circuit do not change, then there will be no switching activities in the entire
circuit. For example, if the initial inputs to a NAND gate are all 1's, then the output is a
0. This output will remain at a 0 if the inputs do not change. Since this output is
connected to the inputs of other logic gates, all the outputs to the other gates will also

remain the same. Thus, there will be switching activities in the circuit only if the inputs

l l(a) l (b)l (©)

Figure 3.5. Combinational logic with: (a) common inputs, (b) latched inputs, and (c)
partitioned inputs.
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change in value. Of course the reverse is not always true. For example, for a two input

NAND gate, the output is a 1 for inputs {0,0}, {0,1}, and {1,0}.

Consider a combinational logic circuit containing two functional units with common
inputs as shown in Figure 3.5(a). Assume that the computation requires the evaluation of
an addition followed by a subtraction. While performing the addition, the input signals
will also propagate to the gates in the subtraction unit. Thus, the subtraction unit is using
power even though the result from the subtraction unit is not needed. Similarly when the
subtraction is being performed, the addition unit is consuming power but the result from

the addition unit is not needed.

There are basically two general methods to reduce the useless switching activities. In
the first method, we can insert transparent latches at the inputs of the two functional units
as shown in Figure 3.5(b). The latches can prevent the inputs to the functional unit that is
not needed for a particular cycle from changing. For this method, the two functional units
and the newly added latches are all within the same part. In the second method, we can
partition the circuit such that the switching activities are localized in only one part at a
time. Thus, we would put the addition unit and the subtraction unit in two different parts
so that the input to one will not affect the input to the other as shown in Figure 3.5(c).
The switch will control which part gets the input. When the inputs to a part remain

constant there will be no switching activities within the entire part thus power is reduced.

As we will see in the following sections, the second method will result in more power

reductions than the first method because the first method is only applied to the
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combinational logic in the datapath, whereas, the second method is applied to the entire
processor, namely the datapadéimd the controller. Thus, we want to apply this

partitioning idea to the whole processor.

3.4. Summary

In this chapter, we have shown how power is consumed and calculated in a CMOS

circuit. The idea of partitioning a circuit was also introduced for power reduction.
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Chapter 4. Procedural Functional
Partitioning

In this chapter, we will look at procedural functional partitioning and how power is
reduced using this technique. In order to understand this, we need to have a general
concept of the behavioral synthesis process. We will then show why the traditional
method of structural partitioning does not reduce power and then show how functional

partitioning is different and thus can reduce power.

4.1. Behavioral Synthesis

Synthesis is the process of transforming and optimizing a digital circuit design from a
high level of abstraction to a lower level of abstraction. In behavioral synthesis, the input
is a behavioral description of the design specified in a Hardware Description Language
(HDL) such as VHDL or Verilog. The synthesis process translates the behavioral
description first into a structural description and finally to a physical gate level circuit
netlist as shown in Figure 4.1. Figure 4.1(a) shows a behavioral description of a sample
segment of code. Figure 4.1(b) shows the corresponding structural description with the

separate FSM control unit and the datapath. Figure 4.1(c) shows the physical layout. The
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if IR(3) = '0' then

PC :=PC + 1,
else
BUF := MEM(PC);
MEM(SP) := PC + 1;
SP:=SP-1;
PC := BUF;
end if;
(a)
mux1 ; BUF
A
State — 4
Register Control QD @E
inputs
I MEM
Next-state Output |Datapath l o, Address Bug
functic:n functicjn control
A Y
Status ‘;muuz 1 i
Control v
outputs + /-
Data Bus
FSM Control Unit Datapath

(b)

HHM i
muxl | g BUF

SP
Address Bus

mux2
ADD/SUB

Data Bus

(©)

Figure 4.1. Example of the three levels of abstraction: (a) behavioral, (b) structural, and (c)
physical.
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major steps in the synthesis process include scheduling, allocation, and finally the

generation of the gate level circuit netlist.

The internal data representation of a behavioral description is usually a control data
flow graph (CDFG), which captures all the control and data-flow dependencies of the
given behavioral description. Scheduling algorithms then partition this CDFG into
subgraphs so that each subgraph is executed in one control step. Each control step
corresponds to one state of the controlling finite state machine. Within a control step, a
separate functional unit is required to execute each operation assigned to that step. Thus,
the total number of functional units required in a control step directly corresponds to the
number of operations scheduled in it. If more operations are scheduled into each control
step, more functional units are necessary, which results in fewer control steps for the

design implementation.

Allocation consists of two tasks: unit selection and unit binding. Unit selection
determines the number and types of components to be used in the design. These
components can be either functional units, storage elements, or interconnect wires. Unit
binding maps the variables and operations in the scheduled CDFG to the selected
components. For every operation in the CDFG, we need a functional unit that is capable
of executing the operation. For every variable that is used across several control steps in
the scheduled CDFG, we need a storage unit to hold the data values during the lifetime of
the variable. Finally, for every data transfer in the CDFG, we need a set of

interconnection units to effect the transfer.
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When a circuit is synthesized from a behavioral description to a gate level netlist,
only one FSM control unit and one datapath is generated as shown in Figure 4.1(b). The
control unit consists of the state register, logic for generating the next state, and logic for
generating control signals to control the operation of the datapath. The datapath consists
of the data registers, functional units, multiplexers, and connecting wires for executing
the operations of the specified behavioral instructions. At each cycle or time step, control
signals from the control unit is sent to the datapath to perform the operations scheduled

for that cycle. The state register is then updated by the next-state function in the control

unit and the cycle repeats.

4.2. Structural Partitioning

Partitioning a design has been used as a solution to many circuit packaging problems.

Behavioral Fn Behavioral
Specification 1 Specification 2
High-Level | Synthesis Functional iPartitioning
L1 L1
Control
Unit Datapath Fn, Fn,
Structural i Partitioning High-Level or RTL
i i pinthess
Cont- rol = =
Un- it ° P ° I
] & FE= < S == <
o 1 *CE o ] ‘a’
Data path = © o © o
T T
T T
(a) (b)

Figure 4.2. Partitioning: (a) structurally, (b) functionally.
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Traditionally, partitioning a circuit is performed at the structural level. In structural
partitioning (also known as circuit or netlist partitioning), as shown in Figure 4.2(a), a
circuit is first synthesized from the behavioral level to the structural or gate level netlist.

The partitioning is then performed at the gate level.

From a power reduction perspective, structural partitioning does not reduce switching
activity. The reason is that behavioral synthesis, as mentioned in the previous section,
generates only one control unit and one datapath from the design specification. Even
though partitioning the netlist creates more than one physical partition, there is still
logically only one processor consisting of one datapath and one control unit. When a
primary input signal changes, the entire datapath may be affected regardless of which
partition they are in. Moreover, all the gates in the control unit must also be active in
order to provide the correct control signals to the datapath. Thus, even though, we have
more than one part, the switching activities are not localized within a part. This results in

much unnecessary switching activities and so power is not reduced.

Consider an unpartitioned processor containing two procediresedureland
Procedure2 with common primary inputs as shown in Figure 4.3(a). Suppose we want to
evaluate Procedurel followed by Procedure2 sequentially. While performing
Procedurel the input signals will also propagate to the gatd2ratedureZbecause they
are all interconnected. A hypothetical switching activities for the gates of the control unit
and datapath for botRrocedureland Procedure2are shown in Figure 4.3(b). Thus,

power is being used rocedure2although the result from it is not needed. In fact, the
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amount of power used byrocedure2is the same regardless of whether the result is

needed or not. Similarly wheProcedure2s being performed?rocedurelis consuming

power but the result from it is not needed.

If we take a hypothetical situation where both procedures requitedf power and

lusec to execute, then for both procedures to execute sequentially, a topV abf2

O netlist for procedure 1

processor 1

com bus

N

processor 2

(9)

toggles x1000

-
1

toggles x1000

toggles x1000

N
l

O netlist for procedure 2

S\

—large processor

—processor 1

———————— processor 2

(O netlist for procedures 1 and 2

total 4 pJ

single
large
processor

T
1

(€)

total 3.5 nJ

2 W sec

part 1

part 2

(f)

2 W sec

total 2.5 J

proc-
essor

(i)

2 W sec

Figure 4.3. Netlist with control unit and datapath, hypothetical switching activity, and
power usage of processor with two procedures: (a) single large processor with two
procedures; (b) switching activity of large processor; (c) power usage of large processor;
(d) structural partitioning of processor; (e) switching activity of (d); (f) power usage of (d);
(9) functional partitioning of processor; (h) switching activity of (g); (i) power usage of (g).
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power is required for&sec resulting in a total ofud of energy being consumed by the

single large processor as illustrated in Figure 4.3(c).

Figure 4.3(d) shows the result of structural partitioning the large processor of Figure
4.3(a). Here, the single datapath and control unit netlist is divided into two parts resulting
in gates from bothProcedurelandProcedure2to be spread across the two parts. As a
result, even if we need the result from only one procedure, there will still be switching
activities from both parts. Thus, the switching activities and energy consumption are
decreased only slightly from the single large processor as shown in Figure 4.3(e) and

Figure 4.3(f).

4.3. Procedural Functional Partitioning

In procedural functional partitioning, the focus is on partitioning coarse-grained
functions and procedures [1]. The behavioral process is first partitioned into several
smaller mutually exclusive parts. Each of these smaller parts is then synthesized to its
own custom processor, having its own controller and datapath as shown in Figure 4.2(b).
From a power reduction perspective, functional partitioning can significantly reduce
switching activity. The main reason is that partitioning oche®re synthesis, hence
each part is a processor containing its own control unit and datapath. Each processor is
now smaller than the original large processor implementing the entire process, and only
one processor is executing a computation at any given time. Thus, at a given time,
switching activity is limited to only one small processor; the other processors will be idle.

A processor is made idle by preventing its primary inputs from changing as discussed in
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Section 3.3. When a processor is idle, we have, in effect shut down both the controller
and the datapath for that processor. Thus, power reduction is possible through functional
partitioning because it reduces the overall switching activities of the entire system by
localizing the activities within smaller processors, hence, power consumed per operation

is less.

In our hypothetical example, we would first partitiBnocedureland Procedure?2
Synthesis is then applied to the two parts individually resulting in two separate processors
having there own control units and datapaths as shown in Figure 4.3(g). Being two
separate processors, the inputs to one will now have no effect to the inputs of the other.
With two smaller mutually exclusive processors, the total amount of switching activities
at any one time is reduced by about half as shown in Figure 4.3(h). However, partitioning
introduces new switching activities for inter-processor communication. It is only during
inter-processor communication that both processors will have switching activities at the
same time. Thus, in our hypothetical example, each processor might now consume

1.251W of power, resulting in a total energy of @J5as shown in Figure 4.3(i).

4.4. Procedural Functional Partitioning Example

We performed an experiment to compare the switching activities between an
unpartitioned and a partitioned system. The example shown is for a factorization
problem. Given the pseudo-code shown in Figure 4.4, we can partition it into three parts

as shown in Figure 4.5. The program calls three separate procedorkslivide, and
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input Xx;
count := 2;
while ((count * count) <= x) loop
mod(x,count,mod_result);
divide(x,count,divide_result);
is_prime(count,prime_resultl);
is_prime(divide_result,prime_result2);
if (mod_result = 0) and (prime_resultl = 1) and
(prime_result2 = 1) then
answerl <= divide_result;
answer2 <= count;
exit;
else
count := count + 1;
end if;
end loop;

Figure 4.4. Sample unpartitioned pseudo-code.

part 1

while ((count * count) <= x) loop
call and wait for result from part 2;
call and wait for result from part 3;
if ...

end loop;

part 2

wait for part 1 to call;

get parameters x and count;
mod(x,count,mod_result);
divide(x,count,divide_result);

return mod_result and divide_result;

part 3

wait for part 1 to call;

get parameters count and divide_result;
is_prime(count,prime_resultl);
is_prime(divide_result,prime_result2);
return prime_resultl and prime_result2;

Figure 4.5. Sample partitioned pseudo-code.
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is_prime We can putmod and divide in part two, is_prime in part three and the
remaining code in part one. Part one controls the entire program flow. It performs the
primary I/O, and calls the other parts when required. The part call includes the activation
of the called part and passing the parameters to the called part. The part return will pass

the results back to part one.

Figure 4.6 and Figure 4.7 show a plot of the switching activities for the unpartitioned
and partitionedrac example as shown in Figure 4.4 and Figure 4.5 respectively. Here we
actually see the decrease in switching activities as a result of the partitioning. In the
unpartitioned case, Figure 4.6, the number of toggles can go as high as 1601 in a clock
cycle with an average of 141. The total power consumption is 19 mWatt. In the

partitioned case, Figure 4.7, the maximum number of toggles in a clock cycle is only

1600

1400

1200

1000

800

600

Toggle Count

400 | M

202. L u[PMJ

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Clock Cycle

Figure 4.6. Plot of switching activities for the Fac unpatrtitioned example. Total power is 19
mWatt.
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1353 with an average of 66. The total power consumption for this case is only 11 mWatt,

a 41% reduction in power consumption.

In the partitioned plot, Figure 4.7, we can see that part two is called four times (at
clock cycle 60, 380, 680, and 900). Part three is called nine times (at clock cycle 290,
550, 600, 790, 840, 1010, 1070, 1130, and 1190). Part one is the main controlling
module, which is active only during the communication with the other two parts. We see
that while part two is active, parts one and three do not have any switching activities
whatsoever. Similarly, when part three is active, parts one and two are completely
inactive. The only time when all three parts have switching activities is when
handshaking signals are occurring over the communication bus. Notice also that the

number of clock cycles is the same for both the unpartitioned and the partitioned system.
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1400 17— ... Part 2
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Clock Cycle
Figure 4.7. Plot of switching activities for the Fac partitioned example. Total power is 11
mWatt.
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4.5. Summary

In this chapter, we have presented a procedural functional partitioning technique for
reducing power consumption. We showed that the traditional structural partitioning
technigue cannot reduce power, whereas, the procedural functional partitioning technique

can reduce power by as much as 41%.
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Chapter 5. FSMD Functional
Partitioning

Many circuit designs are still specified at the register-transfer level using the finite-
state machine with datapath (FSMD) model in which the behavior has been scheduled
into states. The reason is that designers feel that they need more control over the cycle-
by-cycle execution of the circuit, and this is something that a behavioral description and
synthesis does not offer. In this chapter, we will describe a FSMD functional partitioning
technique where we will apply the procedural functional partitioning technique described
in the previous chapter to the FSMD model. We will first give a formal definition of a

FSMD and then our FSMD functional partitioning technique will be described.

5.1. FSMD Definition

A finite state machine with datapath differs from a traditional FSM in that it may
include variables with various data types, as well as complex data operations in its
actions. We can think of an FSMD as a behavioral process that has been scheduled, able
to represent both control and data. Synthesis of the FSMD will split it into an FSM
(representing control only) and a datapath (representing data only). A sample behavioral

description of an FSMD is shown in Figure 5.1.
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Formally, a finite state machine with datapath is a 6-tuple [1]

P=<S s, OSTATOOA,  A> (5.10)

where:
S={s, ..., S} is a finite set of states.
s O Sis the reset state.

| = {i;} is a set of primary input values.

STAT={Rel(a, b) : a, b 0 EXP} is a set of status signals as logical relations between

loop
case State_Var is
when s0 =>
p:=1;
i=1;
if (1 <x) then -- x is a primary input
State_Var :=sl;
else
y<=p;
State_Var :=s3;
end if ;
when s1 =>
p=p*2;
y<=p;
i=i+1l;
State_Var :=s2;
when s2 =>
if (i <x) then
State_Var :=s1;
else
State_Var :=s3;
end if ;
when s3 =>
p:=p-1
y<=p;
i=i-1;
State_Var :=s2;
end case;
end loop;

Figure 5.1. Sample unpartitioned FSMD code.
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two expressions from the 4eKP.
EXP={f(x,y,z ...) : XV, z ... VAR is a set of expressions.
VARIs a set of storage variables.
O = {oy} is a set of primary output values.

A={x0 e:xOVAR e EXP} is a set of storage assignments.

0 Is a state transition function that maps a cross prodi&andl [1 STATIinto S

A is the output function that maps a cross produ@ axidl [ STATinto O [0 A for

Mealy models o§into O [0 A for Moore models.

5.2. FSMD Functional Partitioning Technique

The algorithm for our FSMD functional partitioning technique is listed in Figure 5.2.
The input to the algorithm is a behavioral description of an FSMD such as the one shown
in Figure 5.1. The output is multiple FSMDs with interconnections between them. In the
first step of the algorithm the internal energy for each state is calculated using the internal
energy power estimation technique described in Section 6.1. A dataflow analysis is then
performed on the FSMD to determine the data transfer and communication bus width

between them. This information is used in the evaluation of the communication energies

FSMD_Functional_Partitioning(FSMD){
Calculate_State Energy;
Dataflow_Analysis;
FSMD_Partitioning;

Synthesis;
FSMD_Refinement;

}
Figure 5.2. FSMD functional partitioning algorithm.
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between states. Having the internal state energy and the state communication energy, the
next step is to perform the actual partitioning of the FSMD. This is described in Chapter
7. After partitioning, each of these smaller FSMDs is then synthesized to its own custom
processor, having its own controller and datapath. Finally, in the refinement step, a
communication bus is added to connect the processors together so that they are

functionally equivalent to the original unpartitioned FSMD.

The architectural model after partitioning and refinement is shown in Figure 5.3.

5.3. Dataflow Analysis

In contrast to procedural functional partitioning [1] as described in the previous
chapter, which performs a coarse-grained partitioning of procedures and functions,
FSMD functional partitioning has no concept of functions or procedures, but rather states.
What we need in FSMD functional partitioning is to be able to determine the variables
that need to be passed from one state to the next. After partitioning, this information will
be used to determine the data that need to be passed between the parts. This in turn will

determine the maximum bus width required to connect the parts together.

Communication Bus

Figure 5.3. Architectural model.
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5.3.1. Basic Dataflow Analysis

Given an unpartitioned FSMD, we first construct a control flow graph by assigning a
state in the FSMD to a node in the graph. The edges in the graph correspond to the
transitions between the states. For example, given the unpartitioned FSMD code of

Figure 5.1, we obtain the initial control flow graph of Figure 5.5(a).

A dataflow analysis, similar to that use for compiler optimization [3], is then
performed on the control flow graph to obtain the variables that need to be passed from
one state to another. The algorithm for the basic dataflow analysis is shown in Figure 5.4.
For each node, four sets of variables are useddef n.use n.in, andn.out The seth.def
contains all variables defined in nodeA variable is defined when it is written to, for
example, when it occurs on the left side of an assignment statement. Theisset
contains all variables first used in nodeA variable is used when it is read from, for
example, when it occurs on the right side of an assignment statement oriFn an
statement. A variable is first used in a block if it is used before it is defined, if any, in that
block. For example, given the following two statements in a block:

ji=1*2;
k:=j+1;
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the sein.defwill contain the two variablesandk because both of them are defined. Both
variablesi andj are used but the setusewill contain onlyi because even thoughs
used in statement two, it is not first uspds defined in statement one before it is used in
statement two. However, if the two statements are switched around:

k:=j+1;
ji=i*2;

then both andj will be inn.use

From the seta.defandn.use the remaining two setsin andn.outare evaluated.in
is the set of variables needed to be passed from the preceding nod@utigdthe set of

variables needed to pass to the succeeding node.

The algorithm starts by initializing the setsn, n.def andn.usefor every noden. For

each iteration of thevHILE loop, the two sets.in andn.outare evaluated for every node.

for each node n do
begin
Il initialization
n.in =07J;
n.def = set of all variables defined in n;
n.use = set of all variables first used in n; (a variable is first used in a block if it is used before it iis
defined, if any, in that block.)
end
while changes to any of the in’s occur do
begin
for each node n from last to first do
begin
n.out = min wheremis asuccessonodeof n.
nin = nuseJ (n.out— n.def)

end
end

Figure 5.4. Basic dataflow analysis algorithm.
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This looping continues as long as there are changes to any oh tbets. At the
termination of the algorithm, each nodevill have the two seta.in andn.out defined.
Figure 5.5(b) shows the variables in the four sets after applying the algorithm to the

sample code in Figure 5.1.

5.3.2. Partition Dataflow Analysis

When we perform the FSMD partitioning, we are only interested in the amount of
data that cross between the parts and not between two states that are in the same part.
Thus, for each paR;, we need to calculate the set of variables needed to be passed from
the caller partP;.in, and the set of variables needed to pass to the calle@paut, The
algorithm to evaluat®;.in andP;.out is shown in Figure 5.6. Note that before applying
this algorithm, we must already know how many parts we will have and the set of nodes
in each part. This is discussed further in Chapter 6 and Chapter 7. The fodesate
in, andout are defined similarly as in the basic dataflow analysis but for the whole part.

In addition, we define for each partalleeandcaller set.P.calleeis the set of states i
that transitiorfrom states that are not i P.calleris the set of states I that transition

to states that are not in

Continuing with our example, if we put node sl in part P1 and the rest of the nodes in
part PO, then after applying the algorithm of Figure 5.6, we obtain the results shown in
Figure 5.5(c). Notice that the variabteis used in state2 and was defined (primary

input) in statesO, thus, it must be passed frasd via sl to s2. However,x is not in
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@ FSMD state 0.def={p,i,t1}

|
reset state g:JnS:e{j({X}

1.def={p,y,i}
2.def=(12) 1:?:;;{‘?:%
> intping ouctpix
2.out={p,i,x}
3.def={p,y,i}
_____ @ 3.use=p,i}
.- 3.in={p,i,x}
PO™:.. PO.in={i,p} 3.out={p,i,x}
'.FO.out:{i,p} (b)
Pl.in=-{;,p}
P1.out={i,p}
""" -. PO.in={i,p}
PO . P0.out=(i,p}
TS
(c) IN\PL

PLin=(.p}
P1.out={i,p}

(d)

Figure 5.5. (a) Control flow graph for Figure 5.1, (b) after basic dataflow analysis, (c) after
partition dataflow analysis, and (c) result after refinement.
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either of the sets P1.in or P1.out. This is because sO and s2 are in the same part. If we had
put 2 in P1 thenx would have to be passed across the parts, thus increasing the bus

width and therefore power consumed by the communication.

5.4. FSMD Refinement

The technique for actually partitioning the FSMD states is described in Chapter 7.
After partitioning the FSMD states into mutually exclusive parts, each part is then
individually synthesized down to the gate level. The next step in the process is to
generate new communicating FSMDs such that they are functionally equivalent to the
original unpartitioned FSMD. The resulting communicating FSMDs from Figure 5.5(a)

are shown in Figure 5.5(d).

For example, to transition from stad@ to sl in the unpartitioned FSMD shown in
Figure 5.5(a), the equivalent transition in the partitioned FSMDs is shown in Figure

5.5(d). Initially, PO is irs0 and P1 is in its idle stasge;. To transition tesl, PO exitss0,

for each parP do

begin

P.callee=setof allstatesy; :nj - n;,i # j,n; OP,andn; OP.
/[setof statesn P that trasition from stateghatarenotin P.

P.caller = setof allstatesy; :n; - nj,i # j,n; OP,andn; OP.
/[setof statesn P that trasition tostateghatarenotin P.

Puse=Unuse OnOP //setof variablesisedn P.

P.def =Undef OnOP //setof variablesiefinedin P.

Pin = (UP.calleein) - (P.us

P.out = (UP.caller.out) — (P.def)
end

Figure 5.6. Partition dataflow analysis algorithm.
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assertsstarty;, and enters its idle stafReo. Seeing thastart;; is asserted, P1 eXitgjer

and entersl.

The FSMD partitioning can be formally described as follows. Let

P=<S s, | OSTATOOA,  A>

be the original unpartitioned FSMD. Our method is to parti@onto n parts,Po, ..., Pn1
such that the combined behavior of the partitioRgsl is functionally equivalent to the

unpartitionedP. Each partitioned FSMIR,, is defined as follows:

Pi = <S, %0, Sdiesis | O STATO IP;, 60 A O OR, 8, A > (5.11)
where the symbols are defined similarly to the unpartitioned FSMD except that they are

for each parP;. A newidle statesgei [ S is added to eadh. Furthermore,

n-1

Ns =c

i=0

and

n-1

n-1
U S =S+ U Sidle;
i=0 _

i=0

Po is the main active part, and the otlRgs are the passive parts. For the main part
Po, the idle state is not the reset state,she# Sdie,0- Whereas, for the other paRs; on-
1, the idle state is the reset state, %€= Sqie;. Besides the primary inputs and outpluts
andQ;, each part also has data that is passed between the parts. THBsarat®P; for

data that is passed from and to another part respecti?ely. <ipy, ... ipa> wherea =
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number of input parameters By, andOP, = <op,, ... op,> whereb = number of output
parameters forP;,. These parameters and values are determined from the dataflow

analysis.

For each transition from a stateof P; to a statev of P; (i # j), a new signastart, is
generatedstart, is a uni-directional signal that goes fréinto P;. Every transition from
stateu to v in P becomes a transition fromto Sgie,; in Pi and fromsgie; to v in P;. The
transition fromu to sgie; in P; asserts the output signstiart, of P;. The transition from

Sdiej tovin P; is performed only when the input sigisért, of P; is asserted.

5.5. Preserving the Cycle-By-Cycle Behavior

Partitioning the FSMD and introducing the extra idle state in each part according to
the technique described above do not change the cycle-by-cycle besfavieroriginal
unpartitioned FSMD. When there is a transition that crosses between two parts, the caller
processor will transition to its idle state while at the same time, the callee processor
transitions from its idle state to the next state. The transitions to and from respective idle
states for the two parts happen simultaneously, thus, no extra clock cycle is needed. A
graphical representation of the execution of the partitioned FSMD is shown in Figure
5.7(a). The edges are annotated with the signals and data that are being sent across the
communication bus. The corresponding transition timing diagram is shown in Figure

5.7(b).

58



5.6. Critical Path Analysis

Communication involves driving buffers. Even though the delay to drive buffers is
much shorter than the delay for all other operations, it is still possible that this added
delay will lengthen the critical path. There are three cases where this may happen as
shown in Figure 5.8. In the first case, Figure 5.8(a), the communication operation extends

the critical path. If a state already contains the critical path and we need to add

if start s1=0

@)

t0 t1 t2 t3

clock

PO state reg | sO; idle0 ; s2 s3

s .\ s S
P1 state reg id|e2.1,f§ S/ )\ idle1 ) idle1

start sl

start s2

(b)

Figure 5.7. Cycle-by-cycle behavior preservation: (a) execution, and (b) transition timing
diagram.
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communication to this state, then of course the critical path will be lengthened. In the
second case, Figure 5.8(b), the communication is added to a non-critical path. However,
with the added communication delay, the non-critical path is now longer than the original
critical path. Again, we have extended the critical path. In the third case, Figure 5.8(c),
the communication is added to a non-critical path, but the total delay is still less than the

original critical path. In this case, the critical path is not changed.

Even though the communication can extend the critical path in the partitioned system,
it is still possible that this extended critical path is actually shorter than the critical path in
the unpartitioned system. The reason is that because of the smaller circuitry in the smaller
parts of the partitioned system, the critical path in the partitioned system is often actually

shorter than the critical path in the unpartitioned system.

—_ — —_—
o (@ QD
~ ~ ~

original
B g

critical path B non-critical path [ ] comunication

Figure 5.8. Three different situations for adding the communication operations: (a)
extending the critical path from original critical path, (b) extending the critical path from
non-critical path, and (c) not extending the critical path.
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Thus the critical path can be either lengthened (because of the added communication
circuitry) or shortened (because of the smaller circuitry in the smaller part). Hence, the

overall execution time can be longer or shorter than the unpartitioned system.

5.7. Preserving the Critical Path

An alternative to extending the critical path is to add the communication operation in

a separate state. The original state will go to this new state to perform the communication

PO
start_sl <=1
FB <= datad if start_s2 =10
P1
start_s2 <=1
if start_s1 =0 FB <= datal
(@)

t0 t1 t2 t3 t4 t5

clock

sO S S
PO state reg s0 extra /\_idle0 /\ idle0 s2 s3

S S| ‘ sl ,,v’; S
P1state reg | igies ) idler A 51 ) exird /\ idlet
start sl
start s2

(b)

Figure 5.9. Critical path preservation: (a) execution, and (b) transition timing diagram.
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before entering the idle state. The tradeoff here is that an extra state is needed and so the
execution time will be lengthen by one clock cycle for each transition between the parts.
This is shown in Figure 5.9(a) with the extra sta®extraandsl_extraadded in parts

PO and P1 respectively for sending the data over the communication bus. The

corresponding transition timing diagram is shown in Figure 5.9(b).

This method is usually not used at the FSMD functional partitioning level because at
this level, preserving the cycle-by-cycle behavior of the system is more important.

However, this method can be used if such preservation is not necessary.

5.8. Summary

In this chapter, we described a FSMD functional partitioning technique for power
reduction. A processor is partitioned into two or more mutually exclusive parts before
synthesis. After synthesis of the individual parts, the parts are reconnected via a
communication bus so that they are functionally equivalent to the original unpartitioned
FSMD. A dataflow analysis algorithm was used to find the data transfers between the
parts and the communication bus width. This FSMD functional partitioning technique can
be used to preserve either the cycle-by-cycle behavior of the circuit or to preserve the

critical path.
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Chapter 6. Power Estimation Model

The power cost of a particular partitioning can be obtained either using a simulated
approach or an estimated approach. While the simulated approach is much more accurate,
it is also very time consuming because the switching activities of each node in the circuit
is collected by simulating the entire design. Working at the FSMD level, the solution
space is very large and so the simulated approach will drastically limit our exploration of
the solution space. Much work has been done on performing very accurate but time
consuming power estimation [1]. However, for our purposes, using these elaborate power
estimation techniques is still impractical because it has to be evaluated many times during
the partitioning optimization process. What we require is a very fast estimation technique
that will give us a consistent relative evaluation of each partitioning. We therefore
describe an efficient power estimation model and define theoretical energy bounds, which

are used by the partitioning algorithm and heuristic.

Recall from Chapter 3 that the dynamic power consumption of a general design is

given by

P:ECVZfN
2
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whereC is the average capacitance switched per ac¥essthe supply voltagd,is the

clock frequency, and\ is the switching frequency of the unit (or the activity factor).
From this equation, we see that power estimation depends on several factors that are
known only after hardware assignment, scheduling and/or placement. Furthermore, the
activity factor is known only after executing the design. At the FSMD level, much of the
information is not known. For example, in order to calculate the power consumption of a
bus, the bus capacitance must be known. However, the bus capacitance is dependent on
the length of the wire and proximity to other wires, and this information is not known
until after placement and routing. Fortunately, for high-level optimization, relative
evaluation of different designs is more important than absolute evaluation, and

consistency is more important than accuracy.

Our power estimation model is divided into two parts: the internal and external
energy models. The internal energy is the energy consumed by a single processor while
the external energy is the energy consumed by the communication between the
processors. The total energy consumed by a partitioned FSMD system is, therefore, the
sum of the internal and the external energy. For the remaining discussion, we will restrict
to partitioning the FSMD into two parts. The idea can be easily generalized to more than

two parts.

6.1. Internal Energy

We define the internal energy as the total amount of energy consumed by all the

states in a part. This excludes the communication energy between states. The energy for
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a state is the amount of power consumed by the state multiplied by the amount of time

the state spends executing.

LetU ={s;, 9, ..., 8} be the set oli states in the unpartitioned FSMD. LA&tandB
be two partitions of the FSMD such thatn B = [0, A B = U, anda andb be the
number of states iA andB respectively so tha+b=u. Let Es be the energy consumed
by states. From [2] we see that the power for a state can be approximated by the number
of functional units and registers, and the amount of time spent executing in a state can be

found by profiling. Furthermore, let

E, = ) Es (6.1)
OsuU

be the sum of the energy of the states in the unpartitioned FSMD,

E,= Y Es (6.2)
OsUA

be the sum of the energy of the states in the partitioned FSNDd

Eg= Y Es (6.3)
OsUB

be the sum of the energy of the states in the partitioned H3Me claim that the total

energy for am-state FSMD is equal to

a, » Es (6.4)
Os [IFSMD

where a,, is determined by the complexity of tmestate FSMD. More detail on the

complexity is given in Section 6.2. Therefore, the total energy usage for the unpartitioned
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FSMD Eunpar‘titioned IS

E =a,Ey, (6.5)

unpartitioned
and the total internal energy for the partitioned FSE{Rna IS

E =0,E\+0,Eg. (6.6)

inernal

Figure 6.1 shows the results of an experiment where the energy usage for a FSMD
with different numbers of states with identical actions is evaluated. The plot shows that
adding the energy for amstate FSMD with am-state FSMD is less than the energy for
ann+m state FSMD. For example, using the 4 FU line, the energy for the 20-state and
28-state FSMDs (152+241=393) is less than the energy for the 48-state FSMD (467). In
other words, when the complexities of two individual states are summed, the result will

be less than the complexity of the two states combined. Thus, we have the inequality

700
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Figure 6.1. Energy versus the number of identical states for a FSMD with one and four
functional units.
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a,Er+a,Eg <a,Ey. (6.7)

6.2. FSMD Complexity

The FSMD complexityr addresses the issues of the internal interconnect and the size
of the FSMD in terms of energy usage. The internal interconnect deals with the
complexity of the datapath, whereas, the number of states deals with the complexity of
the control unit. It was observed in [33] that smaller capacitance is achieved in smaller
designs because there are fewer and/or shorter interconnects, and fewer functional units
and registers, which are obstacles during floorplanning and routing, which indirectly
influence interconnect capacitance, and therefore, power usage. Thus, the internal
interconnect capacitance is dependent on, among other factors, the internal bus length
which in turn is dependent on the number of functional units, multiplexers, registers, etc.

that need to be connected together, and the final layout area.

Working at the FSMD level, this interconnect can be approximated by the number of
states and functional units required in a state. Figure 6.1 shows that the energy usage of
the FSMD is also related to its size and is approximated by the number of states in the
FSMD. A similar relationship was also found in [2]. Figure 6.1 also shows how the
number of states relates to the energy usage for different number of functional units.

Thus, an approximation of the complexity, for ann-state FSMD is

a, =nx(FU + mux+reg) (6.8)
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wheren is the number of states in the FSMD, dfld, mux andreg are the average
number of functional units, multiplexers, and registers respectively per Giate.the
complexity for one state. If thees for two different states are not equal, then we use the

smaller number.

6.3. External Energy

The total energy of the partitioned system is not Hgina. When there are two or
more parts, communication must be added between the parts. We define the external
energy as the energy consumed by the communication between parts. Thus, the total

energy for the partitioned system is

E a = GAEA + GBEB + Ecomm' (69)

partition

The communication energd.omm IS simply the sum of the energy (weights) of all the

edges crossing between the pefgsge Multiply by their activity factorp:

Ecomm = Z (B| x Exedge) (6-10)

Ocross-edge

In our architectural model shown in Figure 5.3, only one external common bus is used
to connect the two parts. All communication between parts occurs over this bus. Thus,
the external bus is used every time when there is a transition frons; stedesuch that
ands are in different parts. A major factor that affects the bus energy is its length as
reported in [33]. The bus length is approximated by the number of parts being connected
together. The bus width is derived from the maximum data size crossing the parts. If the

data is multiplexed over the bus, then the smaller data size is multiplied by the number of
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times required to transmit all the data. The data size is obtained from the dataflow

analysis.

Although in equation (6.7) we claim that
a,Ept+ta,Eg <ayEy.
However, with the added communication, the claim is not always true. In other words, it
is possible that
o,Ex+0,Eg +Eomm> 0 Ey -
Fortunately as we have found in most situations, there will be a partitioning such that
o,Ex+0,Eg + Ecom<O,Ey - (6.11)

6.4. Finding the Energy Bounds

We will now evaluate lower (best) and upper (worst) bounds for the internal energy
Eintema, the external communication ener&mm and finally the partitioned energy

Eparitione¢ These bounds will be used in our optimal partitioning algorithm.

6.4.1. Internal energy bounds

The following internal energy bounds progressively get tighter. We start with
[0, a,Ey] as the first bound. The lower bound is obvious. The upper bound is for an
unpartitioned system. The second, tighter boundj&, (o, - a;)Ey]. The reason for
this second lower bound is that the minimum energy for a partition is when there is no

added complexity when all the states are added into the part.Bifigy = 01Ea + a1Eg
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= a;Ey. The upper bound comes from the fact that we need at least one state in one part
in order to have a 2-way partition. Thus, we subtract the least energy for one state from

the unpartitioned energy.

If some states are already assigned to either of the parts, we can get an even tighter
third bound. Given the fact that some states are already assigned, we can calculate the
internal energy for the current partitioning (i.e. currently known assigned states) using
equation (6.6). From equation (6.7), we see that the worst that can happen is to put all the
states in the same part. Thus, to get the upper bound, we put all the remaining unassigned
states together in the same part. The resulting energy will be @itherJ(Ea+E;s), or
(apt+ars)(EstErs), wherea,s is the complexity of the combined remaining statesEgnis
the total internal energy of the remaining states. Since we know that some states are
already assigned to another part, theref@gema Can be either §(;+as)(EatErs) +
apEg| or [(aptars)(Eg+Ers) + 04Ea]. We select the one that is the largest. Thus, the upper

bound,ubginterma IS

E(aa +ars)(EA + Ers) -l'(abEB)’D

b - ma 6.12
bE|nternal X%ab +ars)(EB + Ers) + (GaEA) E ( )

In fact, this is the exact maximum fBrwema given that some states are already assigned

to the parts becauseftap+a.s)(EatEs+E;s) = ayEy is the absolute maximum.
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For the lower bound, we add to the current partitioning energy the total energy for the
remaining unassigned statés;, using the least complexity (i.e3). Thus, the lower

boundyleinternab iS
leinternaI =aaEA +abEB +G1Er5' (6-13)

To get an even tighter lower bound, we note that all the remaining states must be
assigned to either of the two parts, thus, the complexity for these remaining states must

be at least min(; ap). Thus,

Ib =0,E,+a,Eg +(minfa,, a,]) [E. (6.14)

Einternal

Furthermore, since at least one of the remaining states must be added to one part, the
complexity of that part must at least be increaseapy Thus, an even tighter lower

bound is
leinternaI = aaEA + abEB + (min[aa’ ab] + al) |:Ers (6-15)

6.4.2. External energy bounds

We will now provide bounds for the external communication endgy, Recall
from equation (6.10) thaE.,mm is the sum of the energy (weights) of all the edges
crossing between the parts. Thus, the first lower and upper bounds are when no edges and
all edges respectively cross between parts. However, given the fact that some states are
already assigned to either of the parts, therefore, some edges are already determined as to

whether they cross between parts or not. Thus, knowing the current communication
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energy,Ec, the upper bound for the communication eneg¥comm IS when all the

remaining edges,., will cross between parts:

UbEcommz ECC + Z EI’C (616)

The lower bound for the communication enefip¢comm IS the sum of the currently
known communication energyEcs, plus the minimum of all the remaining

communication edgeg;.,
lecomm: ECC + min(Erc) (6-17)

6.4.3. Partitioned energy bounds

The bounds for the partitioned FSMD are simply the sum of the internal and
communication energy bounds. Thus, the lower bound for the partitioned energy,

IDEpartitioned 1S

|bEpartitiorlad = leinternaI + IbEcomm (6 18)
=[a,Ep + 0, Eg + (min[a,, ap] +ay) [ ]+ [Ege +min(E, )]
and the upper bound for the partitioned enetpparitioned 1S
ubEpartitionsd = ubEinternal + ubEcomm
o, +a)(Ex+Eg)+(a,Eg).[H (6.19)

Bl [ECC + z Erc]

0
= [ma
] Cxb"'ers)(EB"'Ers)'l'(aaEA) 1]

6.5. Model accuracy

We have compared the accuracy of the results obtained using our power estimation

model with that of the simulated approach. For the simulated approach, we used an event-

73



driven simulator to simulate the execution of the design to collect the switching
frequency of each node in the circuit. The loading capacitance for each node is obtained
from the synthesized gate level netlist and a low-power technology library. The power

equationP = YACVAN, is then used to calculate the total energy consumed.

Comparing the simulated results shown in Table 8.4 and the estimated results shown
in Table 8.7, we see that on average the difference between the estimated data and the

simulated data is only 17%.

6.6. Summary

We have presented an efficient power estimation model and defined theoretical
energy bounds for the FSMD model. This power estimation model is used by our branch-

and-bound partitioning algorithm and simulated annealing heuristic.
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Chapter 7. Partitioning Algorithm
and Heuristic

We will now describe a branch-and-bound optimal algorithm and a near optimal
simulated annealing heuristic for functional partitioning the FSMD for low power. Our
objective is to find a partitioning among the FSMD states such that the total energy for

the partitioned system is minimized.

The cost function used by the algorithm and heuristic is based on the power
estimation model described in the previous chapter. Using the power estimation model
and the dataflow analysis, we can evaluate the internal energy usage for each state and

the communication energy between any two states in the FSMD.

7.1. Branch-and-Bound

Our optimal algorithm is based on a branch-and-bound technique. In this algorithm, a
binary tree structure is used. Nodes that are promising are kept for further processing and
those that are guaranteed to be worst are pruned. We start with the root having only one
state. At each successive level, we add a new state and assign to the nodes in that level all

possible combinations of the states for the two parts. Using equations (6.18) and (6.19)
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from the previous chapter, an upper and lower bound is calculated for each node.
Depending on the bounds, a node is either kept or pruned. The most promising node for a
particular level is the one with the minimum energy for that level. Nodes that satisfy one

of the following two conditions are guaranteed to be inferior and are therefore pruned:

Condition 1: ifLBn, = UBminthen prunen;.

Condition 2: ifLBn = Eminthen prunen;.

where LBn is the lower bound for the nodg, UBminis the current minimum upper

bound, anEminis the current minimum energy for a complete solution seen so far.

For example, assume that we have the state energy and the communication energy
between any two states obtained from the basic dataflow analysis for four states as shown
in Table 7.1. The resulting branch-and-bound binary tree is shown in Figure 7.1. Each
node is annotated with the node number, the FSMD states in each of the two partitions,
Ep (the current energy for that partitionindf), (the lower bound for that partitioning),
andub (the upper bound for that partitioning). For example, for node 7, part A contains
state sO and part B contains states s1 and s2. Using equation (6.9), the current energy for

this three state partitioning is:

Table 7.1. Sample energy data.

States sO sl s2 s3
State Energy 110 80 60 80
State Comm Energy
s0 30 0 30
sl 30 0
s2 30
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Epartitioned =a AEA +a B EB + Ecomm
=1(110)+ 2(80+60)+ 30
=420

Note that this is not the energy for the complete solut@gkiioned iS the energy for the

complete solution only for the nodes at the lowest level. Using equation (6.18), the lower

bound is:
A=s0()
Ep= 110
Ib= 360
ub= 1440
AZS? A=s0)B=s1
Ep=/380 Ep220
bz 550 Ibz 530
up= 1440 up= 980
s0 s0 s0 sl
A:g% A=31(HB=5s2 A=37(B=sl A=s0()B=35
Ep=/750 Ep=/478 Ep=/480 Ep=/420
Ib+ 860 Ib+ 660 Ib+ 670 Ib+ 610
ubf 1440 ubfs 1020 ubgs 950 ubf 860
3 s0 s0 s0ns2 S0 s0~sl  s0-Asl s1
52 3133 Sl s2 3133 3231 3253 5352 5052
o3 s2 s3 s3 s3
E€= 1320 Ep= 890 Ep= 930 E€= 720 Ep= 890 E€= 780 E€= 720 Ep= 830
Ib= 1320 Ib= 890 b= 930 Ib= 720 Ib= 890 Ib= 780 Ib= 720 Ib= 830
ub= 720 ub= 830

ub= 1320 ub=890 ub=930 ub=720 ub= 890 ub= 780

Figure 7.1. Sample branch-and-bound binary tree.
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IbEpartitioned =lb | +1b
= [aaEA + abEB + (min[aa! ab] + q1) EErs] + [Ecc + min(Erc)]
=[1(110 +2(140 + (min[1,2] +1)(80)] + [30+30]

=610

Einternal Ecomm

Finally, using equation (6.19), the upper bound for this node is:

ubEpartitioned = ubEinternal + ubEcomm

U a,+a. )(E,+E,)+(a,Eg),[1]

Hna)qé( a rs)( A rs) ( b B)ED_F[ECC_'_zErC]
O Cxb'l'ars)(EB'I'Ers)"'(cxaEA)E|:|

U

l

a [(1+1)(110+80) + 2(140),%+ [30+ 60]]

- 2 +1)(140+80) +1(110
=860
After evaluating nodes 1 to 7, we hdvBmin= 860. Since the lower bound for node

4,LBny = 860, therefore, condition one is satisfied and we can prune the subtree rooted at

node 4.

T = initial_temperature;
c_old = InitialCost(initial_partition);
while stopping_criterionis not satisfied do
while inner_loop_criterionis not satisfied do
i = RANDOM(1number_of_statds // next state to move
MOVE{S}; /l move § from current part to other part
c_new=IncrementalCog8);
Ac=c_new-c_old
x=F(Ac, T);
r = RANDOM(0,1);
if r <xthen
c_old=c_new
end if
end while
T =UpdatdT);
end while

Figure 7.2. Simulated annealing heuristic.
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In this example, we have two optimal solutions. The first solution is at node 11 where
the partitioning isA = {0, s1} and B = {s2, s3}, and Eyanitioned = 720. The second solution

is at node 14 with the partitionimg= {s0, s3} andB = {s1, s2}.

7.2. Simulated Annealing

To tradeoff accuracy with speed, we implemented a simulated annealing heuristic.
Near optimal solution is possible with this simple and fairly fast heuristic as first

introduced in [1] and further discussed in [2].

The simulated annealing heuristic, as shown in Figure 7.2, starts with a random initial
partition. For each move, the heuristic randomly selects a state to be moved from one
partition to another. The acceptance of the new partition depends on the féinatidra

random number. The functidhis defined as

F(Ac,T) = min(, e ™).

whereAc is the change in cost from the old to the new partition, Taredthe annealing
temperature. If the cost for the new partitioning is better than the old\@.es. ,negative)
thenF returns a 1 and so the new partitioning is definitely accepted; otherwise, it is
accepted with a probability determined by the annealing temperature and a random
number. The annealing temperatufgjs high at the beginning and is decreased during

each iteration by the functiddpdatewnhich is defined as

UpdatdT) =aT
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where 0 <a < 1. Thestopping_criterions satisfied whel is approximately zero. The
inner_loop_criterionis satisfied when the solution does not improve for a certain number
of iterations. The accuracy of the heuristic is determined by the annealing tempgrature

stopping_criterioninner_loop_criterion anda for updatingT.

The heuristic starts by calling thiaitialCost function shown in Figure 7.3 for
calculating the initial energy cost of the starting random partitioning. After each move in
the heuristic, the total energy is re-calculated usingrtbeementalCostunction shown
in Figure 7.4. The global variable&EA, EB, sizeA sizeB and Ecomm used in the
IncrementalCosfunction are also initialized in thiitialCost function. Both of these

cost functions are based on the energy estimation model described in the last chapter. The

InitialCost(partitioning){

EA=EB=0;
sizeA=sizeB= 0;
Ecomm= 0;
for all statesS do { /I calculateEA,
if S.part=Athen { /I EB,
EA=EA+ES /I sizeA
sizeA=sizeA+ 1; /I andsizeB
}else {
EB=EB+ES

sizeB=sizeB+ 1;

}

for all edgesedge; do { /Il calculateEcomm
if S.part# S.partthen
Ecomm= Ecomm+ edge;.weight

}

Epartitioned= size AEA + sizeBEB + Ecomm;
returnEpartitioned

}

Figure 7.3. Initial cost function.
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complexity for thelncrementalCostunction isO(k) wherek is the maximum number of

adjacent edges for a node. The worst is whequals the number of states.

The annealing parameters used in the experiments are as follows: annealing
temperature = 30; random seed = fixed for all examples; outer loop stopping criterion =
1x10°% inner loop stopping criterion = 10000; alpha for updating the annealing

temperature = 1x1D

7.3. Summary
In this chapter, we have presented an optimal branch-and-bound algorithm and a near
optimal simulated annealing heuristic for partitioning the FSMD states such that the total

energy for the partitioned system is minimized.

Incremental Cos&ove{
if Shovepart=Athen { /l moved to par
SizeAr+;
sizeB-;
EA=EA+ESmo
EB=EB-ESyo

else { // moved to paB
sizeA-;
sizeB+;
EA=EA-ESios

EB =EB + ESnovs
}

for all statesS adjacent t&,,f{ // updateEcomm
if S.part# Shovepartthen {
Ecomm= Ecomnm+ edg€moveWeight

}
}

returnsize AEA + sizeBEB + Ecomm

}

Figure 7.4. Incremental cost function.
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Chapter 8. Experiments and Results

We implemented the techniques discussed in the preceding chapters. We will now

present the results from the experiments that we have performed.

8.1. Power Reduction for Procedural Functional Partitioning

For our procedural functional partitioning experiments, we described five examples at
the behavioral level using VHDL. We applied the procedural functional partitioning
technique described in Chapter 4. After partitioning, the system is synthesized and
simulated to obtain the switching activity data. NSYN [1], a behavioral synthesizer, was
used to synthesize the partitioned and unpartitioned systems from the behavioral level to
the gate level. Purespeed [2], an event-driven simulator, was used to collect the switching
frequency data for the power calculation. Loading capacitance was obtained from the
synthesized gate level netlist and a low-power technology library. Power results are
calculated using the switching activity and the loading capacitance for each node. The
unpartitioned and partitioned systems are compared in terms of their average and total

power usage, area, and execution time.

84



Table 8.1 shows the statistics for these examglas.is a factorization program.
Chineseis to evaluate the Chinese Remainder Theoi@iffeq is an example from the
HLSynth MCNC benchmark.Volsyn is a volume-measuring medical instrument
controller. NLoopsis an example with nested while loops. For Bax example, two
different ways of partitioning the system was done. The first way is shown in Figure 4.5.
For theChineseexample, three different ways of partitioning the system was done. The
gate countcolumn shows the gate count for the unpartitioned and partitioned system. In
the partitioned column, the gate count for the individual modules are further broken
down. Thefunction callscolumn shows the number of times each part is called via the
communication bus. For example, for thacl example, part one is called one time and
parts two and three are calladimes to denote that it is dependent on the input value.
Theloopscolumn shows whether there is a loop in that part and if so how many times it

loops around. Agaim denotes that it is dependent on the input value.

The results are summarized in Table 8.2. The table shows the gate count, the

execution time, the average and total power used as a ratio of the partitioned to

Table 8.1. Procedural functional partitioning example statistics.

Example Gate Count Functior) Loops
Unpartitioneq Partitioned= P1+P2+P3+...| Calls

Fac 1 15251 17172=8918+3051+5203 ln/n  1/2/2
Fac 2 15251 15802=9260+1349+1695+3494 1/nfn/n 1/1/1/1
Chinese 19766 32460=14965+3679+13816 UL/1 4f3/n
Chinese | 19766 34111=11116+5499+3679+13817 1/1/1/1 1/3/3/n
Chinese 19766 29551=11694+2345+1695+13817 1/3/3/1 1/1/1/n
Diffeq 11487 12245=1340+10905 1/12 1/
\Volsyn 11198 13163=10798+2365 1/n n/m
NLoops 262p 3307=1811+1496 1/n n/n
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unpartitioned examples. Columns six and seven are the absolute power for the partitioned
system. Since the switching frequency is dependent on the inputs, the results shown are
averages from several runs. The average power column shows the average power used in

one clock period and the total power is the total power used for the entire execution.

In all cases, both the average and total power is reduced. The reduction in average
power ranges from 27% to as much as 78% as in the casad@rThe reduction in total
power ranges from 12% to 66%. Even with this drastic power reduction, the tradeoff is
not too terrible. The gate count is increased by 32% on average. If we consider only the
best partitioning for th&ac andCh examples, then the gate count is only increased by
21% on average and 49% in the worse case. Execution time is increased by 22% on
average and 53% in the worse case. The reason for the size and execution time increase is

because of the extra communication overhead. The execution time overhead should be

Table 8.2. Procedural functional partitioning power reduction results.

% Overhead Absolute | % Power Savings
Partitioned

Exampleg Ared Time |Average| Total |Average| Total

% % Power | Power | Power | Power

W) | (W) % %

Fac 1 13% 23%  22.65 224295 64% 55%
Fac 2 4%  53% 13.84 1694.67 78%  6b%
Chinese 1 64% 2%  16.03 3604(99 45%  43%
Chinese 3 73% 5%  15.16 3352(01 8% 47%
Chinese 3 49%  16% 13.12 303578 55%  52%
Diffeq 7% 309 40.76 7771.52 27%  1%%
Volsyn 18% 24% 10.38 2587.22 29% 12%
Nloops 269 20% 3.70 2157.51 59% 5%
Average 32% 22% 16.96 3305)83 51%| 42%
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less than reported because we used a fixed clock in the calculation, but the critical path

for the parts are actually less. See section 8.4 for more detail on this.

It is interesting to note that in tHeac2 example, the gate count for the partitioned
system is increased by only 4%. This increase is very insignificant. In fact, a decreased
was observed in [3]. A possible reason is that NSYN can optimize a small design much

better than a large design.

From Chineselto Chinese2the total power is reduced by 4% and the gate count is
increased by 9%. The difference betwe@mineseland ChineseZ2is that part one in
Chineselis divided into two parts iChinese2 Parts two and three @hineselare the
same as parts three and fourGhinese2respectively. By adding an extra part, we have
increased the total size because of the communication overhead. However, the individual
size of each part is smaller. This causes the switching activity to be even more localized

and confined within fewer gates. Thus, a reduction in the power is seen.

The total power is further reduced by another 5% ffnmese2to Chinese3 The
main difference betwee@hinese2and Chinese3ss that parts two and three are further
reduced in size. The tradeoff is that more communication is added as can be seen from
the size increase in part one and the longer execution time. However, the total size did not

increase, but rather decreased by 13%.

From this result, we can see that it is better to have more smaller parts rather than few

bigger parts, as long as the size and performance overhead is kept within the limit. The
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rationale is that smaller parts will have less switching activities when the part is active.
The rest of the dormant parts do not contribute any dynamic power due to capacitive
charging and discharging because there are no switching activities. Of course, more parts

mean more communication on the communication bus and longer execution time.

8.2. Power Reduction for FSMD Functional Partitioning

We implemented the FSMD functional partitioning technique described in Chapter 5
and applied it to seven examples. We start by describing the system using the FSMD
model with VHDL. After applying our FSMD partitioning technique, the system is
synthesized and simulated to obtain the switching activity data. NSYN [1], a behavioral
synthesizer, was used to synthesize the partitioned and unpartitioned systems from the
behavioral level to the gate level. Purespeed [2], an event-driven simulator, was used to
collect the switching frequency data for the power calculation. Loading capacitance was
obtained from the synthesized gate level netlist and a low-power technology library.

Power results are calculated using the switching activity and the loading capacitance for

Table 8.3. FSMD functional partitioning example statistics.

Exampleg| Unpartitioned Partitioned
Size Size Stateg  Bit Width

Fac 15251 17208=11166+2758+3284 20 230
Chinese 19766 33054=14137+2233+1669+150[15 44 485
Diffeq 11487 12874=1654+11220 58 258
Volsyn 11198 13163=10798+2365 16 67
NLoops 262P 3484=1988+1496 12 66
MP 6210 5307=3890+1417 101 98
DSP 278 386=131+255 13 12
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each node. The unpartitioned and partitioned systems are compared in terms of their

average and total power usage, area, and execution time.

Table 8.3 shows the statistics for the FSMD examplfes:, is a factorization
program.Chineseevaluates the Chinese Remainder Theoi®iffeq is an example from
the HLSynth MCNC benchmark/olsyn is a volume-measuring medical instrument
controller.NLoopsis an example with nested loopsP is a small microprocessddSP
is a digital signal processor. The second and third columns show the size in terms of gate
count for the unpartitioned and partitioned systems respectively. For the partitioned size,
the gate count for the individual parts are further broken downstBtescolumn shows
the number of states in the partitioned system and the last column shows the total bit

width for the communication.

The results are summarized in Table 8.4. Columns 2 and 3 show the percent increase

in area and execution time respectively. The absolute average and total power for the

Table 8.4. FSMD functional partitioning power reduction results.

% Overhead Absolute | % Power Savings
Partitioned
Examples| Area Time | Average| Total |Average| Total
% % Power | Power | Power | Power
W) | (W) % %

Fac 139 500 17.26 1347.40 66%  64%
Chinese 67% 7%  15.85 349143 A% 3J3%
Diffeq 12% 59 54.74 8989.34 2% -3%
Volsyn 3% 99 7.54 1509.18 49%  44%
NLoops 339 -6% 5.19 2511.00 42%  45%
MP 29  -4% 13.29  425.27 51% 51%
DSP 399 -9% 1.08 28.38 48%  50%
Average 24% 1% 16.42 261457 42%| 41%
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partitioned examples are shown in columns 4 and 5. The percent average and total power
savings are shown in the last two columns. In all cases excdpiffiey, both the average

and total power is reduced. The savings in average power ranges from 2% to as much as
66% with an average of 42%. The savings in total power ranges from 33% to 64% with
an average of 41%. For tieffeq example, the average power is reduced by 2% but the
total power is increased by 3%. A possible reason for this is th&ditteg example is

simply a repetition of a single algorithm several times, and thus, is not a good candidate
for partitioning because of frequent communication. The tradeoff for the area on the
average is 24% and only 1% on average for the execution time. The reason why the
execution time overhead is so small is because the critical path can be shortened as a
result of a smaller processor, thus compensating for the critical path lengthening from
communication. The 24% increase in gates is not as significant because chip capacities
continue to grow exponentially. The results do take into consideration the fact that the
bus capacitance for communications between parts are larger than internal capacitance. In
our power calculation, we have used a bus capacitance that is four times the internal

capacitance.

Table 8.5. Breakdown of power consumption by components.

Processor Unpartitioned Partitioned
Components Power (uW) % Power (uW) % % Savings
FUs + muxes 28.0 87.0% 11.8 71.7% 57.8%
Registers 1.7 5.3% 2.1 13.0% -23.5%
Controller 2.5 7.7% 14 8.7% 44.0%
Communication 0.0 0.0% 1.1 6.6% -
Total 32.2 100.0% 16.4 100.0% 49.1%
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8.3. Power Usage Breakdown by Processor Components

We evaluated the power usage of major components in a processor. The breakdown
of components includes the functional units and multiplexers, registers, controller, and
communication. Table 8.5 shows the breakdown results. The unpartitioned and
partitioned power columns are averages of power usage from the examples from section
8.2 except that thdiffeq example was not included in these averages. The two
percentage columns reflect the percentages of power usage by the different components.
The percent savings column shows the percentage of power saved as a result of
partitioning for the different components. Figure 8.1 shows the power usage breakdown

graphically.

Clearly, functional units and multiplexers consume the most power in both the
unpartitioned and partitioned system. However, in the partitioned system it is decreased

by more than 57%. Power consumed by the registers is greater in the partitioned system

O functional units & muxes
Hregisters
M controller

Ocommunication

(b)

Figure 8.1. Breakdown of power consumption by parts for: (a) unpartitioned, and (b)
partitioned system.
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than the unpartitioned system because in the partitioned system, registers have to be
duplicated across the parts. Therefore, there are more registers in the partitioned system.
Power consumed by the controller is 44% less in the partitioned system than in the

unpartitioned system because the controllers in each part of the partitioned system are
smaller and only one has to be active at a time. Overall, the partitioned system has a

power savings of 49.1%.

8.4. Ciritical Path

Table 8.6 compares the critical path and execution time between the unpartitioned
system with the partitioned system. For the partitioned system, the results for the two
partitioning methods, cycle-by-cycle behavior preservation (cbc) and critical path

preservation (cp), described in section 5.4 and section 5.6 respectively are shown. The

Table 8.6. Critical path and execution time results.

Clock Cycles Critical Path (ns) Execution Time (ns)
Examples|Partl Part2 Part3 Part4 Partl Part2 Part3 Rart4 Max CP Var CP
(ns) | ratio| (ns) ratio
Fac cp 35 44 53 914 41 8.9 1244 1150 883 1.07
Fac cbc 23 29 36 99 45 1.7 869 1.05 629 D.76
Fac unpart 88 9/4 827 1.p0 827 1,00
Chcp 13 11 72 169 119 79 7.8 11.4 3150 1.19 2736 1.03
Ch cbc 11 ) 60 141 123 83 84 1.8 2829 1.07 2528 |0.96
Ch unpart 221 12.0 2646  1.00 2646 1.00
Dif cp 91 125 80 6.1 1740 1.24 1498 1{06
Dif cbc 69 95 82 63 1345 0.96 1160  0{82
Dif unpart 164 8.6 1407 1.00 1407 1j00
Vol cp 103 142 55 187 4579 1.p1 3228 086
Vol cbc 84 117 7.0 189 3793 1p1 2789 0.74
Vol unpart 201 18.8 3773 1.00 3773 1,00
NL cp 207 458 44 46 3027 129 2998 1.27
NL cbc 151 334 45 46 2209 0.4 2203 0.94
NL unpart 485% 4.8 2353 1.00 2353 1/00
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Clock Cyclescolumns show the number of clock cycles required to execute each part.
The Ciritical Path columns show the critical path period for each part. Vlax CP
column shows the total execution time if the slowest clock period (i.e. longest critical
path) is used for all the parts. TNMax CPcolumn is further broken down to the actual
execution time in nano-secondss)and as a ratio with that of the unpartitioned system
(ratio). The Var CP column shows the total execution time if each part uses a clock
period that is equal to the critical path for that part. Hence the clocks for each part might
be different. Again it is further broken down into the actual execution time and as a ratio

with that of the unpartitioned system.

8.5. Partitioning Algorithm and Heuristic

We implemented the branch-and-bound optimal algorithm and the simulated
annealing heuristic. The results are shown in Table 8.7. The first column shows the
examples usedrac s a factorization progranChineseevaluates the Chinese Remainder

Theorem.Diffeq is an example from the HLSynth MCNC benchmavklsynis a

Table 8.7. Results from Branch-and-Bound and Simulated Annealing partitioning.

Energy (uJ) Time (s) % Savings
Examples States Unpart B&B SA B&B SA B&B SA
Fac 20 3,508 1,454 1,454 2 1 585% 585%
Chinese 44 4831 1,614 1,672 10hr 1 66}6% 635.4%
Diffeq 58 7,928 4,083 4,106 10hr |2 485% 48.2%
Volsyn 1 2,465 1,634 1,634 1 1 33.7% 33[1%
NLoops 12 4,275 1,116 1,120 1 1 739% 73.8%
MP 101 728 - - 14+hr 5 - -
DSP 13 52 44 45 1 1 138% 12.7%
Average 49.2%| 48.7%
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volume-measuring medical instrument controlldi.oopsis an example with nested
loops.MP is a small microprocessddSP is a digital signal processor. TI& column

shows the number of states for the examples. efte@gycolumns show the energy for

the unpartitioned, the branch-and-bound partitioned system, and the simulated annealing
partitioned system respectively. Ttime column shows the execution time in seconds for

the branch-and-bound and simulated annealing % I8avingcolumns show the percent
energy savings obtained from the branch-and-bound and simulated annealing partitioning
respectively. There is no result for the MP example because the CPU run time took more

than 14 hours.

An average of 49.2% energy reduction was achieved using the branch-and-bound
algorithm, and 48.7% using the simulated annealing heuristic. We see that the solution
obtained by the simulated annealing heuristic is on average only 0.5% worst than that
obtained by the branch-and-bound algorithm, yet it is an order of magnitude faster. The
same random seed for the simulated annealing heuristic was used for all the examples.
These results compare favorably with the 41% average energy savings shown in Table

8.4.

Table 8.8 shows the statistics for the branch-and-bound algorithm. The first and
second columns show the number of states and the total number of nodes in the binary
search tree respectively. The third column shows the percentage of nodes pruned. The
Branches Prunedolumns show the number of branches pruned as a result of satisfying

conditions one and two respectively as discussed in section 7.1. Finallymieolumn
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shows the execution time for the algorithm. Although more than 99.9% of the nodes are

pruned for the 50 state example, the execution time is still quite long.

8.6. Internal to External Energy Ratios

Table 8.9 compares the effect of different internal and external capacitance ratios.
The six columns labeldd/I= show the percent energy reduction achieved for the external
to internal energy ratio of 10, 50, 100, 200, and 500 respectively. The percentages show
the energy reduction from the unpartitioned FSMD. Depending on the external to
internal energy ratio, the average energy reduction can range from 10.9% to as much as

49.2%.

The amount of power reduction is greatly affected by the external to internal energy
ratio. As the ratio increases, it becomes harder to find a partitioning that reduces the
overall power. Although our sizable power savings are dependent on this ratio, there are
two factors that may help to keep this ratio small. First, the new copper technology for
integrated circuits will slow down the increase of this ratio. Second, the bus between the

partitioned FSMDs may be very short because it exists within a component, rather than

Table 8.8. Branch-and-Bound statistics.

Total % Nodes Branches Pruned Time

States Nodes Pruned Condition 1 Condition 2 (sec)
200 1.0x16  99.7% q 21 1
250 3.3x10  99.8% 81 28,551 281

50 1.1x16° 99.9689 1,137 495,915 36,719
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the typical on-chip busses that connect large numbers of components and must span large

portions of the chip.

8.7. Power Saving Techniques Compared

Figure 8.2 shows a comparison of average power savings between our FSMD
partitioning technique with the guarded evaluation [4] and selectively-clocked [5]
technigues. We used two approaches to make the comparison and they both gave similar
results. In the first approach, we analyzed our set of examples to estimate the power
savings using the localized techniques. In the second approach, the power savings data
for the localized techniques are taken directly from their respective papers and adjusted to
our unoptimized examples. Since their savings are with respect to portions of the whole
system, we have adjusted it accordingly to reflect the savings for the entire system. The
data from [4] does not include examples with a power savings of less than 15%. Hence,
to compare fairly, we have dropped all such examples in the comparison (in our case, the
Diffeq data is dropped.) The percent power savings for the three techniques, guarded
evaluation, selectively-clocked, and FSMD partitioning, over the unoptimized design are

31%, 7%, and 49% respectively.

Table 8.9. Effects of different external to internal energy ratios.

Examples| E/I=10| E/I=50, E/I=100 E/I=200 E/I=500
FAC 58.59 432% 30.5% 15.9% 0.0%
Chinese 66.6% 60.8% 57.7% 52.2%  19/5%
Diffeq 48.5%  41.9% 0.0% 0.0 0.0%
Volsyn 33.7% 0.0% 0.0% 0.0% 0.0%
NLoops 73.9% 71.6% 68.7% 63.0% 45.7%
DSP 13.8% 0.0% 0.0% 0.0% 0.0%
Average 49.2% 36.2% 26.1% 21.8% 10,9%

96



In the guarded evaluation technique, all the savings come from the reduced switching
activity of the functional units. This is accomplished by adding latches in front of the
functional units. Hence the power consumption for the functional units is reduced by 41%
but the power consumption for the registers (which includes latches) is increased by 74%
over the unoptimized technique. The power usage by the controller is about the same as

the unoptimized technique.

In the selectively-clocked technique, most of the savings are from the FSM and is
about 45%. However, because the power consumption for the FSM accounts for less than
14% of the total power consumption, the overall power reduction is very small. The

power usage by the registers and functional units are about the same as the unoptimized

technique.

In the FSMD partitioning technique, we have 58% power savings for the functional

units and muxes, and 42% for the controller. This is offset by an increase of 24% for the
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Figure 8.2. Average power savings compared. Percentages show power savings. Shorter
bars are better.
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registers and 10% by communication. The power usage by the functional units and muxes
is less for the FSMD partitioning technique than for the guarded evaluation technique

because there is power savings from the muxes for the former technique but not the latter
technique. The power usage by the registers is more than the unoptimized technigue
because some registers have to be duplicated. However, it is slightly less than that of the
guarded evaluation technique because fewer extra latches are needed. The controller

power usage is about the same as that of the selectively-clocked technique.

After the FSMD partitioning, we end up with several smaller processors, thus, we can
further apply the localized techniques to the individual processors to get even better
results. Our analysis shows that an additional 18% power savings might be achievable
resulting in a total savings of 58% as shown in B8MD partitioning and guarded

evaluationplot in Figure 8.2.

In our analysis, we count the maximum number of functional units used in any clock
cycle and the actual total number of functional units synthesized. From this, we get the
ratio of functional units that are doing useful and useless work. This is done for both the
unpartitioned and partitioned circuits. We found that in the unpartitioned circuit
approximately 1/3 of the functional units are doing useless work and approximately 1/5

for the partitioned circuit.
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8.8. Summary

In this chapter, we have presented our results from various experiments that we
performed on testing our functional partitioning technique. We found that our FSMD

functional partitioning technigue can reduce power by about 50%.
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Chapter 9. Conclusion

Power reduction is a critical metric for circuit design. We have introduced a new
functional partitioning technique for reducing power consumption either at the procedural
behavioral level or at the finite-state machine with datapath behavioral level. Unlike
previous power reduction shutdown techniques that focus only on either the datapath or
the controller, our approach partitions the entire processor to shut down both the

controller and the datapath.

An optimal branch-and-bound algorithm and a near optimal simulated annealing
heuristic for performing FSMD functional partitioning for low power were presented.
The algorithm and heuristic make use of our power estimation model and the theoretical
energy bounds for functional partitioning. The branch-and-bound algorithm and
simulated annealing heuristic were both able to achieve roughly a 49% energy savings.

This compares favorably with our simulated average energy savings of 41%.

In addition to power reduction, FSMD functional partitioning also provides solutions
to a variety of synthesis problems and does not require the modification of the synthesis

tool.
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