
Beyond Rank-1: Discovering Rich Community Structure in
Multi-Aspect Graphs

1 SUPPLEMENT INFORMATION

1.1 Block Term Decomposition

BTD provides a tensor decomposition in a sum of Tucker terms.
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Figure 1: BTD -(L, M, N) for a third-order tensor X ∈ RI×J×K .

Tucker Decomposition[7] : A decomposition of a 3-mode ten-

sor X ∈ RI×J×K with Rank P ,Q, and R is defined as the sum

of outer product rank-1 components and one small core tensor

G ∈ RP×Q×R :

X ≈ G •1 A •2 B •3 C =
P∑
p=1

Q∑
q=1

R∑
r=1

дpqr ap ◦ bq ◦ cr (1)

BTD - (L,M,N ) : De Lathauwer at et. [2, 3] introduce a new

type of tensor decomposition that unifies the Tucker and the CP

decomposition and refereed as Block Term Decomposition (BTD).

The BTD of a 3-mode tensor X ∈ RI×J×K , shown in figure 1, is a

sum of rank-(L, M, N) terms is a represented as:

X ≈
R∑
r=1
Gr •1 Ar •2 Br •3 Cr (2)

The factor matrices (A,B,C) is defined as A = [A1 A2 . . .AR ] ∈

RI×LR , B = [B1 B2 . . .BR ] ∈ RJ×MR
and C = [C1 C2 . . .CR ] ∈

RK×NR
. The small core tensors Gr ∈ R

L×M×N
are full rank-

(L,M,N ). If R=1, then Block-term and Tucker decompositions are

same.

1.2 Convergence of RichCom

Here we demonstrate the convergence of Algorithm 1 for cLL1

on three real datasets i.e Football[5], European ATN[4] and EU-

Core[8] network that we use for evaluation. Figure 2 summarizes

the convergence of the algorithm, showing the approximated fit-

ness as a function of the number of iterations. It is clear that the

algorithm converges to a very good approximation within 40 − 50

iterations.

1.3 Qualitative Analysis of RichCom

Football[5]: Figure 4 provide visualization of Top-10 community

structures discovered by RichCom and we plot these nodes using

original football graph and mapped them to ground truth com-

munities provided in literature. Football dataset is characterized
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Figure 2: Fitness vs. number of iterations. For each dataset, compu-

tation cost was average 47 sec/iteration.

by multiple cliques and near (cliques) structures. Interestingly, we

found 10 conferences forming near cliques (in literature, total 12

conferences are given as ground truth) and few of the conferences

teams had games with other conferences groups that result in for-

mation of near bipartite and star relation.
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Figure 3: Top 10 structures of football teams found by RichCom.

Figure 4 provide visualization for the structures found by Rich-

Com and we plot these nodes using original football graph and

mapped them to ground truth communities provided in literature.

1.4 RichCom and supported ADMM Solver

Given X, this section provides the pseudo code of constrained LL1

decomposition in order to factorize the multi-aspect graph or ten-

sor into its constituent community-revealing factors and provide

community structure’s encoding formulation.

The alternating direction method of multipliers (ADMM)[1] is

an algorithm that solves optimization problems given in Equ. (3)

by breaking them into smaller pieces.The pseudo code of RichCom

and ADMM solver for solving Equ. (3) is given by:

{A,B,C} ← argmin

A,B,C
LS(X,A,B,C) + r (A) + r (B) + r (C) (3)
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Figure 4: Top 10 structures of football teams found by RichCom.

Algorithm 1: RichCom: Discovering Rich Community Struc-

ture

Input: X ∈ RI×J×K , L ∈ RR , Max iterations Imax .
Output: Factor matrices A, B, C, Structures S.
1: (A, B, C) ← cLL1(X, L, Imax )

2: Dr ← (Ar · BTr ) ∀r ∈ R
3: {Ynodes , Ycomm } ← communityDetection(D)
4: for i = 1 : total communities do

5: m ← Ynodes (f ind(Ycomm == i))
6: Ti ← X(m,m,m)
7: Si ← encode(Ti ) ▷ using section ??

8: end for

9: Visualize S ▷ using section ??

Return (A, B, C, S)

10: Function cLL1 (X, L, Imax )
11: Initialize A, B, C randomly

12: s ← sum(L) ; R ← lenдth(L)
13: X(1) = tenmat (X, 1); X(2) = tenmat (X, 2); X(3) = tenmat (X, 3)
14: while k < Imax or not-convergence do

15: G← AAT ; Y(k )A ← (B
(k−1) ⊙ C(k−1))†

16: F←
(
Y(k )A · X(1)

)T
; ρ =min(10−3, ( | |Y(k )A | |

2

F /s)

17: A(k ), Â(k ) ← ADMM(A(k−1), Â(k−1), F, G, ρ)
▷ Algorithm ADMM step [6]

18: G← BBT ; Y(k )B ← (c
(k−1) ⊙ A(k ))†

19: F←
(
Y(k )B · X(2)

)T
; ρ =min(10−3, ( | |Y(k )B | |

2

F /s)

20: B(k ), B̂(k ) ← ADMM(B(k−1), B̂(k−1), F, G, ρ)
21: G← CCT

; Y(k )C ← (A
(k ) ⊙ B(k ))† =

[(A(k )
1
⊗ B(k )

1
)1L

1
(A(k )

2
⊗ B(k )

2
)1L

2
. . . (A(k )R ⊗ B(k )R )1LR ]

†

22: F← Y(k )C · X(3)
)T

; ρ =min(10−3, ( | |Y(k )C | |
2

F /s)

23: C(k ), Ĉ(k ) ← ADMM(C(k−1), Ĉ(k−1), F, G, ρ)
24: end while

25: Return A, B, C
26: end Function

Algorithm 2: ADMM solver for Equ. (??).

Input: Residual matrices RH , RU , RF , RG , and ρ
Output: RH , RU
1: L← Lower Cholesky decomposition(RG + ρI)
2: while iter < IADMM or (r < ϵ and s < ϵ ) do

3: R̃H ← (LT )−1L−1(RF + ρ(RH + RU )
4: R0

H ← RH
5: RH ← argminRH

r (RH ) +T r (RG ) +
ρ
2
| |RH − R̃TH + RU | |

6: RU ← RU + RH − R̃H
7: r ← | |RH − R̃TH | |

2

F / | |RH | |F
8: s ← | |RH − R̃0

H | |
2

F / | |RU | |F
9: end while

Return (RH , RU )
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