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ABSTRACT

Community detection in real-world graphs has been shown to
benefit from using multi-aspect information, e.g., in the form of
“means of communication” between nodes in the network. An or-
thogonal line of work, broadly construed as semi-supervised learn-
ing, approaches the problem by introducing a small percentage of
node assignments to communities and propagates that knowledge
throughout the graph. In this paper we introduce SMACD, a novel
semi-supervised multi-aspect community detection. To the best of
our knowledge, SMACD is the first approach to incorporate multi-
aspect graph information and semi-supervision, while being able
to discover communities. We extensively evaluate SMACD’s perfor-
mance in comparison to state-of-the-art approaches across six real
and two synthetic datasets, and demonstrate that SMACD, through
combining semi-supervision and multi-aspect edge information,
outperforms the baselines.
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1 INTRODUCTION

Community detection in real graphs is a widely pervasive prob-
lem with applications in social network analysis and collaboration
networks, to name a few. There have been continuing research
efforts in order to solve this problem. Traditionally, research has
focused plain graphs where the only piece of information present
is the nodes and the edges [17] . In most real applications, however,
the information available usually goes beyond a plain graph that
captures relations between different nodes. For instance, in an on-
line social network such as Facebook, relations and interactions
between users are inherently multi-aspect or multi-view, i.e., they
are naturally represented by a set of edge types rather than a sin-
gle type of edge. Such different edge-types can be “who messages
whom”, “who pokes whom”, “who-comments on whose timeline”
and so on. There exists a significant body of work [5, 8, 10, 20] that
uses this multi-view nature of real graphs for community detection.
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Figure 1: SMACD vs state-of-art techniques: Our proposed method

SMACD successfully combines multi-view graph information and

semi-supervision and outperforms state-of-the-art techniques.

Another line of work leverages partial ground truth information
that may be available to us. Such partial ground truth information
manifests as a small percentage of nodes for which we know the
community where they belong. These partial node labels may be
obtained via questionnaires or by leveraging domain expert opin-
ion, however, since the process of obtaining those labels may be
costly and time-consuming, we assume that they represent a small
percentage of the nodes in our graph. The most popular school of
thought that takes such partial ground truth into account are the
so called “Guilt-by-Association” or label propagation techniques
where the main idea is that affinity between nodes implies affili-
ation with the same community and those techniques iteratively
propagate the known node labels throughout the graph estimating
the unknown labels.

The problem that we solve is the following:

Problem 1. Given (a) a multi-view or multi-aspect graph,
and (b) a p% of node labels to R communities, find an assign-
ment of all nodes of the graph to one (or more) of the R commu-
nities.

Our main contributions are:
• Novel Approach: We introduce SMACD, a semi-supervised
multi-aspect community detection algorithm that leverages
multiple views of a graph and an existing (small) percentage
of node labels for community detection.

• Algorithm: Under the hood of SMACD runs our proposed
algorithm for Non-Negative Sparse Coupled Matrix-Tensor
Factorization (NNSCMTF) which jointly decomposes a ten-
sor that represents a multi-view graph, and a matrix which
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contains partial node label information. NNSCMTF intro-
duces latent sparsity and non-negativity constraints to the
Coupled Matrix-Tensor Factorization model [1], which are
well suited for community detection.

• Evaluation on Real Data: We conduct extensive experi-
ments in order to evaluate SMACD’s performance in com-
parison to state-of-the-art methods.

2 PROPOSED METHOD

2.1 Preliminary Definitions

A multi-view graph with K views is a collection of K adjacency
matrices X1, · · ·XK with dimensions I × I (where I is the number
of nodes). This collection of matrices is naturally represented as a
tensor X of size I × I × K . A tensor is a higher order generalization
of a matrix. In order to avoid overloading the term “dimension”,
we call an I × J × K tensor a three “mode” tensor, where “modes”
are the numbers of indices used to index the tensor. We refer
the interested reader to several surveys that provide more details
and a wide variety of tensor applications [15] . One of the most
popular and widely used tensor decompositions is the Canonical
Polyadic (CP) or CANDECOMP/PARAFAC decomposition [4, 12],
henceforth referred to this decomposition as CP. In CP, the tensor
is decomposed into a sum of rank-one tensors, i.e., a sum of outer
products of three vectors (for three-mode tensors): X ≈

∑R
r=1 A(:

, r ) ◦ B(:, r ) ◦ C(:, r ) where A ∈ RI×R ,B ∈ RJ×R ,C ∈ RK×R , and
the outer product is given by (A(:, r ) ◦ B(:, r ) ◦ C(:, r ))(i, j,k) =
A(i, r )B(j, r )C(k, r ) for all i, j,k .

There are cases where in addition to the tensor, we also have a
matrix whose rows (without loss of generality) have one-to-one
correspondence with one of the modes of the tensors. We refer to
this matrix and tensor as “coupled” and we can jointly analyze them
using the Coupled Matrix-Tensor Factorization [1], a model which
will be the basis for our proposed method.

2.2 SMACD: Semi-supervised Multi-Aspect

Community Detection

As [10] has demonstrated, using higher-order information for the
edges of a graph, such as the "means of communication", results
in more accurate community detection. What if we additionally
have semi-supervision in the form of community labels for a small
subset of the individuals? In this Section we introduce SMACD
which formulates this problem as a matrix-tensor couple, where the
matrix contains the community labels for the small subset of users
that are known, and missing values for the rest of its entries. The
key rationale behind SMACD is the following: Using the coupled
matrix that contains partial label information for each node will
provide a soft guide to the tensor decomposition with respect to the
community structure that it seeks to identify. Thus, using this side
information we essentially guide the decomposition to compute a
solution which bears a community structure as close to the partial
labels as possible (in the least squares sense).

In [3] the authors propose semiBAT, where they follow a dif-
ferent approach of incorporating semi-supervision in the context
of matrix-tensor coupling: instead of a bilinear decomposition for
Y (the partial label matrix) which provides soft guidance to the

structure discovery, semiBAT explicitly uses a classification loss in
the objective function. In [3] the goal classification of brain states,
rather than discovering community structure, thus explicitly using
the classification loss instead of taking a low-rank factorization of
the label matrix seems more appropriate.

At a high level, SMACD takes as input a tensor X ∈ RI×I×K

which contains the multi-view graph, a matrix Y ∈ RI×R con-
taining the node assignments to communities, and the number of
communitiesR (which is given implicitly throughmatrixY. SMACD
consists of the following two steps.
Step 1: Decomposition Given X,Y compute an R − 1 component
Sparse and Non-negative MTF (as shown below in Section 2.2.1).
The columns of A and B contain soft assignments of each node to
one of R−1 communities. Both matrices contain similar information
(which in practice ends up being almost identical, especially in cases
where we have symmetric tensors in the first two modes).
Step 2: Hard Assignment In this step we assign each node to
a single community by finding the community with maximum
membership. This translates to finding the maximum column index
for each row (which corresponds to each node). In the previous
step we have computed a sparse decomposition which causes a
number of the nodes to have all-zero rows in A, i.e., they have no
assignment to any of the R − 1 communities. We assign those nodes
to the R-th community which essentially is meant for capturing all
remaining variation that our CP model in the CMTF decomposition
was unable to capture. Step 2 is necessary only in the case where
we have non-overlapping communities. However, SMACD works
for overlapping communities as well, simply by eliminating Step 2
and computing Step 1 for R communities instead of R − 1.

2.2.1 Non-negative Sparse Coupled Matrix-Tensor Factorization
(NNSCMTF). In this section we describe our model along with an
Alternating Least Squares algorithm that computes a locally optimal
solution. We propose two constraints on top of the CMTF model ,
motivated by community detection:
Non-negativity Constraint: SMACD uses the factor matrices
A,B as community assignments. Such assignments are inherently
non-negative numbers (a negative assignment to a community is
hard to interpret and is not natural). Thus, in NNSCMTF we impose
element-wise non-negativity constraints (denoted as A ≥ 0) to all
factor matrices.
Latent Sparsity Constraint: In order to (a) further enhance in-
terpretability and (b) suppress noise, we impose latent sparsity to
the factors of the model. Intuitively, we would like the coefficients
of the factor matrices to be non-zero only when a node belongs
to a particular community, thus eliminating the need for ad-hoc
thresholding. To that end we introduce ℓ1 norm regularization for
all factors which promotes a sparse solution.

The proposed model is:

min
A≥0,B≥0,C≥0,D≥0

∥X −
∑
r

A(:, r ) ◦ B(:, r ) ◦ C(:, r ) ∥2F + ∥Y − ADT ∥2F

+ λ
∑
i,r

|A(i, r ) | + λ
∑
j,r

|B(j, r ) | + λ
∑
k,r

|C(k, r ) | + λd
∑
l,r

|D(l, r ) | (1)

where λ is the sparsity regularizer penalty. The above objective
function is highly non-convex and thus hard to directly optimize.
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However, we use Alternating Least Squares (ALS), a form of Block
Coordinate Descent (BCD) optimization algorithm, in order to solve
the problem of Eq. 1. The reason why we choose ALS over other ex-
isting approaches, such as Gradient Descent [1], , is the fact that ALS
offers ease of implementation and flexibility of adding constraints
and regularizers, does not introduce any additional parameters that
may influence convergence, and as a family of algorithms has been
very extensively studied and used in the context of tensor decom-
positions. The main idea behind ALS is the following: when fixing
all optimization variables except for one, the problem essentially
boils down to a constrained and regularized linear least squares
problem which can be solved optimally. Thus, ALS cycles over all
the optimization variables and updates them iteratively until the
value of the objective function stops changing between consecu-
tive iterations. In ALS/BCD approaches, such as the one proposed
here, when every step of the algorithm is solved optimally, then
the algorithm decreases the objective function monotonically.

In the following lines we demonstrate the derivation of one of
the ALS steps. Let us denote X(i) the i-th mode matricization or
unfolding of X, i.e., the unfolding of all slabs of X into an I × JK
matrix (we refer the interested reader to [15] for a discussion on
matricization), then because of properties of the CP/PARAFAC
model [15], fixing B,C,D we have

min
A≥0

∥X(1) − A[(B ⊙ C)T ∥2F + ∥Y − ADT ∥2F + λ
∑
i,r

|A(i, r ) | ⇒

min
A≥0

∥[ X(1) ;Y] − A[(B ⊙ C)T DT ] ∥2F + λ
∑
i,r

|A(i, r ) | ⇒

min
A≥0

∥[L − AM] ∥2F + λ
∑
i,r

|A(i, r ) | (2)

where L = [ X(1) ;Y] , andM = [(B ⊙ C)T DT ]. This problem is
essentially a Lasso regression on the columns of A [21] and we use
coordinate descent to solve it optimally . The update formulas for
B,C,D follow the same derivation after fixing all but the matrix
that is being updated. We omit the full listing of the algorithm due
to space restrictions.

3 EXPERIMENTAL EVALUATION

In this section we extensively evaluate the performance of SMACD
on two synthetic and six real datasets, and compare its perfor-
mance with state-of-the-art approaches which either use multi-
view graphs or semi-supervision (but not both) for community
detection. We implemented SMACD in Matlab using the function-
ality of the Tensor Toolbox for Matlab [2] which supports efficient
computations for sparse tensors.

3.1 Data-set description

3.1.1 Synthetic data generation. In order to fully control the
community structure in our experiments we generate synthetic
multi-view graphs which different cluster density. We generally
follow the synthetic data creation of [10]. We partition the adja-
cencymatrices corresponding to different graph views into different
blocks, each one corresponding to a community. We further corrupt
those datasets with random Gaussian noise with variance 0.05. We
construct two synthetic datasets: Synthetic-1 has 5 views and 5
communities and has very few “cross-edges”, whereas Synthetic-2

has 3 views and higher number of “cross-edges”, making it a harder
dataset. We include those synthetic datasets in our code package.

3.1.2 Real Data Description. In order to truly evaluate the ef-
fectiveness of SMACD, we test its performance against six real
datasets that have been used in the literature. Those datasets are:
DBLP-I, DBLP-II, Cora, CiteSeer, WebKB, and MIT reality mining
dataset. DBLP-I and DBLP-II datasets are collected from the DBLP
online database and were used in [10]. In DBLP-I and DBLP-II, the
first graph view represents citations of one author to another. The
second view represents co-authorship relations. Finally the third
view relates two authors if they share any three terms in a title or
in abstract of their publication. The Cora dataset [19] was collected
from the LINQS online database, and consists of 2708 machine
learning publications and citations. This network consists of 5429
edges and 7 different communities. CiteSeer dataset [19]consists
of 3312 publications related to AI, DB, IR, ML and HCI research cat-
egories. The WebKB dataset [19] is small dataset of 878 web pages
of Washington universities which belong to 5 categories, namely
courses, facilities, student, project and staff. We considered these
categories as ground truth classes. Finally, the MIT reality mining
[7], collected by researchers at MIT, consists of 87 mobile users
information collected on campus. Ground truth is the self-reported
affiliation of the users.

3.2 Evaluation Measures

We evaluate the community detection performance in terms of
three different quality measures: Normalized Mutual Information
(NMI), Adjacent Random Index (ARI) and Purity. These measures
provide a quantitative way to compare the obtained communities
Ω = w1,w2, ......,wr to ground truth classes C= c1, c2, ......, cr .

More Specifically, NMI (Ω,C) = I (Ω,C)

[H (Ω)+H (C)]
where I(Ω,C) is

mutual information between cluster Ω and C, H(Ω) and H(C) are
entropy of cluster and classes. Next, Purity is defined as the ratio
of number of nodes correctly extracted to total number of nodes.
Formally, Purity(Ω,C) = 1

N
∑N
k=0max |wk ∩ ck | wherewk and ck

are the number of objects in a community and a class respectively.
|wk ∩ ck | is the interaction of objects ofwk and ck . Finally when
interpreting communities as binary decisions of each object pair, Ad-
jacent Random Index(ARI) is defined as:ARI (Ω, c) = tp+tn

tp+f p+f n+tn ,

where tp, tn, f p and f n are true positive, true negative, false pos-
itive and false negative, respectively. . NMI, Purity and ARI are
defined on the scale [0, 1] and the higher the score, the better the
community quality is.

3.3 Baselines for Comparison

Here we briefly present the state-of-the-art baselines. For each
baseline we use the reported parameters that yielded the best perfor-
mance in the respective publications. For fairness, we also compare
against the parameter configuration for SMACD that yielded the
best performance in terms of NMI. All comparisons were carried
out over 50 iterations each, and each number reported is an average
with a standard deviation attached to it.
GraphFuse [10]: GraphFuse is a tensor decomposition based ap-
proach which can be seen as a special case of SMACD when there
is no semi-supervision. The sparsity penalty factor λ for DBLP-I,
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Figure 2: Experimental results for NMI, ARI and Purity. SMACD mostly outperforms baselines and, in particular, works better in very hard

scenarios such as the MIT dataset.

DBLP-II, CiteSeer, Cora, WebKB and MIT is set for λ= 0.000001,
0.0001, 0.000001, 0.1, 0.00005 and 0.00001, respectively and a maxi-
mum of 150 iterations was used for convergence.
WSSNMTF andNG-WSSNMTF [11]: The details for the methods
are described in [11]. We used the SVD matrix initialization. The
sparsity penalty parameter η for WSSNMTF and NG-WSSNMTF
are chosen to lead to best clustering performance and max 100
iterations are used for reaching the convergence.
Fast Belief Propagation (FaBP) [16]: FaBP is a fast, iterative
Guilt-by-Association technique, in particular conducting Belief
Propagation. A belief in our case is a community label for each
node. We used one-vs-all technique for multi-clustering.
ZooBP [9]: ZooBP works on any undirected heterogeneous graph
with multiple edge types. As in FaBP, a belief here is a community
label for each node.
SMGI [14]: Sparse Multiple Graph Integration method is another
method of integrating multiple graphs for label propagation, which
introduces sparse graph weights which eliminate the irrelevant
views in the multi-view graph.
AWGL [18]: Parameter-Free Auto-Weighted Multiple Graph Learn-
ing is the latest auto-weighted multiple graph learning framework,
which can be applied to multi-view unsupervised (AWGL-C) as well
as semi-supervised (AWGL) clustering task.
Parameter Tuning In order to be on-par with the baselines, we
tuned SMACD’s parameter λ so that we obtain the maximum per-
formance. We provided ≤10% labels in matrix and rest of labels
are empty. The maximum number of iterations for SMACD is set
to 103. We perform experiments with various values of λ ranging
from 10−8 to 106 on all real multi-view networks to explore the be-
haviour of our algorithm. λ is chosen to give best clustering results
in terms of NMI, for DBLP-I, DBLP-II, CiteSeer, Cora, WebKB and
MIT values for λ= 0.3,0.09, 0.0001,1, 0.9 and 600, respectively. For
both the synthetic data, penalty factor is set to 1.

3.4 Experimental Results

Below we extensively evaluate SMACD and compare it against
baseline methods.

3.4.1 Comparison with Baselines. For all datasets we compute
Normalized Mutual Information, Purity and Adjacent Random In-
dex. For SMACD, AWGL , SMGI, ZooBP and FaBP we use labels
for 10% of the nodes in each dataset. We observe that SMACD per-
formed better than other approaches when applied on SYN-I and
SYN-II. SYN-I is designed with high cluster density in layer 2 and 3,

and noisy links, and has high number of cross-community edges
between nodes. Given that, we found that SMACD achieved the
highest NMI, ARI and Purity. We omit the figure of the results due
to space restrictions.

Figure 3: SMACD vs. Guilt-by-Association(FaBP and ZooBP), AWGL

and SMGI for different degrees of semi-supervision for DBLP-I.

Themost interesting comparison, however, is on the real datasets,
since they present more challenging cases than the synthetic ones,
shown in Figure 2. SMACD outperforms the other state-of-the-
art approaches in most of the real multi-view networks, with the
exception of Cora. In the cases of DBLP-I and DBLP-II, SMACD
gave better results compared to the baselines , specifically in terms
of NMI and Purity. For Citeseer, SMACD has comparable behavior
with the baselines in terms of NMI. Most importantly, however,
SMACD achieves the highest NMI, ARI, and Purity for WebKB and
MIT, arguably the hardest of the six real datasets we examined and
have been analyzed in the literature.

3.4.2 Performance vs. Degree of Semi-supervision. Next, we eval-
uate the performance of SMACD compared to Guilt-by-Association
as a function of the degree of semi-supervision, i.e., the percent-
age of available labels. We performed experiments for the DBLP-I
dataset for 5%, 10% and 20% labeled nodes and we show the results
in Figure 3 showing a consistent trend between the two methods.
We further measure the performance of SMACD as the number
of labels grows, and summarize the results in Figure 4 where we
can see that what we would expect intuitively holds true: the more
labels we have the higher the community accuracy. Due to limited
space, we show the trend only for DBLP-I but we observe similar
behavior for the rest of the datasets.

From figure 4, it is observed that when all the nodes are labeled,
SMACD achieved the Purity ≈ 0.93 and NMI ≈ 0.75. The reason for
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Figure 4: Performance of SMACD for DBLP-I as a function of the

number of labels. These results confirm the intuition, since perfor-

mance improves as the number of labels increases.

this behavior is the fact that we are modeling each community as
a rank-1 tensor, and there appears to exist community structure
that we cannot model as such. We reserve further investigation for
future work.

4 RELATEDWORK

We provide review of work related to our problem.
Multi-vew Clustering/Community Detection: There is work
in the literature (such as some of the baselines we compare against)
that leverages multiple graph views for community detection, in-
cluding Weighted Simultaneous Symmetric Non-negative Matrix
Trifactorization (WSSNMTF) and Natural Gradient Weighted Si-
multaneous Symmetric Non-negative Matrix Trifactorization (NG-
WSSNMTF) [11] and GraphFuse [10].
Heterogeneous Information Networks (HIN): Heterogeneous
Information Networks are versatile representations of networks
that involve multiple typed objects (or nodes) and multiple typed
links denoting different relations (or edges). There is a fairly rich
body of work in the literature working on related problems to
ours [13, 22], however, we were unable to find an implementa-
tion directly applicable to the problem at hand for experimental
comparison.
Guilt-by-Association techniques: Prior work that has leveraged
label propagation for community detection, including FaBP [16]
and ZooBP [9], with the latter also leveraging the multi-view nature
of the graph.
Tensor and Coupled Models: To the best of our knowledge the
NNSCMTF model has not been previously proposed. Most rele-
vant to our proposed framework, Cao et al. [3], propose a semi-
supervised learning framework, based on matrix-tensor coupling.
We were unable to directly compare the method of [3] as released
because the focus of [3] is 4-mode tensors.

5 CONCLUSIONS

We introduce SMACD, a novel approach on semi-supervised multi-
aspect community detection based on a novel coupledmatrix-tensor
model. We propose an automated parameter tuning algorithm,
which effectively renders SMACD parameter-free. We extensively

evaluate SMACD’s effectiveness over the state-of-the-art, in a wide
variety of real and synthetic datasets, demonstrating the merit of
leveraging semi-supervision and higher-order edge information
towards high quality overlapping and non-overlapping community
detection.
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