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Abstract. Anomaly detection is an important problem that has been
fundamentally researched in various research and application domains.
This survey aims three-fold; firstly, we present a structured and com-
prehensive overview of anomaly detection methods. Secondly, we review
the applications and their effectiveness across various domains. Further-
more, we provide a practical implementation and use of these methods.
We grouped current methods into different categories based on the fun-
damental approach. For each category, we discuss key assumptions used
by the methods to differentiate between normal and abnormal behavior.
The automatic detection and alerting of abnormal data and behaviors,
implemented using computationally efficient software, are critical in this
context. These considerations motivate applying the anomaly detection
methods to real-world data discussed in this survey. This outline provides
an easier and more brief understanding of the methods belonging to each
category. We hope this survey will provide a great understanding of the
various directions in which research has been done on this topic and how
methods developed in one area can be applied in other domains.

1 Introduction

Anomaly detection [5] is a technique used in data analysis and machine learn-
ing to identify rare or unusual events, observations, or patterns that do not
conform to the expected behavior or norm within a dataset. It involves finding
patterns that deviate from the normal behavior of the data, which can indi-
cate potential problems, outliers, or anomalies that require further investigation.
Anomaly detection is a critical task in many fields, including cyber-security, fi-
nance, healthcare, and industrial process control. Anomaly detection refers
to the process of identifying patterns in data that deviate from the ex-
pected or normal behavior. These patterns may indicate malicious activity,
equipment failure, or other forms of abnormal behavior that can have significant
consequences.
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The detection of anomalies is a challenging problem because anomalies can
take many different forms and can be difficult to distinguish from normal behav-
ior. Anomalies can occur at any level of abstraction, from individual data points
to entire systems, and can be caused by a wide range of factors, including human
error, software bugs, hardware failures, and malicious activity. To address these
challenges, a wide range of anomaly detection techniques have been developed,
including statistical methods, machine learning algorithms, and deep learning
models. These techniques can be broadly classified into supervised, unsuper-
vised, and semi-supervised methods, depending on the availability of labeled
data. Supervised methods require labeled data that is used to train a model to
distinguish between normal and anomalous behavior. Unsupervised methods, on
the other hand, do not require labeled data and instead use statistical techniques
or clustering algorithms to identify patterns in the data that deviate from the ex-
pected behavior. Semi-supervised methods are a hybrid approach that combines
elements of both supervised and unsupervised methods.

The choice of anomaly detection technique depends on a variety of factors,
including the type of data being analyzed, the nature of the anomalies, and the
available resources for training and deployment. In recent years, deep learning
models, such as autoencoders and recurrent neural networks, have shown promise
for detecting anomalies in complex data, such as images and time-series data.

The process of anomaly detection usually involves the following steps:

– Data collection and pre-processing: Collect the data from various sources,
clean and pre-process it to make it ready for analysis.

– Feature extraction: Identify the relevant features or attributes that can
be used to represent the data.

– Model training: Train a model using the labeled data or unsupervised
learning techniques to identify normal behavior or patterns within the data.

– Anomaly detection: Apply the trained model to identify the observations
or events that deviate from the normal behavior.

– Evaluation and refinement: Evaluate the results, refine the model if nec-
essary, and repeat the process until the desired level of accuracy is achieved.

Overall, the detection of anomalies is a critical task for ensuring the security,
reliability, and safety of systems in a variety of domains. Anomaly detection tech-
niques continue to evolve and improve, driven by advances in statistical analysis,
machine learning, and deep learning, and are expected to play an increasingly
important role in the coming years.

1.1 Applications of Anomaly Detection

Anomaly detection has various applications in many fields such as fraud de-
tection, intrusion detection, fault detection, network monitoring, and predictive
maintenance. Here are some examples:

– Cybersecurity: Anomaly detection is widely used in cybersecurity to iden-
tify suspicious network activity, such as unusual logins, file transfers, or data
access patterns. For example, intrusion detection systems (IDS) use anomaly
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detection techniques to identify attacks or suspicious behavior on computer
networks.

– Manufacturing: Anomaly detection can be used in manufacturing to mon-
itor machines and equipment to detect any deviations from their normal
behavior. This can help to identify potential faults or defects in the produc-
tion process and avoid downtime. For example, vibration sensors can be used
to monitor the health of machines and detect any unusual vibrations that
may indicate a fault.

– Finance Fraud detection: Anomaly detection is used in finance to detect
fraudulent transactions or unusual behavior in financial transactions. For ex-
ample, credit card companies use anomaly detection to identify transactions
that are outside the normal spending patterns of their customers.

– Healthcare: Anomaly detection is used in healthcare to identify unusual
patterns in patient data that may indicate potential health issues or anoma-
lies. For example, anomaly detection can be used to identify patients who
are at high risk of developing a particular disease based on their medical
history and other risk factors.

– Energy and Utilities: Anomaly detection can be used in energy and util-
ities to detect anomalies in power consumption, such as sudden spikes or
drops in usage. This can help to identify potential faults in the power grid
and take appropriate action to avoid blackouts or other disruptions.

– Industrial process monitoring: Anomaly detection can be used to moni-
tor industrial processes for abnormal behavior that may indicate equipment
failure or production issues.

– Predictive maintenance: Anomaly detection can be used to detect anoma-
lies in machine sensor data to predict equipment failure and perform main-
tenance proactively.

– Quality control: Anomaly detection can be used to monitor manufacturing
processes for defects or anomalies that may affect product quality.

– Energy management: Anomaly detection can be used to monitor energy
consumption patterns in buildings and detect anomalies that may indicate
energy waste or inefficiency.

– Social media analysis: Anomaly detection can be used to detect anoma-
lous behavior in social networks, such as spamming or bot activity.

– Traffic management: Anomaly detection can be used to monitor traffic
patterns and detect anomalies that may indicate accidents or congestion.

– Environmental monitoring: Anomaly detection can be used to detect
anomalies in environmental data, such as air or water quality, to identify
potential hazards or pollution sources.

These are just a few examples of how anomaly detection can be used in various
domains. In general, anomaly detection can be used in any situation where there
is a need to identify unusual patterns or behavior within a dataset.
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1.2 Types of Anomalies

The type of intended anomaly is a key factor in an anomaly detection technique.
The three categories of anomalies are as follows:

– Point Anomaly: An instance of data is referred to as a point anomaly if
it may be considered abnormal concerning the rest of the data. A key char-
acteristic of point anomaly (Fig. 2) is the return of the data to its previous
normal state within a very short time period. These point anomalies may
represent statistical noise, an irregularity, deviation that happens randomly
or they could represent a significant short period event that is of interest to
the business. Because of its simplicity, majority of the research is focused on
point anomaly detection. For example, a single balmy day in an otherwise
chilly winter would be a good example of this. On that day, the weather is
considered anomalous because the temperature is extreme compared to the
rest of the season. Point anomalies often occur in this way, as a singular
extreme value on a single attribute of the data.
Another business use case example, consider item sales anomaly detection.
Let the data set correspond to each item’s sales time series. For the sake
of simplicity, let us assume that the data is defined using only one feature:
total sales per day. A time stamp for which the sale is very high compared
to the normal range of sales per day for that item will be a point anomaly.

– Contextual Anomalies: Contextual anomalies or conditional outliers are
observations or sequences which deviate from the expected patterns within
the data. However, if taken in separation they may be within the range of
expected values. In simple words, a contextual anomaly (Fig. 1) is a devi-
ation from the norm. This is referred to as contextual anomaly, where the
data instance has to have some feature(s) that pertain to the context [2],
whether it is time-relevant (i.e. temporal), location-relevant (i.e. spatial), or
a different kind of context per the problem domain. For example, having
a staff member attempt to log in to her corporate system using her cre-
dentials is not anomalous. However, when this does not happen within the
pre-defined business hours, the instance becomes anomalous in the tempo-
ral context. Fig. 2 illustrates an example of a contextual anomaly. Another
example, one of your customers may double their usual spending behavior
in mid-December for the holiday season. These outliers are common in time
series data because those datasets are records of specific quantities for given
periods.
• Contextual attributes: The contextual attributes are used to deter-
mine the context for that data instance. For example, in spatial data sets,
the longitude and latitude of a location are the contextual attributes. In
time-series data, time is a contextual attribute which determines the po-
sition of an instance on the entire sequence. An object in a given data set
is a contextual outlier (or conditional outlier) if it deviates significantly
with respect to a specific context of the object.

• Behavioral attributes: The behavioral attributes determine the non-
contextual characteristics of an instance or object and are used to evalu-
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ate whether the instance or object is an outlier in the context to which it
belongs. For example, in a spatial data set describing the average rainfall
of the entire world, the amount of rainfall at any location is a behavioral
attribute.

– Collective Anomalies. A collective anomaly is a collection of similar data
points that can be considered abnormal together when compared to the rest
of the data. For example, a consecutive 10-day period of hot temperatures
could be considered a collective anomaly. These temperatures are unusual
because they occur together and are likely caused by the same underlying
weather event.

1.3 Challenges

The development of an anomaly detector goes through several phases. The pro-
cess begins with understanding data, model creation, validation, and testing,
followed by deployment and tuning, and lastly operation and retraining. But
several factors make this apparently simple process very challenging:

Data quality : When developing an anomaly detection model, one primary
question we may ask our self is: “Which algorithm should I use for my appli-
cation?” This is highly dependent on the type of problem or application we’re
trying to solve, of course, but main thing to think about is the quality of under-
lying data and availability of labeled data. Often the data contains noise which
tends to be similar to the actual anomalies and hence is difficult to distinguish
and remove. Data quality problems can include but not limited to null data or
incomplete datasets, inconsistent data formats, duplicate data, different scales
of measurement, and human error. Low data quality and the existence of noise
carry a huge challenge to anomaly detection. They can deceive the information,
blurring the differentiation among normal objects and anomaly. Furthermore,
noise and missing information can “hide” outliers and decrease the effectiveness
of anomaly detection an anomaly can occur “disguised” as a noise point, and
an anomaly detection approach can erroneously recognize a noise point as an
anomaly.

Imbalanced distributions : Another method of building an anomaly detection
model would be to use a classification algorithm to build a supervised model.
This supervised model will require labeled data to understand what is good or
bad. A common problem with labeled data is distribution imbalance. It’s normal
to have a good state which means 99% of the labeled data will be skewed towards
good. Because of this natural imbalance, the training set may not have enough
examples to learn and associate with the bad state. This is another problem that
can be hard to solve.

Modeling normal objects and outliers effectively : Anomaly detection
element largely based on the modeling of normal objects and outliers. This is
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slightly because it is complex to enumerate some available normal behaviors
in an application. The border among data normality and abnormality is not
clear cut. Instead, there can be a broad range of gray application. Consequently,
while various anomaly detection techniques assign to each object in the input
information set a label of either “normal” or “abnormal,” other approach assign
to each object a score calculating the “anomaly” of the object. Defining a normal
region which encompasses every possible normal behavior is very difficult. In
addition, the boundary between normal and anomalous behavior is often not
precise. Thus an anomalous observation which lies close to the boundary can
actually be normal, and vice-versa. When anomalies are the result of malicious
actions, the malicious adversaries often adapt themselves to make the anomalous
observations appear like normal, thereby making the task of defining normal
behavior more difficult.

Domain-specific anomaly detection : In many domains normal behavior
keeps evolving and a current notion of normal behavior might not be sufficiently
representative in the future. The exact notion of an anomaly is different for differ-
ent application domains. For example, in the medical domain a small deviation
from normal (e.g., fluctuations in body temperature) might be an anomaly, while
similar deviation in the stock market domain (e.g., fluctuations in the value of a
stock) might be considered as normal. Thus applying a technique developed in
one domain to another is not straightforward.

Handling noise : Anomalies are different from noise. It is known that the
quality of real information sets influence to be poor. Noise provide unavoidably
exists in data collected in several applications. Noise can be show as deviations
in attribute values or make smooth as missing values.

Intelligible : In some application methods, a user can required to not only
detect anomalies, but also learn why the detected objects are anomalies. It can
combine the intelligible requirement, an anomaly detection techniques has to
support some reasons of the detection. For instance, a statistical approach can
be used to validate the degree to which an object can be a anomaly depends on
the likelihood that the object was created by the same structure that generated
the majority of the records. The smaller the likelihood, the more unlikely the
object was produced by the same structure, and the more acceptable the object
is a anomaly.

High dimensionality : Many datasets are high-dimensional, making it difficult
to detect anomalies effectively as traditional statistical techniques may not scale
well to higher dimensions.

Training sample sizes : Having a large training set is important for many
reasons. If the training set is too small, then the algorithm does not have enough
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exposure to past examples to build an accurate representation of the expected
value at a given time. Anomalies will skew the baseline, which will affect the
overall accuracy of the model. Seasonality is another common problem with
small sample sets. Not every day or week is the same, which is why having a
large enough sample dataset is important. Customer traffic volumes may spike
during the holiday season, or could significantly drop depending on the line of
business. It’s important for the model to see data samples for multiple years so
it can accurately build and monitor the baseline during common holidays.

False alerting : Identifying anomalies is an excellent tool in a dynamic environ-
ment as it can learn from the past to identify expected behavior and anomalous
events. But what happens when your model continuously generates false alerts
and is consistently wrong? It’s hard to gain trust from skeptical users and easy
to lose it, which is why it’s important to ensure a balance in sensitivity.

No clear definition of what constitutes an anomaly : Anomalies can be
subjective, and what one considers to be an anomaly may differ from another.
This can lead to difficulties in defining and identifying anomalies accurately.

Lack of labeled data : Anomaly detection typically requires labeled data to
train models. However, in many real-world scenarios, anomalous data may be
rare or difficult to obtain, making it challenging to train effective models.

Concept drift : Anomalies can change over time, which can make it difficult
to detect them accurately. As such, anomaly detection models may need to be
updated regularly to adapt to changing conditions.

Scalability : As datasets become larger and more complex, it can be challenging
to develop anomaly detection methods that can scale effectively to these larger
datasets.

Interpretability : Many anomaly detection models are complex and difficult to
interpret, making it difficult to understand how they arrive at their conclusions.
This can make it challenging to determine the causes of anomalous behavior and
develop appropriate responses.

Due to the above challenges, the anomaly detection problem, in its most
general form, is not easy to solve. In fact, most of the existing anomaly detection
techniques solve a specific formulation of the problem. The formulation is induced
by various factors such as nature of the data, availability of labeled data, type
of anomalies to be detected, etc. Often, these factors are determined by the
application domain.
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2 What are Anomaly Detection methods?

We provide a details of various anomaly detection techniques together with
short descriptions of the different algorithm types and provides general ideas
behind the algorithms. More specifically, anomaly detection algorithms [17,24]
are based on Classic Machine Learning, Deep Learning, Stochastic Learning,
Outlier Detection, Statistics, Matrix Profiling, Data Mining, and Signal Analy-
sis.Implemenations of below methods are available at link1

2.1 Classic Machine Learning Based Anomaly Detection

K-Means [9,21,12,13,25]: The k-Means which is firstly proposed by James Mac-
Queen [9], is a well-known and widely used clustering algorithm and do not re-
quire training data for anomaly detection. It is one of the simplest clustering
algorithms in machine learning which can be used to automatically recognize
groups of similar instances in data. In this method, K random points are se-
lected as centroids in a dataset. Then, the elements are arranged to the closest
centroids by calculating the distance. The process is repeated to achieve optimal
distances between sample data and centroids. We want the inter-cluster distance
to be large, while the intra-cluster distance to be small. By achieving this, the
groups are more distinguishable, and the subjects within a single group are more
alike.

Hybrid K-Means [23]: K-Means algorithm is one of the most efficient par-
titioning clustering algorithm. The algorithm is simple and easy to implement,
suitable for large data sets, and very highly active. However, it has two ma-
jor drawbacks: 1) the number of randomly chosen points and the centroid of
clusters may lead to different clustering results, 2) K-Means algorithm may con-
tain many local convergence. In some of the previous anomaly detection systems
have adopted the K-Means clustering, but the result is not ideal. There are a
lot of clusters and local optima, this algorithm run several times will get differ-
ent results. In order to overcome these shortcomings of K-Means, [23] use the
Particle Swarm Optimization (PSO) to combine the K-Means algorithm. PSO
is a heuristic algorithm, it can be a minimum number of iterations to find the
optimal or near-optimal solutions. PSO can find good initial cluster centers by
its’ global search capability and then avoid K-Means algorithm falling into local
optimal solution.

KNN [16]: k-NN is one of the simplest methods in machine learning. It classifies
a data point based on how its neighbors are classified. So if we are guessing the
color of a particular wine, we can refer to the color of other wines that have the
most similar chemical makeup (i.e. neighbors). Besides classification into groups,
k-NN can also be used to estimate continuous values. To approximate a data
point’s value, k -NN takes the aggregated value of its most similar neighbors.
k-NN is not limited to merely predicting groups or values of data points. It can
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also be used in detecting anomalies. Identifying anomalies can be the end goal
in itself, such as in fraud detection. Anomalies can also lead you to additional
insights, such as discovering a predictor you previously overlooked. Although
k-NN is simple and effective, there are times when it might not work as well.
If there are multiple classes to be predicted, and the classes differ drastically
in size, data points belonging to the smallest class might be overshadowed by
those from bigger classes, increasing their risk of mis-classification. To improve
accuracy, we could use swap majority voting in favor of weighted voting, whereby
the class of closer neighbors are weighted more heavily than ones further away. If
there are too many predictors to consider, it would be computationally intensive
to identify and process nearest neighbors across multiple dimensions. Moreover,
some predictors could be redundant as they do not improve prediction accuracy.
To resolve this, we can use dimension reduction techniques to extract only the
most powerful predictors for analysis.

PCA [19]: Principal Component Analysis (PCA) is a popular technique for
anomaly detection in multivariate datasets. The basic idea behind PCA-based
anomaly detection is to reduce the dimensionality of the data while retaining as
much of the variance as possible. By projecting the data onto a lower-dimensional
space, anomalies can be identified as data points that are distant from the ma-
jority of the data. The basic steps for performing anomaly detection using PCA:

– Normalize the data: Standardize the data by subtracting the mean and di-
viding by the standard deviation to ensure that all variables are on the same
scale.

– Compute the principal components: Use PCA to compute the principal com-
ponents of the data, which are the directions in which the data has the most
variance.

– Compute the reconstruction error: Project the data onto the principal com-
ponents and then reconstruct the original data. The reconstruction error is
the difference between the original data and the reconstructed data.

– Compute the threshold: Determine a threshold value for the reconstruction
error above which a data point is considered an anomaly. The threshold can
be set using statistical techniques such as the mean or median, or by using
domain-specific knowledge.

– Identify anomalies: Identify data points whose reconstruction error exceeds
the threshold as anomalies.

In [19], the paper presents a novel anomaly detection scheme based on a principal
component classifier (PCC). The proposed scheme uses the PCC to project data
onto a low-dimensional space, where anomalies can be easily detected using
statistical methods. The PCC is trained on a set of normal data points and
is then used to classify new data points as either normal or anomalous. The
scheme is evaluated using several benchmark datasets, and the results show
that it outperforms existing state-of-the-art anomaly detection methods in terms
of both detection accuracy and computational efficiency. PCA-based anomaly
detection can be used for many applications such as fraud detection, intrusion
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detection, and fault detection. However, it has limitations, such as being sensitive
to outliers and assuming that the data follows a normal distribution. Other
methods such as robust PCA or kernel PCA can be used to overcome these
limitations.

RobustPCA [15] Robust Principal Component Analysis (RPCA) is a method
used for anomaly detection in data. It is based on the assumption that the data
can be decomposed into a low-rank matrix and a sparse matrix. The low-rank
matrix contains the underlying structure or regularities in the data, while the
sparse matrix contains the anomalous or outlier data points. The main idea
behind RPCA is to solve the following optimization problem:

minimize ||L||∗ + λ||S||1subject to A = L+ S (1)

where A is the data matrix, L is the low-rank matrix, S is the sparse matrix,
λ is a regularization parameter, ||.||∗ denotes the nuclear norm (i.e., the sum of
the singular values), and ||.||1 denotes the L1 norm. The solution to this opti-
mization problem can be obtained using various algorithms, such as alternating
direction method of multipliers (ADMM), accelerated proximal gradient (APG),
and robust principal component pursuit (RPCP). Once the low-rank and sparse
matrices are obtained, the anomalous data points can be identified as those with
large values in the sparse matrix. In [26], the paper proposes a robust principal
component analysis (RPCA) approach for anomaly detection in cyber networks.
The proposed method first performs robust PCA to extract the low-dimensional
structure of the data and then applies a clustering algorithm to identify anoma-
lies. The method is evaluated using several datasets, and the results show that
it outperforms existing state-of-the-art anomaly detection methods, particularly
in detecting outliers in high-dimensional data.

RPCA has been successfully applied in various applications [11,10,7,26,18],
such as image and video processing, sensor networks, and cybersecurity. However,
it may not work well in all cases, especially when the data has complex structures
or the anomalies are not sparse. In such cases, other anomaly detection methods
may be more appropriate. RPCA approach has been shown to be effective in
detecting credit card fraud and has been used by many financial institutions and
credit card companies. However, it is important to note that the performance of
the algorithm depends on the quality of the data and the choice of parameters
such as the regularization parameter λ. Therefore, it is recommended to tune the
parameters carefully and evaluate the algorithm on a validation set to ensure its
effectiveness in detecting anomalies.

2.2 Isolation forest

[14]: Isolation Forest is an algorithm for detecting anomalies or outliers in a
dataset. The basic idea behind Isolation Forest is to build many decision trees,
with each tree splitting the data into smaller and smaller subsets. The algorithm
isolates anomalies by considering how many splits are required to isolate each
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data point. Anomalies are considered to be data points that require fewer splits
to be isolated than normal data points. Isolation Forest has several advantages
over other outlier detection algorithms. It is highly scalable, as it can handle
large datasets with many features. It is also relatively simple to implement, as it
does not require any complicated algorithms or statistical models. Additionally,
Isolation Forest does not make any assumptions about the distribution of the
data, making it suitable for a wide range of datasets. However, like any algorithm,
Isolation Forest has its limitations. It may not perform well in cases where the
data has a complex distribution or where the anomalies are not easily isolated. In
such cases, other algorithms, such as support vector machines or neural networks,
may be more appropriate.

Random Forest Regressor [20]: Anomaly detection using Random Forest Re-
gressor involves training a regression model on a dataset and using it to predict
the expected output for each data point. If a data point has a significantly differ-
ent output than what is predicted by the model, it can be considered an anomaly
or outlier. Suppose we have a dataset containing the performance metrics of a set
of servers. The dataset contains various features such as CPU utilization, mem-
ory usage, disk I/O, and network traffic. We want to identify servers that are
performing abnormally or are likely to fail soon. First, we split the dataset into
a training set and a test set. The training set is used to train the Random Forest
Regressor model, while the test set is used to evaluate its performance. Next,
we train the Random Forest Regressor model on the training set. The model
is trained to predict the expected output (performance metrics) for each server
based on its input features. Once the model is trained, we use it to predict the
output for each data point in the test set. We compare the predicted output with
the actual output for each data point. If the difference between the predicted
and actual output is higher than a certain threshold, we flag the data point as
an anomaly. Finally, we analyze the flagged data points to determine if they are
actually anomalous or if there was some issue with the data. Random Forest
Regressor is a popular algorithm for anomaly detection because it can handle
high-dimensional datasets with complex relationships between the features. It
also provides a measure of feature importance, which can be used to identify
the most important features for detecting anomalies. However, it is important
to note that Random Forest Regressor is not guaranteed to find all anomalies
in the dataset and may require careful tuning of hyperparameters such as the
number of trees and the maximum depth of the trees.

Random Black Forest Random Black Forest (RBF) is a variant of Random
Forest algorithm that is specifically designed for anomaly detection. The RBF
algorithm is based on the concept of random projection and clustering, which
allows it to effectively detect anomalies in high-dimensional datasets. The RBF
projects the high-dimensional input data onto a low-dimensional space using
random projection and then cluster the data points based on their proximity in
the low-dimensional space. The RBF algorithm is then used to detect anomalies
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by analyzing the distribution of the cluster assignments for the data points.
The RBF algorithm has been shown to be effective for anomaly detection in
various applications, including cybersecurity, finance, and manufacturing. The
algorithm is computationally efficient and can handle high-dimensional datasets
with a large number of features. Moreover, the RBF algorithm does not require
any prior knowledge of the data distribution or the types of anomalies that might
exist in the data. Here are some papers that discuss the RBF algorithm and its
applications:
– Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J. (2000). LOF: identi-

fying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data (pp. 93-104). ACM.[4]

– Liu, F. T., Ting, K. M., and Zhou, Z. H. (2008). Isolation forest. In 2008
Eighth IEEE International Conference on Data Mining (pp. 413-422). IEEE.[14]

2.3 Forecasting Based Anomaly Detection

Forecasting methods are a class of anomaly detection techniques that use time-
series data to predict future values and identify anomalies based on deviations
from the predicted values. Some common forecasting methods for anomaly de-
tection include:

ARIMA (Autoregressive Integrated Moving Average) [3]: ARIMA, which
stands for AutoRegressive Integrated Moving Average, is a time series forecast-
ing method used for univariate time series data. It combines three components:
– Autoregression (AR): A model that uses the dependent relationship between

an observation and a number of lagged observations.
– Integration (I): The use of differences of raw observations to make the time

series stationary, i.e., to remove trends and seasonal effects.
– Moving Average (MA): A model that uses the dependence between an obser-

vation and a residual error from a moving average model applied to lagged
observations.

The ARIMA model is fit to the time series data by finding the best parame-
ters for the AR, I, and MA components, such that the difference between the
observed values and the values predicted by the model is minimized. ARIMA
models can be used for a variety of tasks, including out-of-sample forecasting,
trend analysis, and anomaly detection. In practice, the process of selecting the
appropriate ARIMA model involves determining the values of the parameters
that best capture the underlying structure of the time series data. This can be
a complex and time-consuming task, but there are automated methods, such as
the ”auto.arima” function in the R programming language, that can simplify the
process.

Exponential Smoothing [8]: Exponential smoothing is a time series forecast-
ing method that is used to forecast data points by employing a weighted average
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of past observations. The method assigns exponentially decreasing weights as
the observations get older, hence the name ”exponential smoothing.”

In exponential smoothing, the forecast for time t+1 is a weighted average of
the observed values up to time t, where the weights decrease exponentially as
the observations get older. The forecast is updated after each new observation
is received, with the latest observation receiving the highest weight and older
observations receiving progressively lower weights. There are several variants of
exponential smoothing, including simple exponential smoothing, Holt’s linear
exponential smoothing, and Holt-Winters exponential smoothing. Each of these
variants uses a different combination of trends and seasonality to produce a
forecast. The choice of method depends on the characteristics of the time series
data, such as whether it has a trend, seasonality, or both.

Exponential smoothing is a simple and fast method for time series forecasting
and is often used for short-term forecasting. It is also relatively easy to imple-
ment and can be used for a wide range of applications, from financial forecasting
to demand forecasting in supply chain management and anomaly detection. For
example, if we have a time series of web traffic data, we can use exponential
smoothing to model the typical patterns of web traffic over time. If a new data
point deviates significantly from the model’s predictions, it could indicate an
anomaly, such as a sudden spike in traffic or a sudden drop. In practice, expo-
nential smoothing can be combined with statistical tests, such as the Z-score or
the chi-squared test, to determine the significance of deviations from the model.
If a deviation is significant, it can be flagged as an anomaly.

Prophet [22]: Prophet is a popular open-source software library developed by
Facebook for forecasting time series data. It is designed to handle many of the
complexities of time series data, such as trends, seasonality, and holidays, and
can be used for a wide range of applications, including sales forecasting, demand
forecasting, and resource planning. Prophet is based on a Bayesian structural
time series model and uses a decomposable time series model that separates the
trend, seasonality, and holiday components of the data. The model then uses
a flexible non-linear regression model to fit the data, taking into account the
impact of holidays and seasonality on the time series.

One of the key features of Prophet is its ability to handle missing data,
outliers, and large changes in the time series data. It also includes a built-in
capability for modeling changepoints, which allows it to handle changes in the
underlying trends of the data. Prophet is implemented in Python and can be
easily integrated with other data analysis tools, such as Jupyter Notebooks,
Pandas, and scikit-learn. It is also highly customizable, allowing users to specify
custom holidays, changepoints, and other parameters to fit the data. Overall,
Prophet is a flexible and user-friendly tool for time series forecasting that is
well-suited for a wide range of applications. Its ability to handle many of the
complexities of time series data and its ease of use make it a popular choice
among data scientists and analysts.
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LSTM (Long Short-Term Memory) [6]: LSTM is a type of recurrent neural
network (RNN) that can model long-term dependencies in time-series data.

Seasonal Hybrid ESD (Extreme Studentized Deviation) [1]: Seasonal
Hybrid ESD is a time-series anomaly detection algorithm that uses a combination
of seasonal decomposition and statistical tests to identify anomalies in time-series
data.

2.4 Graph Based

Graph-based anomaly detection is an approach that involves representing data
as a graph, where nodes represent data points and edges represent relationships
between the data points. In recent years, there has been growing interest in
applying graph-based anomaly detection to a wide range of applications, includ-
ing social network analysis, cybersecurity, and anomaly detection in time-series
data.

One example of a graph-based anomaly detection algorithm is the Local Out-
lier Factor (LOF) algorithm. LOF is an unsupervised algorithm that measures
the local density of a data point relative to its neighbors. Points that have a
significantly lower density than their neighbors are considered anomalies. LOF
has been applied to a variety of applications, including intrusion detection in
network traffic data and anomaly detection in time-series data.

Another example of a graph-based anomaly detection algorithm is the Iso-
lation Forest algorithm. Isolation Forest is a tree-based algorithm that isolates
anomalies by randomly partitioning the data points and creating a set of trees.
Anomalies are identified as data points that require a small number of partitions
to isolate. Isolation Forest has been applied to a variety of applications, including
fraud detection and intrusion detection in network traffic data.

Graph-based anomaly detection has also been applied to social network anal-
ysis, where anomalies can be identified based on changes in network structure
or behavior. For example, the Graph Convolutional Network (GCN) algorithm
can be used to identify anomalies in social network data by detecting changes
in the connectivity patterns of nodes.

Overall, graph-based anomaly detection is a promising approach for iden-
tifying anomalies in a wide range of applications. Graph-based algorithms can
capture complex relationships between data points and can often be applied to
data with a high degree of variability and noise. As data continues to grow in
complexity and volume, graph-based anomaly detection is expected to play an
increasingly important role in detecting and preventing anomalous behavior.

3 Conclusion

The future of anomaly detection methods looks promising, as there is a grow-
ing need for effective and efficient ways to detect anomalous behavior in com-
plex datasets. As data continues to grow in complexity and volume, traditional
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anomaly detection methods may become less effective, and new approaches will
need to be developed to meet the demands of emerging applications.

One area of research that shows promise is the use of deep learning and arti-
ficial intelligence techniques for anomaly detection. These methods have shown
impressive results in detecting anomalies in image, speech, and natural language
data, and they are expected to be increasingly applied to other domains.

Another promising area of research is the use of unsupervised learning tech-
niques for anomaly detection. Unsupervised learning methods can detect anoma-
lies without the need for labeled data, making them applicable to a wider range
of applications. One example of an unsupervised learning method is Generative
Adversarial Networks (GANs), which can generate new samples of data and
detect anomalies based on the differences between the generated and real data.

Graph-based anomaly detection methods also show promise, as they can
capture complex relationships between data points and can be applied to a wide
range of applications, including social network analysis and cybersecurity.

In addition, the integration of anomaly detection methods with other machine
learning techniques, such as clustering and classification, is expected to lead to
more robust and accurate anomaly detection systems.

Overall, the future of anomaly detection methods looks bright, as researchers
and practitioners continue to develop new and innovative approaches to meet
the challenges of detecting anomalous behavior in complex datasets. With the
increasing importance of data-driven decision making in a wide range of indus-
tries, the need for effective anomaly detection methods will only continue to
grow in the years to come.
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