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Abstract—With fully directional communications, nodes must track and periodically update the positions of their discovered neighbors,

so that communication with these neighbors is feasible when needed. If tracking fails, neighbors that move out of the directional

footprint will need to be rediscovered. The tracking process introduces an overhead, which increases with the number of discovered

neighbors. The overhead can be reduced if each node maintains only a subset of its neighbors; however, this may increase the hop

count of paths between nodes, i.e., causes a hop stretch. In this work, we study the tradeoffs between node degree and hop stretch.

We first design a topology control algorithm to optimize this tradeoff. For the purposes of this design, we assume that nodes perform

circular directional transmissions to communicate with the nodes in their directional range; in this way, the network can be modeled as

a unit disk graph (UDG). Given a UDG G, our algorithm finds a sparse subgraph G0 with a maximum node degree of 6, and connecting

each node pair u, v by a path of length hopsG0 ðu; vÞ ¼ OðhopsGðu; vÞ þ log �Þ, where � is the maximum degree in G, and hopsGðu; vÞ
denotes the length of the shortest path between u and v in graph G. We show that this result is near optimal. Based on the insights

gained from the above design, we next construct a more practical scheme, which integrates topology control with fully directional

neighbor discovery and maintenance. The simulated performance of our practical scheme is only slightly worse than the theoretical

optimal performance in terms of node degree and path stretch.

Index Terms—Topology control, directional antennas, fully directional communications, graph theory, ad hoc networks.

Ç

1 INTRODUCTION

IN order to fully exploit possible benefits of spatial
diversity and increased communication range with

directional antennas, it is essential to shift to the exclusive
usage of fully directional communications [16], [33], [48]. In
addition to enabling better spatial reuse, fully directional
communications also alleviate the phenomena of asymme-
try in gain that arises when directional communications are
used in conjunction with omnidirectional communications
[18]. However, neighbor discovery and neighbor maintenance
become challenging with fully directional communications
due to the reduction in the angular range with the
directional footprint.

For communicating with the discovered neighbors in a
fully directional fashion, nodes need to acquire up-to-date
information with regards to directions of their neighbors.
This can be achieved with a periodic exchange of beacons;
however, the overhead incurred due to this exchange may
limit the performance improvements possible. Reducing the
frequency of such control messages to bound the overhead
is not an option; the frequency is dependent on how fast the
nodes move or how fast the environment changes, and
increasing the period between updates would cause nodes

to have inaccurate neighborhood information. Our ap-
proach to limit this overhead is to use topology control for
reducing node degrees in the network. We propose that
nodes maintain logical connectivity only with a small subset
of the discovered neighbors (say S); the neighbors that are
not in S (and all other nodes in the network) are reached via
multihop routes.

Reducing the node degrees can, however, have an
adverse effect on the network connectivity and the hop
count of paths between node pairs. Short paths are
desirable, due to 1) maintaining low levels of packet loss
(communication links in a multihop wireless network are
error-prone and the probability of packet loss increases with
route length), 2) avoiding high end-to-end delays (nodes
compete for channel access at each hop), and 3) coping
better with mobility (longer routes are more likely to fail
when nodes move). Thus, while performing topology
control to bound the node degree, we try to limit the end-
to-end path stretch in the network.

Our first contribution in this work is the design of a
topology control algorithm that finds the optimal tradeoff
between low node degree and low hop stretch. Toward the
design of this algorithm, we assume that nodes discover
their neighbors by circular directional communications that are
implicitly considered reliable [18]; we thus model the ad
hoc network as a unit disk graph (UDG). We design the
Low Degree Spanner (LDS) algorithm, which operates in a
centralized fashion. Given the UDG G ¼ ðV ;EÞ represent-
ing all feasible links, LDS finds its sparse subgraph
G0 ¼ ðV ;EG0 Þ, wherein the maximum node degree is 6,
and for each edge ðu; vÞ in E, the vertices u, v are connected
by a path of length hopsG0 ðu; vÞ ¼ OðhopsGðu; vÞ þ log �Þ
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(where � is the maximum degree of G, and hopsG0 ðu; vÞ
denotes the shortest path length from u to v in G0). We call
the latter property as bounded hop stretch, and the graph
satisfying this property as a hop spanner.

Our hop-spanner construction is facilitated by identifying
disjoint groups in the ad hoc network, and interconnecting
these groups via a backbone; this backbone is a degree-6
euclidean spanner of a designated set of nodes. These
properties of the backbone are achieved by constraining the
euclidean length and the angular positions of the included
edges that are incident on these nodes. Finally, the
intragroup connectivity is provided by forming balanced
binary trees in every group (i.e., clique). The trees are then
connected to the backbone while preserving the worst-case
degree bound of 6 on all nodes. The properties of the
euclidean spanner and tree structures aid our final results.

As our second contribution, we design the Distributed

LDS (D-LDS) algorithm, which has the properties of LDS
but provides a localized construction. With D-LDS, nodes
make independent decisions on the links they maintain,
based only on the knowledge of their two-hop neighbor-
hoods. D-LDS operates on arbitrary networks, does not
require synchronization among nodes, scales, and converges
quickly to a connected topology with the desired properties.

To the best of our knowledge, the most closely compar-
able previous studies only achieve bounds on one of the
metrics we consider. The approaches consist of 1) algo-
rithms that find subgraphs with a constant hop stretch but
do not impose a degree bound [12] and 2) algorithms that
guarantee a low degree bound but do not examine hop
stretch [22], [27], [47].

Third, drawing on the behavioral observations from
D-LDS, we design a simpler but more practical scheme,
Directional Communications with Angular Topology

Control (Di-ATC). Di-ATC relaxes the assumption that
nodes have accurate two-hop neighborhood information;
topology control decisions use the one-hop neighborhood
information that is available via fully directional neighbor
discovery and maintenance mechanisms. Di-ATC bounds
node degree while avoiding high hop stretch, by means of
allowing nodes to communicate with a subset of their
neighbors, such that it is possible to angularly separate the
directions in which the neighbors are maintained. To the
best of our knowledge, Di-ATC is the first topology control
algorithm for lightweight fully directional neighbor main-
tenance in a mobile ad hoc network.

We evaluate the performance of each of our distributed
algorithms (D-LDS and Di-ATC) in terms of the node
degree, hop stretch, and the incurred communication
overhead. Our results indicate, as one might expect, that
there is a tradeoff between the accuracy of nodes’
neighborhood knowledge and the performance in terms of
our metrics. With mode accurate information, nodes can
form a sparser connected subgraph. Nevertheless, both our
algorithms form topologies that satisfy the desired proper-
ties, given arbitrary input networks of different node
density, area of deployment, and link reliability.

The rest of this paper is organized as follows: We present
related previous work in Section 2. We describe the ad hoc
network models used in the design of our algorithms in

Section 3. We explain LDS and D-LDS algorithms in
Section 4. In Section 5, we present Di-ATC and describe
its integration with fully directional neighbor discovery and
maintenance. We present the performance evaluation of our
distributed protocols in various scenarios in Section 6. We
conclude in Section 7.

2 RELATED WORK

We discuss related topology control efforts under three
categories, focusing on the algorithms that bound the node
degree, algorithms that bound the path stretch, and
algorithms that utilize the benefits of antenna arrays. As
mentioned before, there is a tradeoff between the sparse-
ness of a topology and the lengths of the paths it contains.

Topology control algorithms that provide a low degree

bound. Sparseness and bounded degree have been studied in
several early efforts [3], [4], [11], [38]. More recently, Bose et al.
proposed an algorithm to find a bounded-degree euclidean
t-spanner of the complete input graph where t � 10:02; the
degree bound is 27 [5]. These centralized algorithms are not
practical for ad hoc deployments as they assume that all
nodes can directly communicate with each other.

Several distributed algorithms defined proximity graphs
of the given UDGs, and utilized the sparseness of these
structures for guaranteeing degree bounds. However,
although efficient in terms of a localized construction of a
sparse topology, bounded-degree proximity structures are
shown to yield OðnÞ path stretch in terms of euclidean and
topological distances (i.e., hop count) when the node
distribution is not uniform [6], [11]. It is shown in [25] that
no proximity graph with a constant degree bound contains
the shortest (in terms of euclidean distance) path for all
node pairs. This work also shows that for Oð1Þ-spanner
proximity structures (e.g., Yao Graph), the degree bound
can be OðnÞ. Given this, the authors use a Yao-Sink structure
to form a bounded-degree power spanner,1 in which the
degree bound can be made tighter by relaxing the spanning
ratio (i.e., by changing the parameter k, see Table 1). Using
the Yao-Sink graph, [26] proposes a localized algorithm to
construct directional euclidean spanners having a maximum
in-degree of 63. A more recent euclidean spanner algorithm
achieves a tighter degree bound that is strictly greater than
8 [40]; Li et al. improved this bound to 8 in [24].
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1. A power spanner yields paths, on which energy consumption is, at
most, a constant times larger compared to minimum-energy paths in the
UDG [25].

TABLE 1
Comparison of Distributed Topology Control

Algorithms in Terms of Key Features of D-LDS



To date, the best theoretical bound on the node degree
(that can be achieved with a distributed approach) is 6 and
it is provided by the algorithms in [22], [27], and [47] (see
Table 1). These approaches do not bound the hop stretch.

Topology control algorithms that provide a low hop
stretch. Many of the algorithms cited above consider degree
bound in conjunction with the path stretch. In these efforts,
the goal is to limit the increase in euclidean length which is
a consequence of reducing node degrees. However, a
euclidean spanner is not necessarily a hop spanner. On a
euclidean spanner, the route between a node pair u, v may
have many short hops; in the worst case, the route visits all
nodes along the straight line between them (no euclidean
stretch but OðnÞ hop stretch).

In [2], Alzoubi et al. proposed a localized algorithm for
building a subgraph with a hop stretch of 3. The algorithm
forms a backbone along which the node degree is bounded
with very large values (specifically 295 for the dominators
and 7,384 for the connectors). Furthermore, these bounds do
not hold in the final topology. Gao et al. proposed the first
distributed algorithm that constructs a planar Oð1Þ-spanner
in terms of both euclidean and topological distance
measures [12]. The constructed geometric spanner enables
the use of local routing procedures such as geographical
routing, even in existence of node mobility. However, the
work does not consider the impact on the node degree. In [7],
Burkhart et al. propose an algorithm, which, given a
parameter t, constructs a euclidean t-spanner of the UDG;
the authors indicate that these results are extendable to hop
spanners with slight modifications. The work does not
bound the node degree.

Summary. Topology control algorithms that we have
discussed to this point were designed for use with
omnidirectional communications. Most of these schemes
analyzed worst-case bounds assuming static ad hoc net-
works, and they were not evaluated under conditions of
mobility. Using these algorithms for topology control in
MANETs that use directional (or fully directional) commu-
nications may not be efficient, since they do not account for
the underlying physical model. Next, we describe the
related work on directional communications.

Literature on directional antennas. The development of
antenna arrays have inspired the design of novel MAC and
routing protocols [10], [21], [17], [18], [31], [37], [43], [48]. A
MAC protocol for use with directional antennas must help
combat the problems of asymmetry in range and deafness.
Korakis et al. showed that asymmetry in range can be
prevented by allowing only fully directional communications
(of control messages as well as data) [18]. Choudhury and
Vaidya [9] and Li and Safwat [28] proposed methods to
combat deafness (a node attempting to communicate with a
node that is itself in the process of transmission). In [16],
deafness is avoided via scheduled fully directional com-
munications. The work describes why resorting to omnidirec-
tional transmissions or receptions degrades possible spatial reuse,
reduces the possible extension in range, and causes asymmetry.

Topology control using directional antennas. There is
limited work to date for constructing topologies that
improve the higher layer performance when directional
antennas are used in an ad hoc network. Existing studies
mostly focus on limiting the power consumption for
extending network lifetime. In [13], Huang et al. propose

an implementation of the “Cone-based topology control
algorithm” (which was previously proposed for omnidirec-
tional antennas in [20] and [47]), using sectorized antennas.
The idea is to maintain fewer and closer neighbors in
different antenna sectors. The algorithm assumes the use of
a neighbor discovery procedure consisting of both direc-
tional and omnidirectional modes of communication; as
mentioned before, this causes asymmetry and limited
spatial reuse. In [14] and [15], Huang et al. constrain power
consumption and reduce hop count by using multibeam
directional antennas and adjusting the power intensity
independently in each direction. In [30], power use is
bounded with beam-switching antennas that may have
nonuniform gains within the beamwidth. These efforts do
not consider the cost of having high node degrees or the
effects of mobility in the ad hoc network with fully
directional communications.

There are recent studies on the use of directional antennas
in wireless mesh networks (WMNs). Kumar et al. [19]
propose topology control on WMNs by deploying multiple
directional antennas at every node and properly orienting
these antennas to create multiple low-interference topologies
that are connected. Raman and Chebrolu present a mesh
network implementation wherein each node is equipped
with two high-gain directional antennas [32]; their measure-
ments showcase the potential for using directional antennas
to provide low-cost rural connectivity. These approaches do
not consider the impact of mobility.

3 MODEL AND PRELIMINARIES

In the following, we describe how we model the ad hoc
network that uses fully directional communications, and on
which we execute the topology control algorithms in
Sections 4 and 5.

3.1 Network Model for LDS/D-LDS

Both the centralized and distributed constructions to be
described in Section 4 assume that nodes have up-to-date
information with regards to their directional neighborhood.
As we discuss in Section 5, there is an inherent challenge in
discovering and maintaining the directional neighborhood
in a node’s fully directional range; nodes need to beamform
in each other’s direction and reliably exchange beacons [16],
[33], [34]. For ease of the analysis in Section 4, we assume
that the beacons are transmitted reliably (we consider the
impact of collisions and antenna side lobes when we design
Di-ATC in Section 5) in all directions. Given this, we model
the directional neighborhood of a node to be circular (Fig. 1)
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Fig. 1. Visualizing the circular sweeping of the directional footprint with

an M-sector directional antenna.



and thus, the topology created by the communications

among nodes in the network to be a UDG.
Both LDS and D-LDS algorithms function on an arbitrary

UDG2 G ¼ ðV ;EÞ, where a link exists between two nodes iff

they are located within each other’s communication range.

Thus, while the maximum distance at which two nodes can

successfully communicate is highly dependent on the

environmental characteristics and the availability of line

of sight, for simplicity of modeling, we assume that signal

degradation occurs only due to path loss.
In our network model, each node has a distinct ID (e.g.,

MAC address). Our distributed scheme assumes that nodes

can discover their two-hop neighborhoods;3 efficient meth-

ods for this using omnidirectional communications are

provided in [8] and [46]. We also assume that nodes are able

to infer the relative positions of their neighbors [24], [47].

This can be achieved using the estimation techniques with

antenna arrays for computing the angle of arrival (AOA)

[43]. (Alternatively, nodes may be equipped with global

positioning system (GPS) units to facilitate this capability.

GPS has been used in various topology control studies

including [22] and [23].)

3.2 Network Model for Di-ATC

The near-optimal (will be defined in Section 4) construction

with the LDS and D-LDS algorithms are facilitated by

modeling the communication network as a UDG. However,

although popularly employed by most topology control

studies to date, the UDG model does not accurately reflect

the communication characteristics with directional anten-

nas. In particular, we assume that the directional antennas

have idealized footprints (i.e., no side lobes are present).

More importantly, the operation of D-LDS relies on accurate

neighborhood information and a connected topology. In

practice, due to the characteristics of the fully directional

neighbor discovery process, D-LDS may not perform

efficiently in all scenarios.
In the network model for Di-ATC, we employ a beam-

steering directional antenna which can target its boresight to

an arbitrary direction. Our antenna system functions in two

modes. When a node is searching for neighbors (to be

discussed in detail in Section 5), the antenna functions as a

switched beam antenna. It uses a fixed beamwidth � and

can scan 2�=� fixed directions. A node can either transmit or

receive directionally at a given time. Once a node establishes

a connection with a neighbor, it communicates with this

neighbor by beamforming in its direction. Nodes continu-

ously monitor the direction of arrival (DOA) or the AOA of

their neighbors, from the signals they receive. A node

updates its antenna weight coefficients to point its main lobe

toward the target node. We assume that the time taken by an

antenna to adapt its weight coefficients is negligible in

comparison to the duration of a frame exchange.

3.3 Preliminaries

We define the following two structures that are used by LDS.
Maximal independent set (MIS). Given a graph G ¼ ðV ;EÞ,

a subset M of V is an independent set if each edge in E is
incident on at most one vertex in M. An MIS is an
independent set such that for all vertices v 2 ðV �MÞ the
set M [ fvg is not independent; in other words, every vertex
that is not in M is adjacent to some vertex in M. It is feasible
to construct the set M in OðnÞ time for UDGs, where n ¼ jV j
[29], [42]. Distributed algorithms for finding an MIS are
presented in [29] and [45].

Balanced binary tree. A nonempty binary tree is a balanced
binary tree, if both its left and right subtrees (TL and TR) are
balanced binary trees and jheightðTLÞ � heightðTRÞj � 1. In
a balanced binary tree consisting of N nodes, the length of
the longest path from the root to a leaf node is OðlogNÞ.

Finally, we introduce the following notation that is used
later.
Notation (ffðevfÞ). When e and f are two edges

incident on vertex v, we denote the angle between e
and f at v as ffðevfÞ.

4 CONSTRUCTING A HOP SPANNER WITH BOUNDED

DEGREE

4.1 The Low-Degree Spanner (LDS)

LDS algorithm takes as input an arbitrary UDG G ¼ ðV ;EÞ,
as described in Section 3.

4.1.1 Efficiency of LDS

Before describing the LDS algorithm, we first show that the
bounds achieved with its use are near optimal.

Lemma 1. Given a connected UDG G, a connected subgraph G0

with a maximum degree of less than five does not always exist.

Proof. Consider the connected UDG with the star topology,
where the central node u has five independent neigh-
bors, each of which is exactly at a unit distance from u. If
we remove the edge between u and any neighbor, i.e.,
make the degree of u less than five, the topology becomes
disconnected. tu

Lemma 2. For a UDG G, any bounded-degree subgraph G0 must
have hopsG0 ðu; vÞ ¼ �ðhopsGðu; vÞ þ log �Þ for some u, v,
where hopsGðu; vÞ represents the hop count of the shortest path
between nodes u, v in G.

Proof. Consider any degree-� node u and its neighbor set �
in G. In any subgraph G0 � G with maximum degree �,
let k be the maximum hop-distance from u to a node in �.
As there are at most �kþ1 nodes within k hops of u,
� ¼ j�j � �kþ1, which implies k � log�ð�Þ � 1. tu

4.1.2 Algorithm Description

LDS consists of three phases: 1) organizing the nodes in
G ¼ ðV ;EÞ into distinct sets, 2) constructing a backbone that
connects these sets, and 3) assembling the nodes (that are
not on the backbone) in each set into balanced binary trees,
which are then linked to the backbone.

Phase 1. Creating groupings on G. The purpose of this
phase is to partition the nodes in V into disjoint groups such
that any two nodes that belong to the same group have an
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2. In addition to being considered in the design of most topology control
algorithms to-date [7], [24], [47], UDG model has also been used for
modeling the neighborhood with directional beamforming [18] and with
MIMO [41].

3. The two-hop neighborhood of node u is defined as the set of nodes N1

that are neighbors of u, plus those that are neighbors of the nodes in N1.



edge in E. To achieve this, we define a graph G1=2 ¼
ðV ;E1=2Þ such that there is an edge in E1=2 between two
nodes in V iff they are at most half of the unit distance apart
from each other. Then, we find an MIS M of G1=2 using the
algorithm proposed in [42]. Nodes in the set M are called
dominators; remaining nodes (nodes in ðV �MÞ) are called
members. Each member node is dominated by one dom-
inator, which is within a distance of 1/2 from it. The set of
member nodes having a common dominator w form
groupðwÞ. Nodes in a group are within a unit distance from
each other, i.e., they form a clique.

Phase 2. Construction of the higher-tier backbone. The
purpose of this phase is to construct a bounded-degree
backbone H ¼ ðVH;EHÞ that interconnects separate groups.
To achieve this, LDS: 1) defines a set VH of “backbone
nodes” and 2) selects the edges EH that span VH such that
EH is a 9-spanner of VH , with a maximum degree of 6. The
decision on each edge is made based on its relative
euclidean length and angle compared to other selected
edges that are incident on the considered common node.

Step 1. VH initially contains all dominators from Phase 1.
Two groups are said to be connected if there is at least one
edge between them in G ¼ ðV ;EÞ. LDS chooses this edge (if
there are multiple such edges, one of them is arbitrarily
chosen) and marks the nodes at the end points of this edge as
backbone nodes; these nodes are added to VH . New backbone
nodes are added to VH until a pair of backbone nodes is
designated for every pair of groups that is connected in G.
Finally, in any group that has nonzero member nodes, if the
dominator is the only backbone node, an arbitrary addi-
tional node s in this group is selected and added to VH (this
is necessary as will be seen later in Phase 3).

Step 2. LDS considers all edges (from G ¼ ðV ;EÞ)
between vertices in VH , in the order of nondecreasing
length. At each step, the considered edge e ¼ ðu; vÞ is added
to EH unless there is an edge f 2 EH such that f is incident
on u or v and ffðevfÞ � 52 degrees. (f was inserted before e
implies that dðfÞ � dðeÞ, where dðeÞ is the euclidean length4

of e.) The phase terminates when all edges between the
nodes in VH have been thus considered.

This construction outputs a euclidean 9-spanner of the set
VH of backbone nodes. This is facilitated by the choice of
backbone edges; the particular angular orientation and
length of the selected edges prevents a euclidean stretch of
greater than 9. We formally prove this property in Theorem 2.

Phase 3. Connecting the remaining nodes to the higher-tier
backbone. In this phase, LDS completes the construction of
the connected topology G0 ¼ ðV ;EG0 Þ with the desired
properties. 1) In every group, a balanced binary tree is
formed from the nodes that are not in VH . 2) All trees are
connected to the backbone such that the maximum degree
on the backbone is preserved.

1) First, in every group that contains member nodes that
are not on the backbone, LDS connects them with a rooted
balanced binary tree T ðwÞ. This construction is possible since
every group is a clique. 2) Next, LDS links the trees to the
backbone as follows: Initially, EG0 contains the edges in EH .
For each dominator w, if tree T ðwÞ exists (i.e., is not empty),

LDS removes an arbitrarily selected edge ðw; vÞ from EG0

(Lemma 4 shows that this edge always exists), and adds two
edges ðr; wÞ and ðr; vÞ instead (r is the root of T ðwÞ). The
edges in T ðwÞ are also added to EG0 . Fig. 2 depicts the
procedure. In the figure, the edge ðw; vÞ initially belongs to
the backbone. The balanced binary tree is attached to the
backbone at nodesw and v as discussed above. Note that this
process preserves the degrees of w and v.

This phase leads to a hop spanner as we formally show
in Theorem 3. The hop stretch is bounded in each group by
the clique structure, it is also bounded on the backbone due
to the properties of euclidean spanner and MIS.

Next, we show that the topology constructed by LDS
has the desired properties in terms of node degree and
hop stretch.

4.1.3 Analysis of LDS

Lemma 3. Let e ¼ ðu; vÞ, f ¼ ðu;wÞ be two edges incident on
node u, and let g ¼ ðv; wÞ be the edge across the angle ffðeufÞ.
If dðfÞ < dðeÞ and ffðeufÞ � 52 degrees, then dðgÞ < dðeÞ.

Proof. Assume dðgÞ > dðeÞ. Then, ffðeufÞ is the largest angle
in 4ðuvwÞ, which implies ffðeufÞ � 60 degree. However,
ffðeufÞ � 52 degrees, which contradicts the assumption;
therefore, dðgÞ < dðeÞ. tu

Lemma 4. For a dominator u, if the number of nodes in groupðuÞ
is greater than one, there is at least another backbone node v
in H ¼ ðVH;EHÞ such that v 2 groupðuÞ. Specifically,
ðu; vÞ 2 EH , where v is the backbone node closest to u.

Proof. We prove the lemma by contradiction. Note that
groupðuÞ contains at least two nodes in VH by construc-
tion (Phase 2). Assume that v 2 VH is the closest back-
bone node to dominator u,5 and that edge ðu; vÞ 62 EH .
This implies that there is an edge ðu;wÞ or ðv; zÞ in EH (w,
z 2 VH) that blocks6 ðu; vÞ. However, the blocking edge
cannot be ðu;wÞ because this would imply dðu;wÞ �
dðu; vÞ which contradicts the assumption. Therefore, it
must be that ðv; zÞ 2 EH blocks ðu; vÞ. Then, dðv; zÞ �
dðu; vÞ and ffðv; zÞvðv; uÞ < 52 degrees. By Lemma 3,
dðu; zÞ < dðu; vÞ, which contradicts the assumption. tu

Theorem 1. The maximum node degree in G0 is 6.

Proof. It suffices to show that HðVH;EHÞ has a maximum
degree of 6, because Phase 3 of the algorithm ensures
that in each group

1. Member nodes that are not backbone nodes are
assembled into balanced binary trees, such that
the tree has a maximum node degree of 3,
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4. Throughout this paper, we use the notation dðeÞ for the euclidean
length of edge e and DðP Þ for the euclidean length of path P .

5. In case of ties, the backbone node with smaller ID is deemed closer.
6. We say that an edge e is “blocked” by an adjacent edge f iff dðfÞ � dðeÞ

and ffðevfÞ < 52 degree.

Fig. 2. Demonstration of how the balanced binary tree is connected to

the backbone within the group.



2. The degree of the root increases by 2 when
connected to the backbone, but becomes at
most 4, and

3. The degree of any node in H is preserved in
constructing G0 upon appending the balanced
binary trees.

Then, this theorem holds due to the following lemma.tu

Lemma 5. The degree of any node in H is at most 6.

Proof. Assume 9 a node u in VH with degree degðuÞ > 6.
Then, two of the edges that are incident on u must create
an angle of at most ð360=7Þ < 52 degrees. However, by
construction, no two edges in H make an angle of less
than 52 degrees. tu

Theorem 2. Each pair of backbone nodes u, v such that edge
e ¼ ðu; vÞ 2 G are connected in H by a path P such that
DðP Þ � 9 � dðeÞ.

Proof. The proof is by induction on the edges between the
backbone nodes in G, in the order they are considered
(whether to be a backbone edge) in constructing EH .
Consider one such edge e ¼ ðu; vÞ. If ðu; vÞ 2 EH , then the
theorem holds. If not, then 9 an edge f ¼ ðu;wÞ 2 EH

such that dðu;wÞ � dðu; vÞ and ffðeufÞ < 52 degree. By
Lemma 3 dðv; wÞ < dðu; vÞ and thus, ðv; wÞ was consid-
ered by LDS prior to ðu; vÞ. Consider path P ðv; uÞ formed
with P 0ðv; wÞ followed by edge ðw; uÞ. For induction, we
postulate that, 9 a path P 0ðv; wÞ in EH such that
dðP 0Þ � 9 � dðv; wÞ. We use this to show dHðu; vÞ �
9 � dðu; vÞ. Then, dðP Þ � 9 � dðv; wÞ þ dðw; uÞ. With this, it
is enough to show that

dðu;wÞ þ 9 � dðv; wÞ � 9 � dðu; vÞ: ð1Þ

Or, equivalently,

dðu;wÞ
dðu; vÞ � dðv; wÞ � 9: ð2Þ

Let w0 be a point on ðu; vÞ s.t. dðv; w0Þ ¼ dðv;wÞ. Thus, the
triangle 4ðvww0Þ is isosceles with equal angles at w and
w0, as shown in Fig. 3a. Then, dðu;w0Þ ¼ dðu; vÞ � dðv; wÞ,
and inequality (2) becomes

dðu;wÞ
dðu;w0Þ � 9: ð3Þ

For any fixed dðu;wÞ and a fixed angle ffðeufÞ at u, dðu;w0Þ
is minimized when dðu; vÞ is minimized. The smallest
value dðu; vÞ can take is dðu;wÞ, since inequality dðu;wÞ �
dðu; vÞ has to be satisfied. Then, the value of the left-hand
side of inequality (3) is maximum when the denominator
dðu;w0Þ is minimized, i.e., when dðu;wÞ ¼ dðu; vÞ. This

case is shown in Fig. 3b. The triangle 4ðuvwÞ is isosceles
with equal angles at v and w. Let z be the midpoint of
ðv; wÞ. By considering the right triangle 4ðuvzÞ, we
compute dðv; zÞ and thereby dðv; wÞ as

dðv; wÞ ¼ 2 � dðv; zÞ ¼ 2 � dðu; vÞ � sin ffðeufÞ
2

� �
: ð4Þ

Thus,

dðu;wÞ þ 9 � dðv; wÞ ¼ dðu; vÞ þ 9 � dðv; wÞ

� dðu; vÞ þ 18 � dðu; vÞ � sin ffðeufÞ
2

� �

� dðu; vÞ � 1þ 18 � sin ffðeufÞ
2

� �� �

� 9 � dðu; vÞ:

ð5Þ

The last step in (5) is due to ffðeufÞ < 52 degrees, which
proves the theorem. tu

Remark 1. The factor 9 can be improved to 8 by
considering angles of 51:5 > 360=7 degrees above in-
stead of 52 degrees.

Lemma 6. The number of groups connected to any given group g
is Oð1Þ.

Proof. In Phase 1, dominators are chosen such that they are
at least 1/2 units apart. Draw disks of radius 1/4
centered at each dominator whose groups are connected
to g. These disks are disjoint and all of them lie within a
circle of radius 2 centered at g’s dominator. The number
of such disks is Oð1Þ. tu

Corollary 1. The number of backbone nodes in each group is
Oð1Þ. Therefore, the number of backbone nodes that are
reachable from any backbone node is Oð1Þ.

Theorem 3. For any two nodes u, v that are connected by a path P
in G ¼ ðV ;EÞ, there is a path P 0 in G0 ¼ ðV ;EG0 Þ, such that
hopsG0 ðP 0Þ ¼ OðhopsGðP Þ þ log �Þ. (� is the maximum
node degree in G.)

Proof. As each group forms a clique in G, each group has at
most �þ 1 nodes. Consider the path P from u to v in G;
let g1; g2; g3; . . . ; gkþ1 be the sequence of groups that P
traverses. P has at least k edges: for each i ¼ 1::k, there is
an edge from gi to giþ1 in G. By construction, there is
such an edge also in EH for each i ¼ 1::k. Let ai and bi be
backbone nodes in gi, such that ai connects gi to gi�1 and
bi connects gi to giþ1. This implies dðbi�1; aiÞ � 1,
dðai; biÞ � 1, and dðbi; aiþ1Þ � 1 in G. By Theorem 2, there
is a path pi from bi to aiþ1 and a path qi from ai to bi in the
backbone graph H ¼ ðVH;EHÞ, such that DðpiÞ and DðqiÞ
are each � 9. Construct P 0 from u to v in G0 as follows:
From u, traverse the edges in the balanced binary tree of
u’s group (g1, w.l.o.g.) to get to the root. From the root,
get to a1. Then, traverse paths p1; q2; p2; q3; . . . ; pk; qkþ1 to
get from a1 to bkþ1. From bkþ1, get to the root of the
balanced binary tree in v’s group (gkþ1); then traverse the
tree to get from bkþ1 to v. Traversal in each binary tree
requires at most log2 � edges. As each of the paths pi and
qi has euclidean length at most 9, they contain nodes
from Oð1Þ groups (as they pass through Oð1Þ groups). By
Corollary 1, each such path has Oð1Þ edges (connecting at
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Fig. 3. Figure to aid the discussion of Theorem 2.



most all the backbone nodes in all visited groups). The
number of these paths is 2k. Additionally, the path may
need to traverse Oðlog �Þ edges in order to reach the
backbone (via the binary balanced trees). Therefore, the
hop count of path P 0 is Oðkþ log �Þ. tu

Corollary 2. For two nodes u, v that are connected by a path P in
G ¼ ðV ;EÞ, there is a path P 0 that connects them in G0 ¼
ðV ;EG0 Þ such that DG0 ðP 0Þ ¼ OðDGðP Þ þ log �Þ.

Proof. The proof follows from Theorem 3 and from fact that
each hop is of at most unit length. tu

Lemma 7. The time complexity of LDS is Oðn lognÞ.
Proof. An MIS can be found in OðnÞ time [29]. By Corollary

1, the number of edges on the backbone is OðnÞ (the
number of groups being OðnÞ in the worst case). Sorting
these edges takes Oðn lognÞ time. Constructing each
balanced binary tree takes Oð� log �Þ time (requires
sorting the nodes in a group with respect to their IDs).
Therefore, the time complexity of LDS is Oðn lognÞ. tu

4.2 Distributed Low-Degree Spanner (D-LDS)

In the following, we describe D-LDS, the distributed variant
of LDS. With D-LDS, nodes make independent decisions on
the links they maintain, based only on local (two-hop
neighborhood) information. Using a constant number of
broadcasts, D-LDS converges quickly to a connected
topology with the near-optimal properties that we have
been shown for LDS.

D-LDS has four phases.
Phase 1. Finding the dominators and forming groups: As

with LDS, disjoint groups are formed in this phase. The
dominators are identified using the distributed algorithm for
finding an MIS from [45]. In brief, the algorithm works as
follows: Initially, every node is colored white. A node
selected as per some tie-breaking criterion (e.g., the node
that has the lowest ID in its one-hop neighborhood)
becomes black and declares itself a dominator, and it
announces its transition with a one-hop broadcast. All of
its white neighbors that receive this message become gray
and declare themselves to be dominated by this dominator.
The algorithm terminates when there are no more white
nodes. By construction, each node has one dominator, since
a node changes color only once. Upon termination of this
construction, D-LDS defines the set consisting of a dom-
inator and its associated gray nodes (“members”) as a group.
To ensure that all nodes in a group can communicate with
each other, in this phase, nodes reduce their transmission
power or increase their receiver sensitivity so that the
achievable range is half of the actual maximum range.

Phase 2. Identification of the backbone nodes: In this phase,
the backbone nodes are identified in a distributed fashion.
Given the knowledge of nodes in its two-hop neighbor-
hood, a dominator w designates nodes u, v to be backbone
nodes corresponding to groupðwÞ and groupðzÞ, if the
following are satisfied:

1. w has a lower ID than z.
2. u, v are in different groups ðu 2 groupðwÞ; v 2

groupðzÞ; w 6¼ zÞ.

3. u, v can communicate (groupðwÞ and groupðzÞ are
connected).

4. A pair of backbone nodes has not already been
assigned for these two groups.

Criterion 1 above avoids conflicts in the assignment of

backbone node pairs by the corresponding two dominators.

The dominator with a larger ID performs the assignment

and notifies the other with a single unicast message; no

synchronization is needed.

Before proceeding to Phase 3, every dominator w ensures

that it is not the only backbone node in its group if groupðwÞ
contains other nodes; it does so by designating an arbitrary

node from groupðwÞ as a backbone node. As with LDS, this

check ensures that if groupðwÞ contains nodes that will be

connected to the backbone in Phase 4, then there is at least

one link on the backbone such that both its end nodes are in

groupðwÞ.
Phase 3. Construction of the backbone: In this phase, each

backbone node u participates in the distributed construction

of a 9-spanner backbone. For this construction, u considers

each backbone node v that is its one-hop neighbor, and

examines whether the communication link ðu; vÞ is “feasi-

ble.” The decision regarding the feasibility of a link is made

based on the estimated distances to the one-hop backbone

neighbors. We define a distance estimation function that

facilitates this construction:

Definition (distance function). The distance function � : P !
D maps power values to distance values; � operates as follows:

Prðu; vÞ > Prðu; zÞ ¼) dðu; vÞ < dðu; zÞ
Prðu; vÞ ¼ Prðu; zÞ && IDðvÞ > IDðzÞ ¼) dðu; vÞ < dðu; zÞ

Prðu; vÞ < Prðu; zÞ ¼) dðu; vÞ > dðu; zÞ:

For its two neighbors v and z, node u estimates v to be

closer than z if packets7 received from v reflect greater

power levels than those from z. Ties are broken based on

IDs; the node with the higher ID is deemed closer. We

assume that � strictly increases with increasing received

power; this is typically true for channels wherein the major

source of degradation is path loss.

Definition (feasibility of a link). Let Y denote the set of nodes

that are closer to node u than v; nodes in Y reside inside the

circle centered at u with a radius of d̂ðu; vÞ. Similarly, let Z

denote the set of nodes that are closer to v than u. Initially, all

links are unprocessed and unmarked:

1. A link ðu; vÞ is feasible, if both of the following local
conditions are satisfied:

a. Every link ðu; yiÞ ðyi 2 Y Þ that would make an
angle of < 52 degree with ðu; vÞ must be marked
as “unfeasible.”

b. Every link ðv; ziÞ ðzi 2 ZÞ that would make an
angle of < 52 degree with ðv; uÞ must be marked
as “unfeasible.”
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7. To prevent distance information from becoming stale, periodic
updates will be necessary. We assume that the HELLO messages facilitate
this process.



A feasible communication link is added to the

topology.
2. For link ðu; vÞ to be unfeasible, it is necessary and

sufficient that either of the following two conditions is
satisfied:

a. There is a link ðu; yiÞ ðyi 2 Y Þ added to the
topology, making an angle of less than 52 degrees
with ðu; vÞ.

b. There is a link ðv; ziÞ ðzi 2 ZÞ added to the
topology, making an angle of less than 52 degrees
with ðu; vÞ.

If link ðu; vÞ is unfeasible, both endpoints keep this

information; nodes u and v do not communicate in the

final topology.

Each backbone node performs a local broadcast (which is
in turn propagated to its two-hop neighborhood) upon

deciding the status of its link with a backbone neighbor. The

links in the topology at the end of this phase constitute the

backbone.
Phase 4. Finalizing the construction of the connected

topology: In every group, nodes that are not backbone nodes

(if any) will form a balanced binary tree via a distributed

procedure as shown in Fig. 4. Let the set of such nodes in
groupðwÞ be RðwÞ. Tree construction in the group is
triggered by the dominator w and it is performed concur-
rently at each node in RðwÞ. Each node carries out the
following: 1) It sorts the nodes in RðwÞ as per their IDs, in
increasing order. (The sorted array is unique and is the same
at all the nodes in RðwÞ, given that two-hop neighborhood
information is available at all nodes.) 2) If it is at index k in
the sorted order, it connects to nodes at indices 2k and 2kþ
1 (if 2k or 2kþ 1 do not exceed the number of elements in
RðwÞ). This construction does not require any message
exchange, and the tree is unique for a given set RðwÞ.

Without loss of generality, let node r be the root of the
tree constructed in groupðwÞ. r connects to the backbone, as
w removes link ðw; jÞ (the shortest backbone link adjacent to
w by Lemma 4) and initiates the construction of the links
ðw; rÞ and ðr; jÞ. This procedure requires two unicast
messages: from w to j for the removal of the link ðw; jÞ,
and fromw to r, to trigger the formation of link ðr; jÞ. Phase 4
terminates after this construction is complete for all groups.

D-LDS algorithm is depicted in Fig. 4.

Theorem 4. The topology constructed by D-LDS has a maximum
degree of 6.
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Fig. 4. Distributed algorithm D-LDS constructs a low degree hop spanner with Oð1Þ broadcasts at each node.



Proof. The proof follows from that of Theorem 1 as D-LDS

emulates LDS in all phases. tu
Theorem 5. Let G0 ¼ ðV ;EG0 Þ be the topology constructed by

D-LDS. For each pair of nodes u, v that were connected by a

path P in G, they are connected by path P 0 in G0, such that

hopsG0 ðu; vÞ ¼ OðhopsGðu; vÞ þ log �Þ.
Proof. First, we show that the backbone construction in

Phase 2 of LDS and in Phase 3 of D-LDS output identical

decisions with regards to the edges in the final topology;

this is despite D-LDS working with only local informa-

tion at the nodes. At the end of these phases, the

constructed backbones are the same, as long as the input

sets of backbone nodes are the same.
Recall that LDS sorts all possible edges between nodes

in VH in nondecreasing order, and considers one edge at a
time. In D-LDS, a link e ¼ ðu; vÞ is constructed, only if all
edges that can potentially block it are marked unfeasible.
This implies that, though the order in which the edges are
processed may differ in LDS and D-LDS, the same
decision is eventually made by both algorithms, regard-
ing whether or not an edge is feasible or unfeasible.

Thus, by Theorem 3, G0 has bounded hop stretch. tu
Corollary 3. For each pair of nodes u, v that had a path

connecting them in G, there is a path P 0 connecting them in

G0, such that DG0 ðP 0Þ ¼ OðDGðP Þ þ log �Þ, where DGðP Þ
denotes the euclidean length of path P .

Proof. The proof follows from Theorems 3 and 5 and

Corollary 2. tu
Theorem 6. For any input graph G, D-LDS constructs the final

topology G0 using OðnÞ messages (in the worst case).

Proof. Two-hop neighborhood information can be acquired
at all nodes with OðnÞ messages [8]. Message complexity

of finding an MIS is OðnÞ [45]. The number of backbone

links is at most OðnÞ (Lemma 7); thus, the total number of

broadcasts for backbone construction is OðnÞ (each

backbone node performs one local broadcast upon

deciding the status of a link). Balanced binary tree

construction does not require message exchanges (two-

hop neighborhood is already discovered). No broadcasts

are necessary for linking the trees to the backbone. tu

5 TOPOLOGY CONTROL WITH DIRECTIONAL

ANTENNAS

D-LDS algorithm provides insights that can be utilized in
designing a more practical topology control scheme using

directional communications. In particular, D-LDS demon-

strates that when each node in the network maintains

logical connectivity with its neighbors that are angularly

separated, the hop stretch in the constructed sparse topology

can be constrained.
Based on the key insights gained from the construction of

D-LDS, we design a simpler but more practical topology

control scheme, Di-ATC, for facilitating fully directional

communications with bounded overhead. With Di-ATC, in

addition to bounding the node degree without causing

large hop stretch, we conform to the following design goals:

. First, it is essential that topology control is tightly knit
with fully directional neighbor discovery and main-
tenance mechanisms. Omnidirectional transmissions
or receptions must not be invoked in any phase of
the algorithm.

. Second, topology control must preserve network
connectivity. In particular, with fully directional
neighbor discovery (as will be described later in this
section), nodes may not acquire accurate information
with regards to their neighbors. Consequently,
aggressive topology control decisions (for low
degree) may lead to network partitions or isolation.

. Third, since it is expensive (in terms of power,
bandwidth, and time) to exchange directional control
messages with neighbors, topology control must
operate in a decentralized fashion and using informa-
tion that is local and limited to the extent possible.
Topology control can consequently scale with net-
work size and in the presence of node mobility.

5.1 Angular Topology Control with Directional
Antennas (Di-ATC)

With Di-ATC, given a degree bound K, nodes compute the
angular separation that they will maintain among their
neighbors in the formed topology. Nodes then commu-
nicate with a subset (selected based on angular separation)
of their discovered neighbors. They track (i.e., exchange
update beacons with) these neighbors periodically. This
way, nodes proactively maintain the information in terms of
“in which direction to beamform” in order to communicate
with a neighbor. The decision at a node u, with regards to
which neighbors it will track, is made based on its current
degree, the current degrees and the angular positions of the
neighbors that it is tracking (periodic messages should
include the degree of the sender), and the degree bound K.

Given K, u decides to maintain a link with a discovered
node v if any of the following conditions hold:

1. its current degree ðdegðuÞÞ is less than K.
2. degðuÞ ¼ K, but u does not have any other neighbors

within � ¼ d360=ðK þ 1Þe degrees of the link ðu; vÞ.
(If this case occurs, u has at least two other neighbors
that are angularly apart by less than �. u will remove
one of these links in favor of adding the link ðu; vÞ.)

3. degðuÞ ¼ K and u has a neighbor z such that the
angle between links ðu; zÞ and ðu; vÞ is less than or
equal to �, but degðvÞ is strictly smaller than degðzÞ
(in this case, u will attempt the removal of link ðu; zÞ
in favor of adding the link ðu; vÞ).

The first condition implies that a node will maintain a
discovered node as long has it has fewer neighbors than
the degree bound. This behavior distinguishes Di-ATC from
D-LDS. The condition is imposed for increasing the
probability of maintaining connectivity; the decision helps
to constrain the hop stretch as well. The second and third
conditions are motivated by our design requirement of
angularly separating the directions in which the neighbors
are maintained. These criteria allow nodes to reach spatially
separated areas with low hop stretch. A node u determines
whether it has a conflict (based on the three criteria above)
while adding the discovered neighbor v to its neighbor set.
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Link ðu; vÞ is formed only if both u and v agree on tracking

each other independently, and reliably exchange topology

control messages.
Note that these decisions do not rely on perfect

directional neighborhood information or accurate knowl-

edge of channel conditions. These heuristics are designed to

support network connectivity; this is essential because

nodes may easily lose their neighbors with mobility when

omnidirectional communications are not invoked.

5.2 Integrating Di-ATC with Neighbor Discovery and
Maintenance

We propose an integrated framework that allows seamless

interactions among three functionalities; fully directional

neighbor discovery, topology control on the discovered

nodes, and directional maintenance of the neighbors that

are chosen after topology control. As discussed earlier, the

framework requires that nodes only track a subset of their

directional neighbors. Di-ATC tries to find, given the

available neighborhood information, the subset that offers

good connectivity and short routes.
Our framework executes in cycles, as depicted in the state

diagram in Fig. 5. All three of the aforementioned function-

alities are invoked at each node in the network, in every

cycle. Nodes are synchronized in terms of time slots that

constitute these cycles. Synchronization is an essential

characteristic for neighbor discovery and communications

using fully directional communications [16], [34], [44].

Specifically, to facilitate a fully directional link, both end

nodes must beamform toward each other at the same time.

Synchronization can be achieved via solutions such as the

method proposed in [36]; guard bands could also be

employed to facilitate synchronization. We wish to point

out that 1) only a coarse-grained synchronization at the

frame level is needed, 2) only local synchronization among

neighbors is needed, and 3) synchronization is a requirement

of fully directional communications and not of our techni-
ques in particular.

For fully directional neighbor discovery, each node
beamforms toward a randomly chosen direction (or
antenna sector, as was shown in Fig. 1) at specific time
slots, and either transmits a HELLO packet in this direction
or listens in the anticipation of receiving one. If a successful
communication occurs, the node to first receive the HELLO
beacon responds with one of its own to complete the
handshake; the successful handshake implies that the node
pair under discussion have discovered each other.

Directional neighbor discovery is a continuous process;
nodes discover new neighbors as the topology changes due
to mobility or due to variations in the environment. As
shown in Fig. 5, several time slots in each cycle need to be
allocated for the directional search for new neighbors. In
particular, due to the probabilistic nature of the fully
directional neighbor discovery process, it takes many cycles
until nodes discover a fair percentage of their neighbors
[16], [34], [44]. In our framework, we use Di-ATC with the
neighbor discovery protocol proposed in [16].

We remark that other methods have been proposed for
directional neighbor discovery; these approaches either
include circular transmissions [18], or select a number of
fixed beams [39], or apply transmit-only beamforming [34].
With all these schemes, the receptions during neighbor
discovery are omnidirectional. As a consequence, these
approaches may provide a smaller neighborhood than what
is actually achievable with fully directional communica-
tions. These approaches also are prone to inefficiencies that
arise due to asymmetry in range.

Di-ATC is invoked at both nodes (u and v) that discover
each other. In the following time slot, the node pair
exchanges the outcome of their Di-ATC execution. The
new link ðu; vÞ is established if both u and v want this link
(based on the criteria described in the previous section) and
can reliably exchange messages to agree on the link
construction. Such local and dynamic decision-making
renders the framework scalable under varying network
conditions.

Tracking discovered neighbors is crucial with fully
directional communications, especially when the nodes are
mobile or when the environment changes dynamically. In
our framework, nodes proceed to the neighbor tracking
phase after neighbor discovery in every cycle (Fig. 5). Each
pair of nodes that have a link will rendezvous at a common
time and keep communicating on a periodic8 basis. For this,
we incorporate the polling phase proposed in [16]. If a
node u does not repeatedly receive polling messages from w
in the corresponding polling time, it assumes that the link is
broken and removes w from its set of direct neighbors. This
happens if w discovers a new neighbor z with a lower
degree than u and abandons the link ðw; uÞ to form a link
with z.

Remark 2. The proposed scheme can also be implemented
with beam-switching antennas; these antennas may be
preferable as a less expensive alternative to fully
adaptive arrays. In this case, as opposed to the exact
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8. The frequency of these rendezvous instants depends on the frequency
with which the network topology changes.

Fig. 5. State diagram depicting the stages of our integrated scheme.



direction that maximizes the received signal power,
nodes will determine the closest (in terms of angular
separation from the intended direction) sector to the
desired direction.

6 PERFORMANCE EVALUATION

We examine the average-case performances of our dis-
tributed algorithms D-LDS and Di-ATC9 using simulations;
we point out how our different design goals are reflected in
their relative performances. We had analyzed the worst-
case performance of D-LDS in Section 4; the performance
evaluation in this section shows how its average-case
performance compares with the worst-case bounds.

6.1 Simulation Setup

Simulation environment and communication model. We im-
plemented D-LDS in a C++ simulator. Our simulator
incorporates the conditions that were assumed for the
design of D-LDS. In particular, 1) nodes have continuous
access to information with regards to their two-hop
neighborhood and 2) directional antenna footprints are
ideal and no side lobes are formed.

We implemented Di-ATC in OPNET v.11 [1], in order to
evaluate its performance under more realistic communica-
tion models. OPNET allows the design of antenna patterns
having arbitrary gain and shape. In addition, one can
modify the boresight of the created antenna with specific
system calls and point the main lobe at an arbitrary point
on the plane; the side lobes are created automatically, given
the beamwidth of the main lobe and the maximum gain in
the pointed direction. Upon each transmission in the
pointed direction, the nodes within the directional foot-
print (that have their antennas pointed toward the
transmitter) that receive the packet compute the signal-to-
noise ratio (SNR) by considering the antenna gains and
their positions relative to the transmitter. The correspond-
ing bit error rate (BER) is computed based on this SNR
value and the modulation scheme in use (we use BPSK in
all scenarios). If the number of bit errors in the packet
exceeds the error threshold that the decoder can accom-
modate, the packet is discarded at the MAC layer. This
setup offers a fairly realistic communication model using
directional antennas.

Input topology. We consider randomly generated topolo-
gies of varying densities in the area of deployment. When
we simulate Di-ATC for a specific antenna beamwidth, the
“unit” represents the communication range for that
beamwidth. D-LDS is evaluated on static scenarios for
various node densities and various network sizes. Di-ATC
is evaluated at different densities, but due to the limitations
in the simulation software, we do not simulate Di-ATC on
very large networks. We also examine the performance of
Di-ATC with node mobility (where nodes move according
to the random waypoint mobility model).

Antenna-specific parameters for Di-ATC. All nodes use the
same antenna model in a single simulation experiment; they
all transmit with a fixed power in all experiments. The

maximum gain in the main lobe is 20 dB (it is fixed in all
simulations); the communication range varies with beam-
width. The directional range D is roughly a factor of
ð360=�Þ1=� times larger than the omnidirectional range,
where � is the antenna beamwidth and � is the path loss
exponent; this model complies with that described in [35].
For the neighbor discovery phase, we use the method
suggested in [16]. In particular, we reserve 15 time slots for
neighbor discovery in every cycle. The cycles repeat
continuously, and each simulation is run for 80 cycles.

With Di-ATC, nodes maintain logical connectivity with
all discovered neighbors until the degree bound is reached
(unlike the behavior with D-LDS where a node would not
keep two neighbors that have a low angular separation).
Therefore, in the topologies formed by Di-ATC, the average
degree is close to the degree bound; this behavior is
common in all scenarios. Because of this, in most of our
experiments, we report results with a fixed beamwidth of
45 degree. We also impose a degree bound K of 6 unless
specified otherwise, this value is motivated from the
construction by D-LDS.

6.2 Parameters and Metrics

We test the dependence of our topology control algorithms
on the following parameters:

1. Node density. We simulate both algorithms for
various node densities in the region of interest.
(Note that topology control is useful only in network
deployments with moderate or high-densities.)

2. Area of deployment. We vary the size of deploy-
ment area.

3. Antenna beamwidth. We simulate Di-ATC using
different antenna beamwidths (due to the assump-
tion of circular transmissions that sweep the unit
disk, the performance of D-LDS is independent of
the antenna beamwidth).

4. Speed of nodes. We simulate Di-ATC in scenarios of
low and high mobility.

5. Degree bound. Di-ATC imposes the degree bound a
priori; we observe how our metrics specified below
change when the bound is changed.

We quantify the performance in terms of the following
metrics:

1. Average node degree. The average of all nodes’ degrees
in the network.

2. Node degree distribution. We measure the percentage
of nodes in the network that have a certain degree.

3. Average hop stretch. For every node pair u, v that
could communicate in the initial topology, we
measure the hop count of the shortest path between
them in the constructed topology. We define this
value to be the hop stretch for the particular edge.
An average is simply computed over all node pairs
that can communicate in the scenario of interest.
With Di-ATC, the hop stretch can be influenced by
neighbor discovery; thus, we measure this metric
relative to an ideal topology. “Ideal” topology implies
that nodes can discover all nodes with which they
can communicate fully directionally, and maintain all
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9. We simulate Di-ATC, integrated with the fully directional neighbor
discovery and the neighbor maintenance mechanisms.



discovered neighbors. (This topology would include
the shortest paths between all node pairs.)

4. Maximum 95 percent hop stretch. We quantify the
95 percent tail10 of the hop stretch of all edges in
the considered input graph.

5. Hop stretch distribution. The percentage of nodes
having a certain hop stretch.

6. Number of broadcasts. We quantify the number of
broadcasts performed during the execution of
D-LDS. (As the MIS construction and acquiring the
two-hop neighborhood are well-studied problems
[29], [8], we do not include their broadcast overhead
in quantifying this metric.)

We believe that these metrics capture the effectiveness of
D-LDS and Di-ATC quantifying the tradeoffs between node
degree and hop stretch.

6.3 Results and Discussion

In this section:

. We examine and compare the topologies formed by
D-LDS and Di-ATC, in terms of node degree and hop
stretch.

. We study the impact of changing the directional
antenna beamwidth on the performance (in terms
of node degree and hop stretch) of Di-ATC. (Since
D-LDS assumes that nodes perform circular trans-
missions to sweep their neighborhood, its perfor-
mance is independent of antenna beamwidth.)

. We study the node degree and hop stretch with
Di-ATC in mobile scenarios.

. We quantify the message complexity of D-LDS with
1) reliable and 2) lossy links. With D-LDS, nodes’
topology control decisions rely on accurate two-hop
neighborhood knowledge; our objective here is to
compute the cost of acquiring this information. Note
that this is not required for Di-ATC operations.

. We study the impact of link losses (and the impact of
resultant delay in making topology control decisions)
on the connectivity of the topology formed by D-LDS.

Node degree performance. We know from Theorem 4
that the nodes in the topology constructed by D-LDS have a
maximum degree of 6; we simulate D-LDS and observe the
distribution of node degrees in the topology formed. Fig. 6
shows the degree distribution in the backbone and in the
overall topology given networks of various node densities

(from 5 to 30 nodes=unit2 on the 6 	 6 region). As seen in
Fig. 6a, almost half of the backbone nodes have degrees of at
most 4 at node densities of 10 and above. (The UDG is quite
sparse at a node density of 5; hence, nodes have lower
degrees as compared to the other densities.) It is also
important to note that not more than 4 percent of the nodes
on the backbone have a degree equal to the worst-case
bound of 6. As the balanced binary tree nodes have well-
defined degrees (half of them have degree 3 and the other
half, i.e., the leaves, have degrees of 1), the distribution of
nodes in the final topology is biased toward lower degrees
in Fig. 6b.

We also examine the degree distribution in the topolo-
gies generated by Di-ATC for input networks with different
densities (nodes are deployed in a 5 	 5 unit area due to
limitations in the ability of OPNET in performing large-
scale simulations). We plot the percentage of nodes having
a particular degree in Fig. 7a, and the actual number of
nodes having that degree in Fig. 7b. With Di-ATC, most
nodes have degrees equal to the maximum of 6 and overall,
the node degrees are higher in comparison to the degrees
with D-LDS. This is because Di-ATC allows a node u to
keep a discovered neighbor z (irrespective of its angular
separation with its existing neighbors), as long as the degree
bound is not exceeded. On the other hand, the average
degree with D-LDS is lower because 1) backbone nodes are
not allowed to keep two neighbors that violate the angular
separation constraint and 2) the nodes along the trees have
a maximum degree of 4 (degree 4 occurring only at the
root). With D-LDS, the average degree is slightly lower at
higher densities, since the percentage of tree nodes
increases. Overall, node density has little effect on the
performance with both schemes. (Note here that, in these
experiments with Di-ATC, we run the simulations long
enough to facilitate discovery of the directional neighbor-
hood; thus, the network converges and the effect of
neighbor discovery on the topology control performance
is reduced.)

Next, we measure the average node degree with Di-ATC
using different antenna beamwidths and for varying degree
bounds, with 500 nodes in the 10 	 10 unit area. In this
experiment, a unit represents a radial range of 250 m. The
results are shown in Figs. 8a and 8b. The average degree is
slightly higher when wider-beam directional antennas are
used. A lower node degree can be attributed to poor
performance during neighbor discovery; it can also be a
consequence of link removals with Di-ATC. The latter
happens when nodes u, v discover each other and decide to
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Fig. 6. Node degree distribution in the topology formed by D-LDS.

(a) Distribution on the backbone. (b) Distribution in overall topology.

Fig. 7. Node degree distribution in the topology formed by Di-ATC.

(a) Fraction of nodes. (b) Number of nodes.

10. x percent tail of a set of values is the value that is bigger than
x percent of the values in that set.



form link ðu; vÞ, although they both have a degree equal to
the upper bound. Consequently, both u and v will remove
one of their existing links (say with nodes w and z,
respectively); the degree of u and v remains the same, but
the degrees of both w and z decrease by 1.

Hop stretch performance. In addition to ensuring low
node degrees, both our schemes yield low hop stretch. The
topology constructed by D-LDS, for all considered networks
of high density (as we plot in Fig. 9a), is a hop spanner with
a worst-case maximum 95 percentile hop stretch of 12. In
the same figure, we also show that the average hop stretch
is close to 6 for all network sizes that were considered.
These results demonstrate that the performance of D-LDS
scales in moderately sized to large networks. We also
measure the average and the 95 percentile hop stretch as a
function of node density (the area of deployment is fixed at
6 	 6 units). We observe that the hop stretch is even lower
at the moderate node densities that are more likely in ad
hoc network deployments (Fig. 9c). In Figs. 9b and 9d, we
show the percentage of node pairs that have a specific hop
stretch in a given network.

In Fig. 9c, we also present the average and maximum

hop stretch with Di-ATC given networks with different

node densities. In this figure, one can visualize how these

results compare with the results from D-LDS. Both the

maximum and the average hop stretch with Di-ATC are

lower compared to the corresponding results with D-LDS.

This is due to the higher average degree in the topology

formed by Di-ATC (Figs. 6 and 7). Hop stretch increases in

denser deployments, as the output topology includes a

smaller ratio of the total number of links that are in the ideal

topology. This increase is less visible with Di-ATC, as nodes

maintain a larger subset of their discovered neighbors than

they do when they execute D-LDS.

Next, we examine the impact of angular separation on the

hop stretch with Di-ATC by varying the imposed degree

bound. We experiment with different antenna beamwidths;

the hop stretch with each beamwidth is computed relative to

the corresponding ideal topology (discussed earlier). We

present the maximum 95 percent and average values of hop

stretch in Fig. 10. As expected, the hop stretch is less severe

when the degree bound requirement is less strict (Fig. 10a).

Fig. 10b shows that for a given degree bound the hop

stretch is higher when narrower directional beams are used.

Probability of neighbor discovery increases with a larger

beam. Consequently, nodes have a greater degree of

freedom in choosing the angularly separated subset of their

discovered neighbors. Furthermore, nodes’ neighborhood

in the ideal topology corresponding to a narrower beam-

width includes more links. This is because, due to the larger

radial range with a narrower-beam directional antenna, a

node can potentially reach (though it may not discover)

more neighbors. As a consequence, the hop stretch in the

output topology G0 is higher, as more links that make up the

shorter paths in the ideal topology do not exist in G0.
Fig. 10c shows that more than half of the paths in the

topology formed by Di-ATC have a stretch of less than or
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Fig. 8. Node degree performance of Di-ATC for varying parameters.

(a) Average degree with different antenna beamwidths. (b) Average

versus maximum degree.

Fig. 9. Hop stretch for the topologies generated by D-LDS and Di-ATC. (a) Average and maximum hop stretch at high density (30 nodes=unit2).

(b) Hop stretch distribution at high density (30 nodes=unit2). (c) Average and maximum hop stretch at various densities. (d) Hop stretch distribution at

various densities.

Fig. 10. Hop stretch performance of Di-ATC. (a) Average hop stretch. (b) Maximum hop stretch. (c) Hop stretch distribution (45 degree).



equal to 4; this result can be ascribed to the relatively high
node degrees resulting with Di-ATC unlike with D-LDS
(Figs. 6 and 7).

Performance in mobile scenarios. We simulate Di-ATC
in two mobile scenarios with the random waypoint mobility
model. Nodes choose a random speed between (0, 10] m/s;
this represents a scenario in which the topology changes are
slow. In a second scenario, nodes choose speeds in (10, 20]
m/s for a faster-changing topology. In both scenarios,
nodes pause for 1 s at each intermediate destination point.
The 1 s pause time corresponds to a duration of 2.5 cycles
(recall our discussion of cycles in Section 5). As nodes’
coordinates are dynamic due to mobility, we compute the
hop stretch for the mobile case in a different fashion. At
particular time instants, we find the shortest path between
two nodes ðu; vÞ in the snapshot of the constructed topology
at that time instance, and compare it with the shortest path
(between u, v) in the ideal topology consisting of the links
that could potentially exist at that time. (As before, the ideal
case assumes that the complete neighborhood is discovered
and all links are maintained.)

Fig. 11 shows the average degree and hop stretch in a
mobile network, at arbitrarily selected cycle instants in time
during a simulation run. Fig. 11a shows that the average
degree does not fluctuate much after stabilizing at cycle 40
when mobility is low. With higher node mobility, the
average degree drops after the first half of the simulation,
as nodes lose their neighbors due to high relative speeds (it
becomes very hard to track neighbors). Note, however, that
these high speeds are not common in typical network
deployments. In fact, at these extremely high speeds, use of
steerable directional antennas with narrow beams is challen-
ging.

We observe that the hop stretch also stabilizes around
cycle 40 (Fig. 11b). The initial period until stabilization is
spent for discovering neighbors. The hop stretch exhibits a
slight increase after cycle 30 in the case of fast mobility, due
to the decrease in node degrees. The low hop stretch can be
attributed to the angular separation among neighbors of a
node, which helps Di-ATC construct sparse but well-spread
topologies.

Communication and time complexity of D-LDS. We
showed in Section 4 that the number of messages required
by D-LDS is OðnÞ i.e., ¼ cn, where c is a constant. The
simulations, however, can provide an estimate of the
hidden constant c. To quantify c, we generate enough
nodes such that there are approximately 30 nodes in every

square unit; this is considered a dense ad hoc network.
Fixing this density, the input network is varied from
480 nodes in a 4 	 4 unit area (a moderate-size ad hoc
network) to 3,000 nodes in a 10 	 10 unit area (a large
ad hoc network). We measure the total number of broad-
casts used by D-LDS in constructing the final topology, and
divide it by the number of nodes. The results are depicted in
Fig. 12a; they show that the measured estimate of the
constant stabilizes to between 18 and 19 and does not
change even when the number of nodes is as high as 3,000.

We also examine the time it takes until the backbone
converges to a 9-spanner. This provides us with an idea of
the parallelism possible with D-LDS. We define convergence
time in terms of “the number of rounds,” where a round
corresponds to the duration of transmission of a single
message. Since with D-LDS, edges can be inserted in parallel,
we expect the time taken for convergence to be much smaller
than the worst-case OðnÞ bound. To corroborate this
expectation, we construct topologies of varying densities in
a 6 	 6 unit area. We depict the results in Fig. 12b. We
observe that even with a large number of nodes (as high as
2,000), convergence takes eight rounds. This demonstrates
the high degree of parallelism that is possible with D-LDS.

Connectivity with D-LDS with lossy links. The packet
losses at the link layer can delay the establishment of edges
with D-LDS. We investigate how the connectivity of the
network is affected by this delay. In other words, we study
the convergence of D-LDS in terms of forming the final
graph. To understand this, we perform the following
experiment. One thousand nodes are placed in a 6 	 6 unit
area and trace the connectivity of the backbone at different
stages of D-LDS execution; at each stage, note that only a
percentage of the final set of edges is established. We
investigate the impact on the backbone connectivity only;
the binary balanced trees are constructed by nodes that are
within the one hop reach of each other, and hence, do not
affect the connectivity of the other nodes beyond their group.

The results of the experiment are shown in Table 2.

Note that D-LDS provides connectivity even when just a
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Fig. 11. Average node degree and hop stretch in the topologies
generated by Di-ATC in existence of slow and fast node mobility.
(a) Average degree versus time with node mobility. (b) Average hop
stretch versus time with node mobility.

Fig. 12. Message and time complexity with D-LDS for various topologies.

(a) Message complexity of D-LDS. (b) Time convergence of D-LDS.

TABLE 2
Connectivity at Different Stages of the D-LDS Execution



subset of edges is established; connectivity is guaranteed

even if only 70 percent of the edges are established.

Summary. we have evaluated the performance of our

distributed topology control algorithms D-LDS and Di-ATC,

in various scenarios. We have showed their performances

scale in terms of node density, network size, and area of

deployment. Fig. 13 illustrates a randomly11 generated

network, and the sparse topologies constructed by D-LDS

and Di-ATC on this network. The initial graph consists of

360 nodes in a 6 	 6 unit area. The unit with D-LDS is as

defined in the beginning of this section; with Di-ATC we use

45 degree-beamwidth directional antennas and map its

directional range to a unit distance.

7 CONCLUSIONS

Nodes in a fully directional ad hoc network need to

continuously track their neighbors for maintenance. In this

paper, we proposed topology control strategies in order to

reduce the overhead incurred due to this process.

We first designed the LDS algorithm that finds a sparse

subgraph of a given arbitrary UDG G, such that the

maximum degree is 6 and the maximum hop stretch is

Oð1þ log �Þ, where � is the maximum degree in G. We

show that this result is near optimal.

Next, we designed the distributed, localized algorithm

D-LDS, which forms a sparse topology having the same

attractive properties as LDS using a linear number of

broadcasts per node.

Finally, we relaxed the idealized assumptions we made

to facilitate the design of LDS and D-LDS, and we designed

a more practical, considerably simpler topology control

scheme Di-ATC. Di-ATC integrates fully directional neigh-

bor discovery with the topology control decisions, and

neighbor maintenance mechanism is applied only to a

selected subset of discovered neighbors. We simulated the

integrated framework in practical settings and studied the

average performance to understand the tradeoff between

node degree and hop stretch.
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