
First Results with eBlocks: Embedded Systems Building
Blocks

Susan Cotterell, Frank Vahid, Walid Najjar, Harry Hsieh
Department of Computer Science and Engineering

University of California, Riverside
{susanc, vahid, najjar, harry}@cs.ucr.edu

*Also with the Center for Embedded Computer Systems at UC Irvine

Abstract
We describe our first efforts to develop a set of off-the-shelf
hardware components that ordinary people could connect to build
a simple but useful class of embedded systems. The class of
systems, which we call monitor/control systems, is composed
primarily of sensors – light, motion, sound, contact, and other
types – and output devices – light-emitting diodes, beeping
speakers, or even electric relays that control electric appliances
like lamps. For example, one monitor/control system would detect
if a house’s garage door was open at night, and would blink an
LED inside the house to alert the homeowner of this normally
undesirable situation. Today, configuring even the most basic
monitor/control system requires knowledge of electronics and
programming. We seek to create a set of building blocks, which
we call eBlocks, that would enable someone with no knowledge of
electronics or programming to be able to build simple but useful
monitor/control systems. We are creating eBlocks largely by
incorporating intelligence into previously dumb sensors and
output devices, and by developing a set of standards and methods
that enable eBlocks to work together seamlessly when connected.
eBlocks have only recently become possible due to the extremely
low cost, low power, and small size of embedded microprocessors.
We describe our first results of creating a basic class of eBlocks,
Boolean eBlocks, that from a user’s perspective transmit or
receive only “yes” or “no” signals. We discuss the internal
eBlock design, eBlock system design issues and decisions, and
several eBlock-based systems designed by ourselves and by
undergraduate students.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]

General Terms
Design, experimentation, human factors.

Keywords
Embedded systems, intelligent homes, networks.

1. Introduction
Home and office environments today typically include numerous
embedded computing systems, such as burglar alarm, temperature
control, and remote appliance control systems. Those systems are
designed by engineers. However, there is a class of useful

embedded systems that ordinary people with no engineering
training could build themselves if only the right building blocks
existed.

We refer to that class of systems as simple monitor/control
systems. A monitor/control system senses events, such as a person
walking across a room, a door being opened, or a button being
pressed. Such a system then responds by generating outputs, such
as blinking a light-emitting diode (LED), sounding a beep, or
turning on an electric relay that controls an electric appliance like
a lamp. We focus on human-scale monitor/control systems,
referring to events and outputs that a person could observe or
generate, as distinguished from other scales of events or outputs,
like detecting or generating radio signals.

Human-scale monitor/control systems are grossly under-
represented in existing commercial embedded system products.
Some applications are available as products, like motion-sensing
lights or timer-controlled relays, but these products are very
limited in their function and cannot easily be extended or
customized. The main reason for the under representation is cost:
most applications are too specialized to be cost effective when one
considers the many real costs (packaging, marketing, store
placement, etc.) of introducing a new consumer product into the
market.

Consider the following potential application. New
homeowners often forget to close their garage door at night. A
useful application would blink an LED inside the house if this
condition occurs. Such an application could be built using a light
sensor, a magnetic contact switch, a microcontroller that computes
a logic function of those two inputs, a wireless transmitter, a
wireless receiver, another microcontroller, and an LED. While
seemingly simple, building a working system from these
components is beyond the skills of ordinary people, and even a
challenge for most engineers who haven’t been specifically
trained in embedded system design. Yet, companies generally
could not profit from such a product, since most people are not
willing to spend more than perhaps $20-$40 on such a product.
People willing to spend much more than that would instead
purchase a home alarm system.

Similar applications are plentiful. A storeowner may want to
detect a customer at the front counter and sound a beep in the
storeroom. A dog owner may want to display if the backyard gate
is left open. A cafeteria manager may want a simple way for
service line workers to indicate to kitchen staff which food items
need replenishing. A hard-of-hearing person may want a small
vibrating device that indicates noise (perhaps from a crying baby).
A classroom teacher may want students to be able to anonymously
vote on various subjects by pressing buttons at their desks. A farm
owner may want to detect if there is mail in his remotely located
mailbox. A carpool driver may want a way other than honking the
horn to inform a passenger that the car is outside the passenger’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’03, October 1-3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010...$5.00.

apartment. All of these applications are useful, but none by itself
is in high enough demand to warrant a stand-alone product, and
the aforementioned applications have enough differences that
prevent a single product from covering all the applications.

We are developing a set of building blocks from which
ordinary people could easily implement these and many other
applications, without any training in electronics or programming.
We refer to these blocks as eBlocks, or embedded system building
blocks. In this paper, we first discuss related work in Section 2. In
Section 3, we describe the subset of eBlocks that we have
addressed so far, known as Boolean eBlocks. Section 4 highlights
numerous challenges and solutions in designing Boolean eBlocks.
Section 5 describes several useful monitor/control systems that we
and undergraduate students have designed using Boolean eBlocks.
Section 6 discusses eBlock prototypes and the feasibility of
battery based eBlocks. Section 7 describes experiences testing
eBlocks on various users. Section 8 provides conclusions and
points to numerous future directions.

2. Related Work
Much work has been done to simplify and make computing
devices more accessible. MIT’s Beyond Black Boxes project [6]
focuses on providing tools and materials for science education.
MIT Crickets, evolved from the Programmable Bricks project
[14][15] and Thinking Tag project [2]. A cricket is a tiny
computer, powered by a 9-volt battery, that can receive
information from two sensors and can control two motors.
Crickets are programmed utilizing the Logo language [17][20] – a
simple, graphical, highly intuitive language. In fact, Crickets
provided the foundation for the Lego Mindstorms [25], which
include numerous sensors and actuator Lego blocks that are
connected to a central microprocessor block to build a variety of
small robots. The central microprocessor block is programmed
using a simple graphical language included with the kit. While the
Beyond Black Boxes projects seek to motivate people to program
crickets, eBlocks seek to enable people to build systems.
However, we can of course introduce eBlocks that could be
programmed by “advanced” users, and we suspect such
programming would build upon the Logo language.

Home automation is another area in which much work on
ubiquitous computing has been done. In home automation, an
emphasis is placed on interoperability between higher-end
consumer electronics, such as audio, video, and other media
content, and the PC. However, many problems still exist. A
consumer will encounter systems that are complex to set up and
maintain. There are a myriad of issues facing consumers discussed
in [9] including knowledge of networking, media management,
security, and content protection. Such issues quickly overwhelm
the majority of the population.

To address some of these problems, a framework to support
home interoperability is presented in [19]. A network exists in
which devices have the ability to discover, configure, and control
other devices on that network. Network devices range from a PC,
television, stereo, or a variety of consumer electronics. This type
of system eliminates the need for a user to configure and control
each device independently on the network. The setup,
configuration, and control aspects of the system are transparent to
the user and make the system more feasible. There is no need for a
professional to setup a device every time a new device is added to
the system.

To guarantee interoperability between devices on the network
a common protocol is required. The Universal Plug and Play

Forum (UPnP) [22][24] is an emerging industry initiative that is
trying to make connectivity between stand-alone devices and PCs
simple and consistent. They are currently working on defining
standards and templates for classes of devices so that when an
individual device is added to the network it can easily be
integrated, regardless of how the individual devices are
implemented because a common interface exists. Home
interoperability and UPnP devices are typically complete
applications, not building blocks, yet we expect to eventually
develop an eBlock that interfaces to a UPnP device.

X10 [26] is another emerging protocol for compatible devices
throughout the home to communicate via existing 110V wiring in
the house. X10 superimposes a (digital) signal onto the power
signal, without interfering with the power signal. X10 devices
detect the superimposed signal and look for their ID number, and
then react to commands to turn on or off. A common application
of X10 is to control all the lights or power appliances of a home
from a single master device.

Smart sensors [13][18][23] embed a sensor’s data sheet
information directly in the sensor device, typically in a non-
volatile memory like EEPROM. This embedded information is
known as a Transducer Electronic Data Sheet, or TED and
includes information such as the manufacturer ID, model number,
sensor’s use, calibration information, voltage levels, and
temperature ranges. The embedded information relieves a system
designer from having to manually enter the information into their
software and enables some automatic configuration. IEEE has
developed several standards related to such basic smart sensors,
known as IEEE P1451 [12]. In addition, advanced smart sensors
seek to perform processing in sensors themselves, primarily to
reduce the amount of network data traffic [3]. Sensors which have
added intelligence, are able to perform tasks such as conversions,
monitor machinery for wear, perform image compression, monitor
neighborhoods for real-time pollen count, or even spy plane
applications, as discussed in [1][11][21].

There has also been work done in miniature wireless sensing
devices [4][7][8], referred to as the Mica wireless platform. These
devices have sensing, communication, and I/O capabilities and are
intended to last years in the field utilizing only a pair of AA
batteries. Each Mica node consists of processor/radio circuits that
are sandwiched together with sensor circuits. A variety of sensor
circuits such as temperature, magnetic field, light, acceleration,
vibration, and acoustics are available. A system designer would
customize the Mica node to their particular application by
selecting which sensors are incorporated. A collection of Mica
nodes are capable of self-configuring a multi-hop network,
utilizing RF communication, and support dynamic reprogramming
within the network. The nodes also contain the TinyOS operating
system and allow designers to customize communication

Figure 1: Smart Dust

Courtesy of Joe Kahn

protocols to suite their networks. The newest generation of these
wireless platforms is Smart Dust [5][26], which are on the
millimeter scale in size as shown in Figure 1 – illustrating just
how small devices like eBlocks could eventually become. Smart
Dust utilizes thick film batteries, a solar cell, or both for power,
providing roughly 1-2 Joules per day. These devices share many
of the characteristics of the Mica nodes but utilize optical
communication and have more restrictive power utilization limits.

The field of sensor networks in general focuses on coarse-
grained network-level applications. In addition, the Mica and
Smart Dust platforms require knowledge of the underlying
architecture and communication, programming, operating
systems, networking, etc. Unfortunately, ordinary people do not
have such expertise. While some of the sensing capabilities of
Mica and Smart Dust are similar to eBlocks, the internal design
and communication interface requirements for eBlocks are vastly
different, as eBlocks are intended for a different audience, namely
people with no engineering experience. While designing a low-
power, self-configuring device is useful in developing eBlocks,
we must incorporate such features without requiring any
additional effort by the user.

3. Defining Basic eBlocks
We initially defined a basic set of eBlocks from which a variety of
monitor/control systems could be built. A principle guiding the
definition task was that eBlocks should be intuitive and easy to
understand by nearly anybody old enough to want to build such a
system. In particular, we assumed no engineering or technical
training from the users, and no training in logic. We sought for
eBlocks to be usable almost immediately with little training, and
to be usable in remote locations without access to a centralized
computer. Based on these requirements, we early on determined
that eBlocks should be decentralized and should work just by
connecting them together.

3.1 eBlocks that Operate on Boolean Values
We sub-divided the basic set of eBlocks into three categories:

1. Sensor blocks – These blocks detect environmental
events of interest, such as motion, light, sound, or
contact.

2. Output blocks – These blocks generate events for
observation or control, such as lighting an LED,
sounding a tone, or controlling an electric relay.

3. Communication/logic blocks – These blocks assist with
communication among sensor blocks, supporting
wireless transmission, wireless reception, boosting of
signals over long wires, storing of signals for certain
durations, and logically combining multiple signals into
a new signal.

After initially exploring potential definitions of eBlocks and
creating hypothetical eBlock-based systems, we realized that the
challenge was enormous. We thus decided to first focus on a
restricted but still very useful subset of eBlocks that transmit and
receive Boolean values only, as opposed to also including integer
values or other types of values. We refer to such blocks as
Boolean eBlocks.

Boolean eBlocks presented an initial challenge of choosing
the most intuitive representation of “true” and “false.” We found
that ordinary people are not particularly comfortable with the
notions of “true” and “false” in the context of monitor/control
systems. (In contrast, to a reader of this paper, true and false are
likely obvious concepts, as the reader likely has some experience

using Boolean logic). After considering numerous possible
representations, such as true and false, 1 and 0, high and low, on
and off, etc., and presenting different possibilities to non-
engineers of various ages, we settled upon yes and no as the most
intuitive for eBlocks. For example, we describe a motion sensor
by asking the question: “Is motion detected? yes means motion is
detected, no means motion is not detected.”

3.2 A Basic Boolean eBlock Catalog
We sought to develop a catalog of Boolean eBlocks that balanced
the conflicting goals of having the fewest possible eBlocks, of
having eBlocks that were intuitive, and of having eBlocks that
required minimal configuration expertise. At one extreme, we
could have a single eBlock that could do anything, but that eBlock
would likely be big, power-hungry, and require extensive
programming. At the other extreme, we could build a unique
eBlock for every possible component, but that would result in an
intimidating large catalog too big for a user to readily
comprehend, and systems that required too many basic
components for users to reasonably build.

We developed our eBlock catalog by considering a dozen
applications, many of which we listed in the introduction. We
started with a minimal set of eBlocks, and introduced new
eBlocks, or added features to an existing eBlock, only when
building an application with the minimal set seemed to be too
difficult for an ordinary user.

Below are the eBlocks we defined.
• Sensor eBlocks:

o Magnetic Contact Switch - detects when
contact between two sensors is made

o Light-Beam Switch - composed of a light
source and light sink, this device detects when
the light beam is broken

o Motion Sensor - detects the presence of motion
o Light Sensor - detects the presence of light
o Sound Sensor - detects the presence of sound
o 3-Key Entry - detects if a predetermined

sequence of keys is pressed correctly
o 10-Key Entry - detects if a predetermined

sequence of keys is pressed correctly
o Button - detects when a button is pressed

• Output eBlocks:
o Green/Red LED - blinks a green light when

input is yes, blinks a red light when input is no
o Blinking LED - blinks a light when input is yes
o Beeper - emits a beeping sound when input is

yes
o Electric Relay - transmits electricity when

input is yes
• Communication/Logic eBlocks:

o Pulse Generator - outputs yes and no pulse
where the yes time and no time is user defined

o Clock Timer - user sets pins to indicate at
which times to toggle the output over a 24-hour
period

o Splitter - receives a signal and replicates that
signal on each output

o Toggle - input of yes toggles the current value
outputted by the device

o Prolonger - input of yes causes output to
become yes, output resets to no when the
device times out

o Wireless Transmitter - wirelessly transmits a
signal to another eBlock

o Wireless Receiver - wirelessly receives a signal
from another eBlock

o 2-Input Logic Block - configurable logic block
programmed by the user via DIP switch

o 3-Input Logic Block - configurable logic block
programmed by the user via DIP switch

o Yes/No Block - outputs a constant yes or no
depending on user defined setting

Table 1 includes a more detailed description for a subset of
eBlocks used in later examples.

4. Design Issues
We now describe several challenges and solutions during the
design of eBlocks.

4.1 Logic Blocks
A key challenge was finding a way to create an eBlock that would
generate an output that is a logical expression of the block’s input
values. The challenge lied not in technical issues, but rather user
interface issues. In the garage door example in the introduction,
we want to blink an LED when the garage door is open and
outside is dark. Our sensors would be a magnetic contact switch
that outputs yes when the door is closed (let’s call this signal A)
and an outdoor light sensor that outputs yes when light is detected
(signal B). The correct logical expression would be A’B’, or the
door is not closed and light is not detected. However, this simple
exercise of creating the correct Boolean logic expression is well
beyond the skills of ordinary people. For example, when we began
to explain the logical expression approach to a group of potential
users, one of the users interrupted to say “I have no clue what you
are talking about.” Again, the reader of this paper is likely not an
ordinary person in the context of comfort with Boolean logic. The
task becomes even more difficult if the user wants to detect
multiple conditions, e.g. AB + A’B’. Thus, creating a logic eBlock

that requires the user to enter a Boolean expression is undesirable.
Some studies show that most people can’t form basic logical
expressions, and this largely explains why such expressions are
almost completely unused in common applications like Internet
search queries [10].

We observed potential users naturally trying to figure out the
function of a logic eBlock by enumerating the input possibilities
and deciding the appropriate output for each possibility – in other
words, creating a truth table. After considering numerous options
and observing potential users, we developed the following initial
solution to the challenge. We provide two and three input logic
eBlocks. For a two-input logic eBlock, we provide a four-switch
DIP (dual-inline package) switch. Each switch can be moved to a
yes or no position. The eBlock has two inputs A and B. Each of
the four switches correspond to a particular combination of input
values, as follows:

This simple table can be printed directly on the eBlock
package next to the DIP switch. Likewise, an eight-pin DIP switch
would be used for a 3-input logic eBlock. This solution has the
benefit of minimizing the translation of the input values to output
values and avoids “encoding” the logic expression in a Boolean
function. The solution involves having the user simply provide the
appropriate output for each possible input, something users tended
to try to do anyways.

A limitation of the above solution is that the user must still
translate sensor outputs into variables A and B. Furthermore, the
solution does not extend well to more than 3 inputs – we currently
require the user to manually use multiple logic blocks for more
inputs.

Table 1: Partial Boolean eBlock Catalog

n
n
n
n

y
y
y
y

A B Output

no no
no yes
yes no
yes yes

 eBlock Diagram Description Interface

Magnetic Contact
Switch

Determines when contact between two
sensors is made.

yes = contact between sensors
no = no contact between sensors

Light Sensor

Sensor detects presence of light.
yes = light detected
no = no light detected Se

ns
or

Button

Indicates whether button is pressed or
not.

yes = button pressed
no = button not pressed

O
ut

pu
t

LED

Device blinks a light when input is a
yes. Device emits no light when input
is no.

yes = blink LED
no = turn LED off

Splitter

Device receives a signal and replicates
that signal on each output.

yes = output yes signal
no = output no signal

Toggle

An input of yes toggles (inverts) the
current value outputted by the device.

yes = toggle previous output value
no = do nothing

C
om

m
un

ic
at

io
n/

lo
gi

c

2-Input Logic Block

Configurable logic block programmed
by the user via DIP switch.

For each of the possible outcomes of a
and b, there is a corresponding switch
which can be set so the resulting output
is a yes or no for that particular
combination.

2-Input Logic
yes/no yes/no

yes/no

Toggle
yes/no yes/no

Splitter yes/no
yes/no
yes/no

yes/no
yes/no

Button yes/no

Light Sensor yes/no

Magnetic
Contact Switch yes/no

LED yes/no

4.2 Computers in Every Block
We quickly determined that communication of logic values
among eBlocks could not be implemented directly as a physical
wire carrying 1 for yes and 0 for no, for several reasons. First, for
low power, we did not want to transmit a signal at all times.
Transmission of the output signal is one of the most power-costly
operations of a block. Yet, we want eBlocks to potentially be
powered by small batteries like a watch battery. Thus, we want to
transmit as infrequently as possible. Second, glitches are common
among sensors, yet we do not want to trigger outputs unless real
events are detected. Third, we may want to transmit a message
indicating an error rather than yes or no. Fourth, we may in the
future want to transmit information about the sensors to assist the
user in configuring logic blocks. Fifth, we want to support the
option of wireless transmission.

Thus, we determined that blocks should communicate packets,
not just 1 and 0 for yes and no. Physically, the blocks are
connected via a single serial line. That single line carries serially
transmitted packets. A packet consists of a start bit, followed by
two bits indicating yes/no/error, followed by several stop bits. In
the future, we will incorporate identification information into the
packet. A block can also transmit no signal at all. Blocks with
inputs from other blocks can use a pull-up resistor circuit to
convert a situation in which these is no input signal into a stop bit.

To support packets, every block must contain a simple
computer, as shown in Figure 2. A sensor block converts its
physical input signal into a packet that the block sends over the
serial output. An output block receives packets and decodes them
into a physical output. A communication block receives an input
packet and either changes the block’s internal state, or sends out
an identical output packet. A logic block receives input packets,
computes the logic output, and transmits a new output packet.

Clearly, the compute requirements are modest. We therefore

have chosen to use a PIC microcontroller, which is a popular 8-bit
microcontroller distinguished for very low costs of less than a
dollar (in quantity), very low power measured in microwatts
(whereas milliwatts is more typical of other microcontrollers), and
small size. The microcontroller typically includes on-chip non-
volatile program memory and several peripherals, like analog-
digital converters and serial transmitters/receivers (UARTs). Such
microcontrollers are found in a myriad of common low-cost low-
power items, such as sneakers with blinking LEDs.

The computer in every block and standard communication
features are what distinguishes eBlocks from existing off-the-shelf
sensor, output, and communication blocks.

4.3 Event Granularity
The rate at which eBlocks send packets must be selected
carefully. The rate should be variable so eBlocks can reduce the
rate to reduce power. Yet the fastest rate must be known to all
eBlocks so that one eBlock does not send packets faster than
another can process those packets. The slowest rate should not be
so slow as to create annoying time lag in the system, and should
be known to all eBlocks so a failed eBlock can be detected. We
examined rates in light of their impact on power and found that
rates faster than around 50 milliseconds yielded too short of
battery lifetimes while rates slower than a few seconds yielded
unacceptable delays in some systems. Thus, we have presently set
the fastest rate at 50 milliseconds and the slowest at 3 seconds.
We found 50 milliseconds to be plenty fast for nearly all sensing
activities -- in fact, such speed is hardly ever really necessary. We
found 3 seconds to introduce a slightly annoying lag in some
systems having chains of about 6 eBlocks (chains typically don't
get much longer), resulting in a 15-20 second delay from input to
output. That could be annoying for systems where a user pushes a
button that should generate an output, but is no problem for
systems that monitor slower events (like the Garage Door Open at
Night Detector).

We anticipate adding a simple adjustment screw to eBlocks to
allow a user to vary the rate from a default rate of about 1.5
seconds, to accommodate the need for longer battery or faster
system response (note: precision is not important in selecting the
rate). Such screw-based adjustment is already commonplace in
certain sensors, like motion and light sensors.

Note that the packet send rate is independent of the baud rate.
We require all eBlocks to communicate their packets at 1200
baud.

5. eBlock-Based Systems
Utilizing the eBlocks shown in Table 1, we can build a variety of
systems. For example, Figure 3(a) illustrates how the Garage

Figure 2: eBlock Internals (a) Sensor Block – Light Sensor
eBlock (b) Communication/Logic Block – 2-Input Logic

eBlock (c) Output Block – Green/Red LED eBlock

Figure 3: eBlock Systems: (a) Garage Door Open at Night Detector (b) Cafeteria Food Alert.

(b) (c) (a)

µC

tx rx
rx

 Light
Sensor

µC

tx

Green/
Red LED

µC

rx

Light
Sensor

2-Input Logic Magnetic
Contact
Switch

Green/
Red LED

2-Input Logic
Splitter

Toggle

Button

LED

Button

LED

(a) (b)
At garage door

Outside

Inside house

Se
rv

ic
e

lin
e K

itchen

Door Open at Night Detector application, described earlier, could
be built. A light sensor is utilized to determine when it is dark
outside and a contact sensor is used to determine if the garage
door is open. The outputs of these sensors are fed into a 2-input
logic block. Because we are interested only when it is dark and
the door is open, we want to output a yes from the 2-input logic
block when the light sensor emits a no and the magnetic contact
switch emits a no. We accomplish this functionality by setting dip
switch 0 to the yes position.

Furthermore, using the same eBlocks shown in Table 1, a
cafeteria manager can design a simple system for service line
workers to indicate to kitchen staff which food items need
replenishing. As shown in Figure 3(b), we start by placing an
LED and button pair by the service line workers. When a food
item runs low, the service line worker can simply press the button.
The LED will start to blink indicating to the service line worker a
request has successfully been made. A second LED and button
pair is also located in the kitchen. When the service line worker
presses the button, the LED in the kitchen will also blink,
indicating that a food item is running low. When the food item has
been replenished, either button can be pressed to turn both LEDs
off. However, if there are numerous food items in the service line
then workers in the kitchen do not know which item needs to be
replenished. Thus, we can extend the design so that each food
item has a LED/button pair associated with it. The kitchen could
then have labels with LED/button pairs corresponding to each
food item.

6. Simulation and Prototypes
6.1 VHDL
We have simulated sixteen eBlocks including the eBlocks used in
the aforementioned examples in VHDL. We then built the systems
shown in Figure 3 as well as ten others by combining the
corresponding eBlock components in VHDL. We simulated those
systems using Synopsys and verified them for correctness.

6.2 Prototypes
We next built physical prototypes, shown in Figure 4, using a PIC
microcontroller, the corresponding circuitry for each of the
various eBlocks, and a 9V battery. Currently we have the
following eBlock prototypes implemented: Button, Light Sensor,
Motion Sensor, 2-Input Logic, Toggle, Prolonger, LED,
Green/Red LED, Buzzer, Electric Relay, and Magnetic Sensor
eBlocks. On average, we implemented each of the various eBlock
prototypes using 275 lines of C code. Communication between
eBlocks was implemented using the internal UART of the PIC
microcontroller at a transfer rate of 1200 baud. Furthermore, we

successfully tested how far eBlock communication was effective
by connecting a button eBlock to an LED eBlock and testing
various lengths of wire. Currently, we have exceeded a distance of
1 mile (approximately 6000 feet) using standard twisted pair wire.
We plan to keep increasing the length of wire to determine at
which point communication fails, however at such lengths we
would expect a user to use wireless receiver and transmitter
eBlocks. Using the aforementioned eBlocks prototypes, we
implemented the Garage Door Open At Night and Cafeteria Food
Alert system, discussed in Figure 3, as well as others.

6.3 Battery Lifetime
We want most eBlocks to be battery powered, to avoid the
complexity of connecting every component to a wall power
source. In addition, we must ensure that battery life is sufficient
such that a user is not constantly changing batteries. We used an
off-the-shelf 9V battery with a capacity of 19,278 Joules, which
correlates with the goal of trying to keep eBlocks to be as small as
possible. Table 2 shows the expected battery life for several of the
various eBlock prototypes implemented. For each of the eBlocks
we list the Joules consumed per day required by the PIC
microcontroller in the PIC column, the Joules consumed per day
for the corresponding circuitry in the HW column, and finally the
expected lifetime of the prototype denoted in months or years in
the Lifetime column.

We determined the energy consumption of the PIC
microcontroller using the corresponding datasheet [16]. The PIC
microcontroller consumes 20 µA when active and 0.20 µA when
in power down mode. Furthermore, driving a PIC port high
consumes 3 mA, and driving a PIC port low consumes 8.5 mA.
We also consider the power of driving a wire up to 100 feet long,
based on physical measurements of a standard low-cost wire. The
PIC energy consumption, listed in the PIC column, assumes that
the PIC sends a packet every 2.5 seconds and considers driving
the output port and 100 feet of wire. Normally the PIC will send a
packet every 3 seconds; however, we also wanted to consider
packets sent upon a change of the eBlock’s input.

Furthermore, we considered the energy consumed by the
sensors and corresponding circuitry of each of the various
eBlocks. To obtain the energy consumed by the circuitry of each
of the various eBlocks we physically measured the current when
the device was active. For example, we connected a multimeter to
the LED eBlock, and measured the current when the LED was on.
We found that the LED consumes 8.9 mA at 5 volts when on.
Recall however that our LED eBlocks blink rather than being
constantly illuminated, since a constantly on LED would drain a
battery very quickly. We then took into consideration that the

Figure 4: eBlock prototypes Table 2: eBlock Prototype Estimated Battery Lifetimes with PIC
Constantly Running (battery capacity = 19278 Joules).

Energy/day (J/day)
eBlocks

PIC HW
Lifetime

Button 8.684 0 6 years

Light Sensor 8.684 1339.2 0.5 months

LED 8.640 64.8 9 months

Green/Red LED 8.640 129.6 5 months

Beeper 8.640 180.0 3 months

2-Input Logic Block 8.728 0 6 years

Toggle 8.684 0 6 years

Prolonger 8.684 0 6 years

LED eBlock blinks roughly every 3 seconds for about a tenth of a
second and estimated that the status of the block would be yes half
of the time. Thus, on average, the LED is illuminated a tenth of a
second roughly every 6 seconds. We estimated the energy of each
of the eBlocks that require additional hardware in a similar
manner and listed the corresponding energy consumption in Table
2.

As shown in Table 2, for most eBlocks the 9V battery will
provide enough energy to last several years. However, some
eBlocks have a short battery life expectancy. For example, the
light sensor eBlock is estimated to last less than a month and thus
does not have a reasonable battery life. Currently, this eBlock will
require a different power source.

In the future, we must either develop a different
implementation using lower power components or consider a
sampling approach in which we sample the light inputs at some
specific interval. Table 3 show the estimated battery lifetimes for
each of the corresponding eBlocks if we use power saving
strategies such as powering down the PIC microcontroller when
the PIC is idle, using lower power components, and sampling
inputs. For example, lower power components were not available
for the light sensor. Thus, we considered a sampling approach that
monitors the light level at an interval of every 3 seconds. Instead
of constantly powering the light sensing circuitry, we only need to
power the circuit for a short duration while sampling. Otherwise,
we can shutdown the circuitry, thereby significantly increasing
battery life from less than one month to slightly longer than 1
year. Furthermore, we can add configurability to the light sensor,
which allows the user to customize the sampling rate to their
specific application. If a user is only interested in sampling the
light level once every hour, the lifetime of the light sensor eBlock
would be further increased to over 6 years.

7. Experiences with eBlocks
For several years, we have required a three-week project in an
upper-division embedded systems university course. The project
was similar in complexity to the garage door open at night project.
The students already had several months of experience in
programming microcontrollers, assembling basic electronic
systems, implementing serial communication, and interfacing with
some sensors and display devices. The project involved new
sensors and display devices, and hence students had to find
components in electronics catalogs and read datasheets to learn
how to interface with those components. Of about 50 students
who have attempted the project, only 20 were able to successfully
complete the project in the three weeks. Most problems

encountered related to misunderstanding certain data sheets, errors
during interfacing, and difficulty in debugging.

This year, we introduced a similar project but allowed the 22
students to use eBlocks, which were described using a simple 3-
page catalog that included basic examples. The students needed
less than 30 minutes to comprehend that material. All students
successfully designed the garage door open at night system using
eBlocks, in less than one hour (designs could be simulated in
VHDL, but at the time we did not yet have a complete set of
physical prototype blocks). Furthermore, students were given two
hours more to create new designs, and they came up with
numerous creative and useful applications.

8. Conclusions and Future Work
eBlocks greatly reduce the time needed to build basic
monitor/control embedded systems and eliminate the need for
programming or electronics expertise. eBlocks will not replace
existing engineer-designed embedded systems, but will enable
ordinary people, as well as a wider variety of engineers and
programmers, to quickly realize a large range of new and useful
applications.

We built physical eBlock prototypes and will use those in
future courses as well as in local high schools (to observe truly
non-experienced users). Immediate future work will include
support to make logic configuration even simpler and extension to
eBlocks that communicate integers rather than just Boolean
values. As we discuss eBlocks with people in various fields, new
applications that could be straightforwardly implemented with
eBlocks continue to surface, such as detecting the speed of
vehicles on a local street (requiring integer eBlocks), detecting if a
child or hospital patient gets down out of a bed, detecting a water
leak in a second home and calling the homeowner with a
prerecorded message, and controlling a heat lamp and fan in a
temperature-sensitive chemistry experiment. The potential list of
applications is likely enormous.

9. Acknowledgments
This work is being supported by the National Science Foundation
(CCR-0311026), and by a Department of Education GAANN
fellowship. We also thank Daniel Tan and Shawn Nematbakhsh
for their contributions in developing a set of prototype eBlocks.

10. References
[1] K. Aizawa. On Sensor Image Compression. IEEE

Transactions on Circuits and Systems for Video Technology,
Vol. 7, No. 3, June 1997.

[2] R. Borovoy, M. McDonald, F. Martin, and M. Resnick.
Things that blink: Computationally augmented name tags.
IBM Systems Journal, Vol. 35, No. 3&4, 1996.

[3] M. Clarkson. Smart Sensors. Sensors Magazine, May 1997.
[4] Crossbow Technology Inc., http://www.xbow.com
[5] Dust, Inc. http://www.dust-inc.com
[6] Epistemology and Learning Group, MIT Media Laboratories.

Beyond Black Boxes. http://llk.media.mit.edu/projects/bbb/
[7] J. Hill, D. Culler. MICA: A Wireless Platform For Deeply

Embedded Networks. IEEE Micro, Vol. 22. No. 6,
November/December 2002.

[8] M. Horton, D. Culler, K. Pister, J. Hill, R. Szewczyk, A.
Woo. MICA The Commercialization of Microsensor Motes.
Sensors, April 2002.

[9] Interoperable Home Infrastructure. Intel Technology Journal
Vol. 6, Issue 4, 2002.

Table 3: eBlock Prototype Estimated Battery Lifetimes with PIC
Power Down Mode Activated and Low Power Components

(battery capacity = 19278 Joules).

Energy/day (J/day)
eBlocks

PIC HW
Lifetime

Button 2.722 0 20 years

Light Sensor 2.722 44.5 1 year

LED 2.678 14.4 3 years

Green/Red LED 2.678 28.8 2 years

Beeper 2.678 27 2 years

2-Input Logic Block 2.766 0 19 years

Toggle 2.722 0 20 years

Prolonger 2.722 0 20 years

[10] B.J. Jansen, and U. Pooch. Web user studies: A review and
framework for future work. Journal of the American Society
of Information Science and Technology. 52(3), 2000, 235 –
246.

[11] C. Johnson. Smart Sensors Extend Web Scale. EE Times,
April 2001.

[12] K. Lee. A Synopsis of the IEEE P1451 – Standards for Smart
Transducer Communication. National Institute of Standards
and Technology, 1999.

[13] T. R. Licht. The IEEE 1451.4 Proposed Standard And
Emerging Compatible Smart Transducers and Systems.
National Institute of Standards and Technology, 2000.

[14] F. Martin, et. al. The MIT Programmable Brick.
http://lcs.www.media.mit.edu/groups/el/projects/programmab
le-brick/

[15] F. Martin, et. al. Crickets: Tiny Computers for Big Ideas.
http://lcs.www.media.mit.edu/people/fredm/projects/cricket

[16] Micochip, http://www.microchip.com
[17] S. Papert. Mindstorms: Children, Computers, and Powerful

Ideas. Basic Books, New York, 1980.

[18] D. Potter. IEEE P1451.4’s Plug-and-Play Sensors. Sensors
Magazine, December 2002.

[19] Y. Rasheed, J. Edwards, C. Tai. Home Interoperability
Framework for the Digital Home. Intel Technology Journal,
Vol. 6, Issue 4, 2002.

[20] M. Resnick, S. Ocko, and S. Papert, LEGO, Logo, and
Design, Children’s Environments Quarterly 5, No. 4, pg. 14-
18, 1988.

[21] P. Saffo. Smart Sensors Focus on the Future. CIO Insight,
April 2002.

[22] E. Steinfeld, Devices that play together, work together. EDN
Magazine, September 13, 2001.

[23] B. Travis. Sensors Smarten Up. EDN, March 1999.
[24] Universal Plug and Play Forum. http://upnp.org/
[25] P. Wallich. Mindstorms Not Just a Kid’s Toy. IEEE

Spectrum, Vol. 38, No. 9, September 2001.
[26] B. Warneke, M. Last, B. Liebowitz, and K. Pister. Smart

Dust: Communicating with a Cubic-Millimeter Computer.
Computer Magazine, pg. 44-51, January 2001.

[27] X10 protocol, http://www.x10.org/.

