Exploiting a novel algorithm and GPUs
to break the ten quadrillion pairwise
comparisons barrier for time series motifs
and joins

Yan Zhu, Zachary Zimmerman, Nader
Shakibay Senobari, Chin-Chia Michael
Yeh, Gareth Funning, Abdullah Mueen,
Philip Brisk, et al.

Knowledge and Information Systems
An International Journal

ISSN 0219-1377

Knowl Inf Syst
DOI 10.1007/s10115-017-1138-x

Number 3 September 2013

Xindong Wu

@ Springer

@ Springer

Your article is protected by copyright and all
rights are held exclusively by Springer-Verlag
London Ltd., part of Springer Nature. This e-
offprint is for personal use only and shall not
be self-archived in electronic repositories. If
you wish to self-archive your article, please
use the accepted manuscript version for
posting on your own website. You may
further deposit the accepted manuscript
version in any repository, provided it is only
made publicly available 12 months after
official publication or later and provided
acknowledgement is given to the original
source of publication and a link is inserted
to the published article on Springer's
website. The link must be accompanied by
the following text: "The final publication is
available at link.springer.com”.

@ Springer

Knowl Inf Syst @ CrossMark
https://doi.org/10.1007/s10115-017-1138-x

REGULAR PAPER

Exploiting a novel algorithm and GPUs to break the ten
quadrillion pairwise comparisons barrier for time series
motifs and joins

Yan Zhu'® - Zachary Zimmerman! - Nader Shakibay Senobari? -
Chin-Chia Michael Yeh! . Gareth Funning? - Abdullah Mueen? -
Philip Brisk! - Eamonn Keogh!

Received: 29 January 2017 / Revised: 28 July 2017 / Accepted: 14 November 2017
© Springer-Verlag London Ltd., part of Springer Nature 2017

Abstract Time series motifs are approximately repeated subsequences found within a longer
time series. They have been in the literature since 2002, but recently they have begun to
receive significant attention in research and industrial communities. This is perhaps due to
the growing realization that they implicitly offer solutions to a host of time series problems,
including rule discovery, anomaly detection, density estimation, semantic segmentation, sum-
marization, etc. Recent work has improved the scalability so exact motifs can be computed on
datasets with up to a million data points in tenable time. However, in some domains, for exam-
ple seismology or climatology, there is an immediate need to address even larger datasets. In

Yan Zhu and Zachary Zimmerman contributed equally, and should be considered joint first authors.

B Yan Zhu
yzhuO15@ucr.edu

Zachary Zimmerman
zzimmO001 @ucr.edu

Nader Shakibay Senobari
nshak006 @ucr.edu

Chin-Chia Michael Yeh
myeh003 @ucr.edu

Gareth Funning
gareth@ucr.edu

Abdullah Mueen
mueen@cs.unm.edu

Philip Brisk
philip@cs.ucr.edu

Eamonn Keogh
eamonn@cs.ucr.edu

Department of Computer Science and Engineering, University of California, Riverside, USA
Department of Earth Sciences, University of California, Riverside, USA

Department of Computer Science, University of New Mexico, Albuquerque, USA

Published online: 22 December 2017 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-017-1138-x&domain=pdf
http://orcid.org/0000-0002-5952-2108

Y. Zhu et al.

this work, we demonstrate that a combination of a novel algorithm and a high-performance
GPU allows us to significantly improve the scalability of motif discovery. We demonstrate
the scalability of our ideas by finding the full set of exact motifs on a dataset with one hun-
dred and forty-three million subsequences, which is by far the largest dataset ever mined for
time series motifs/joins; it requires ten quadrillion pairwise comparisons. Furthermore, we
demonstrate that our algorithm can produce actionable insights into seismology and ethology.

Keywords Time series - Joins - Motifs - GPUs

1 Introduction

Time series motifs are approximately repeated subsequences found within a longer time
series. While time series motifs have been in the literature for fifteen years [8], they recently
have begun to receive significant attention beyond the data mining community. In recent
years, they have been applied to a wide variety of problems, which include understanding the
network of genes affecting the locomotion of the C. elegans nematode [5], severe weather
prediction [16] and cataloging speech pathologies in humans [3].

Although significant progress has been made in how we score, rank, and visualize motifs,
discovering them in large datasets remains a computational bottleneck. To date, we are
unaware of any attempts to mine any dataset larger than one million data points [14]. In this
work, we show how we can significantly improve the scalability of exact motif discovery
both by leveraging GPU hardware and also by modifying the recently introduced STAMP
algorithm [35]. The STAMP algorithm computes time series subsequence joins with an
efficient anytime algorithm [35]. Our key observations follow below:

e The solution to the full exact INN time series join can be converted to the exact solution
for any definition of time series motif [19] with only trivial extra effort. Moreover, full
exact INN time series join also yields the exact solution for time series discords, a popular
definition for anomalies in time series [7].

e The anytime property of STAMP may be useful to some users, but as we will explain
below, in seismology, which is the domain motivating our work, it is not required or
helpful. As we will demonstrate, if we forego this property, we can compute motifs at
least an order of magnitude faster than STAMP. Moreover, forgoing the anytime property
also makes it easier to leverage GPU hardware.

By maintaining the “STAMP” theme introduced in Yeh et al. [35], we call our faster algo-
rithm STOMP, Scalable Time series Ordered-search Matrix Profile and its GPU-accelerated
version GPU-STOMP.

In this work, we show that GPU-STOMP allows us to significantly expand the limits of
scalability. We demonstrate the scalability of our ideas by extracting motifs from a dataset
with one hundred and forty-three million subsequences objects. This requires computing (or
admissibly pruning) 10,224,499,928,500,000 pairwise Euclidean distance values (i.e., more
than ten quadrillion comparisons). If each Euclidean distance calculation took one microsec-
ond, a brute-force algorithm would require 324 years.! As we will show, we can compute this
join in only 9 days. We recognize the nine days seem like significant computational time, but
it is important to note that these data represent 83 days of continuous seismology recording
at 20 Hz. Therefore, even at this massive scale, our algorithm is much faster than real time.

110,224,499,928,500,000 * 0.000001 s is 324 years.

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

s 5:31:09 @37.58°N 118.86°WDepth:5.13 Magnitude:1.29
—— 7:59:24 @37.58°N118.86°WDepth:5.00 Magnitude:1.24

L 1 1 1 1 1 1 1 1 1 J
0 10 20
seconds

Fig. 1 A pair of repeating earthquake sequences (motifs) we discovered from seismic data recorded at a
station near Mammoth Lakes on February 17, 2016. One occurrence (fine/red) is overlaid on top of another
occurrence (bold/blue) that happened hours earlier. (best viewed in color) (color figure online)

Figure 1 previews a pair of repeating earthquake sequences, which is essentially a time series
motif [8], discovered by our algorithm in a seismologic dataset.

Here, the two occurrences are very similar despite happening 148 minutes apart. Although
the geophysics of earthquakes indicates that in principle we could see similar events millennia
apart, we are unfortunately limited to the few decades humans have been recording such data
(see Fig. 12).

The rest of this paper is organized as follows. In Sect. 2, we introduce background and
related work in data mining and seismology. In Sect. 3, we introduce the necessary definitions
and notations, which allow us to introduce our algorithms in Sect. 4. We conduct an extensive
empirical comparison in Sect. 5, including comparisons to the most obvious rival methods.
Finally, in Sect. 6, we offer conclusions and directions for related work.

2 Background and related work
2.1 Motif discovery background

Motif discovery for time series was introduced in 2003 [8] (although the classic paper of
Agrawal, Faloutsos and Swami foreshadows motifs by computing all-pair similarity for
time series [1]). Since then, it increased in research activity. One critical direction has been
applying motifs to solve problems in a wide variety of domains such as bioinformatics
[51, speech processing [3], robotics, human activity understanding [31,32], severe weather
prediction [16], neurology and entomology [19]. The other key research focus has been in
the extensions and generalizations of the original work, especially in the attempts to improve
scalability [14,19]. These attempts to improve the scalability of motif discovery fall into two
broad classes; approximate and exact motif discovery [14,18,19].

Clearly approximate motifs can be much faster to compute, and this may be useful in some
domains. However, there are domains in which the risk of false negatives is unacceptable.
Consider seismology, which is the domain motivating our work [36]. This is a domain in
which false negatives could affect public policy, change insurance rates for customers and
conceivably cost lives by allowing a dangerous site to be developed for dwellings. Given that
the task-at-hand is to find exact motifs, all known methods based on hashing [36] and/or data
discretization [8,18] can be dismissed from consideration.

Beyond being exact, the proposed approach has many advantages that are not shared by
rival methods.

@ Springer

Y. Zhu et al.

e The proposed method is simple and parameter-free: In contrast, other methods typically
require building and tuning spatial access methods and/or hash functions [8,14,15,18,
31,32,36].

e Itis space efficient: Our algorithm requires an inconsequential space overhead, just linear
in the time series length, with a small constant factor. In particular, we avoid the need to
actually explicitly extract the individual subsequences [8, 18, 19], something that would
increase the space complexity by two or three orders of magnitude.

e It is incrementally maintainable: Having computed motifs for a dataset, we can incre-
mentally update the best motifs very efficiently if new data arrive [35].

e [t can leverage hardware: As we show below, our algorithm is embarrassingly paralleliz-
able on multicore processors.

e Our algorithm has time complexity that is constant in subsequence length: This is a very
unusual and desirable property; virtually all time series algorithms scale poorly as the
subsequence length grows (the classic curse of dimensionality) [8,14,15,18,31,36].

e Our algorithm takes deterministic time, dependent on the data’s length, but completely
independent of the data’s structure/ noise level, etc. This is also unusual and desirable
property for an algorithm in this domain. For example, even for a fixed time series length,
and a fixed subsequence length, all other algorithms we are aware of can radically different
times to finish on two (even slightly) different datasets [8,14,15,18,31,36]. In contrast,
given only the length of the time series, we can predict precisely how long it will take
our algorithm to finish in advance.

Virtually every time series data mining technique has been applied to the motif discovery
problem, including indexing [14,33], data discretization [8], triangular-inequality pruning
[19], hashing [31,32,36], early abandoning, etc. However, all these techniques rely on the
assumption that the intrinsic dimensionality of time series is much lower than the recorded
dimensionality [8,31,32,34,36]. This is generally true for data such as short snippets of heart-
beats and gestures, etc.;however, it is not true for seismographic data, which is intrinsically
high dimensional. To ascertain this, we performed a simple experiment.

We measured the tightness of lower bounds (TLB) for three types of data, using the two
most commonly used dimensionality reduction representations for time series, DFT and PAA.
Additionally, PAA is essentially equivalent to the Haar wavelets for this purpose [34]. The
TLB is defined as:

TLB = Lower BoundDist(A,B)/TrueEuclideanDist(A,B)

It is well understood that the TLB is near perfectly (inversely) correlated with wall-clock
time, CPU operations, number of disk access or any other performance metric for similarity
search, all-pair-joins, motifs discovery, etc. [34]. As the mean TLB decreases, we quickly
degrade to simple brute-force search. The absolute minimum value of TLB is dependent on
the data, the search algorithm and the problem setting (main memory based vs disk based).
However as Wang et al. [34] demonstrates, lower bound values less than 0.5 generally do not
“break even.”

Figure 2 shows unambiguous results. There is some hope that we could avail current
speedup techniques when considering (relatively smooth and simple) short snippets of ECGs,
but there is little hope that the noisy and more complex human activity would yield to such
optimizations, and there is no hope that anything currently in the literature will help with
seismological data. This claim is further proven in our detailed experiments in Sect. 5.

Even if we ignore this apparent death-knell for indexing/spatial access techniques, we
could still dismiss them for other reasons, including memory considerations. As demonstrated

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

1A

e B T

-

Tightness of Lower Bounds

N 1 =
' SO G S
‘2 ?g» cae‘% O & 5F
AN
0 200 ?‘?’ N

Fig. 2 Left Samples from three datasets, ECG, human activity and seismology (available in [22]). Right The
tightness of lower bounds, averaged over 10,000 random pairs, using PAA and DFT

in Sect. 4, a critical property of our algorithm is that it does not need to explicitly extract the
subsequences, which is unlike the indexing/spatial access methods. For example, consider a
time series of length 100 million, with eight bytes per value, requiring 0.8 GB. Our algorithm
requires an overhead of seven other vectors of the same size (including the output), for an
easily manageable total of 6.4 GB (if memory was a bottleneck, we could reduce this by using
reduced precision vectors or compression). However, any indexing algorithm that needs to
extract the subsequences will increase memory requirements by at least O(d), where d is the
reduced dimensionality used in the index [15]. Given that d may be 20 or greater, this indicates
the memory requirements grow to at least 16 GB. With such a large memory footprint, we
are almost certainly condemned to a random-access disk-based algorithm, dashing any hope
of any speedup.

A related advantage of our framework is that we can choose the subsequence length just
prior to performing the motif discovery. In contrast, any index-based technique must commit
to a subsequence length before building the index, and it could take hours/days to build the
data structure before any actual searching could begin [24,34]. If such an index is built to
support subsequences of say length 200, it cannot be used to join subsequences of length 190
or 205, etc. (see Section 1.2.3 of Rakthanmanon et al. [24]). Thus, if we change our mind
about the length of patterns we are interested in, we are condemned to a costly rebuilding
of the entire index. It is difficult to overstate the utility of this feature. In Sect. 5.8, we will
demonstrate how we can use STOMP to explore the behavior of a penguin. At the beginning
of this case study, we had no idea of what time frame the penguin’s behavior might be
manifest. However, with no costly index to build, we simply tried a few possible lengths until
it was obvious that we found a reasonable value.

In summary, while we obviously are unable to absolutely guarantee that there is no other
scalable solution to our task-at-hand, we are confident that there is no existing off-the-shelf
technology that can be used or adapted to allow us to get within two orders of magnitude of
the results we obtain on the largest datasets.

2.2 Seismological background

While our algorithms are completely general and can be applied to any domain, seismological
data are of particular interest to us, due to its sheer scale and importance in human affairs.

@ Springer

Y. Zhu et al.

In the early 1980s, it was discovered that in the telemetry of seismic data recorded by the
same instrument from sources in given region, there will be many similar seismograms [9].
Geller and Mueller [9] have suggested that, “The physical basis of this clustering is that the
earthquakes represent repeated stress release at the same asperity, or stress concentration,
along the fault surface.” These patterns are called “repeating earthquake sequences” in seis-
mology and correspond to the more general term “time series motifs.” Figure 1 shows an
example of a repeating earthquake sequence pair from seismic data.

A more recent paper notes that many fundamental problems in seismology can be solved by
joining seismometer telemetry in locating these repeating earthquake sequences [36], which
includes the discovery of foreshocks, aftershocks, triggered earthquakes, swarms, volcanic
activity and induced seismicity. However, the paper further notes that an exact join with a
query length of 200 on a data stream of length 604,781 requires 9.5 days. Their solution, a
transformation of the data to allow LSH-based techniques, does achieve significant speedup,
but at the cost of false negatives and necessary careful parameter tuning. For example, Yeh et
al. [35] notes that they need to set the threshold to precisely 0.818 to achieve decent results.
While we defer a full discussion of experimental results to Sect. 5, the ideas introduced in
this paper can reduce the quoted 9.5 days for exact motif discovery from a dataset of size
604,781 to less than one minute, without tuning any parameters and also guaranteeing that
false negatives will not occur.

It is vital to note that this kind of speedup really is game changing in this domain. It allows
seismologists to quickly identify or detect earthquakes that are identical or similar in location
without needing trilateration, and it can also provide useful information on relative timing
and location of such events [2,12,13].

More controversially, some researchers have suggested that the slow slip on the fault
accompanying non-volcanic tremors (a sequence of low-frequency earthquakes, many of
which are repeated) may temporarily increase the probability of triggering a large earthquake.
Therefore, detecting and locating these repeating LFEs allows more accurate short-term
earthquake forecasting [12].

Finally, we note that seismologists have been early adopters of GPU technology [17] and
other high-performance computing paradigms. However, their use of this technology has
been limited to similarity search, not motif search.

2.3 Developing intuitions for the matrix profile

Unlike other motif/anomaly discovery systems, the matrix profile computes a score for every
subsequence in the dataset. Here, we take the time to give some examples to demonstrate
the utility of this more comprehensive annotation of data. We begin by considering the New
York Taxi dataset of Rong and Bailis [25]. As shown in Fig. 3.7op, the data are the normalized
number of NYC taxi passengers over 10 weeks, October 1 to December 15 2014. The authors
show this dataset to demonstrate the versatility of their “Attention Prioritization” technique
for finding unusual patterns [4,25]. In essence, they transform the data (not shown here) in a
way to make the discovery of anomalies easier. They note that Thanksgiving, on Thursday,
November 27, can be considered an “anomaly” in this dataset, since the patterns of travel
apparently change during this important US holiday.

We computed the matrix profile for this dataset, with a subsequence length of one and
a half days. As Fig. 3.middle shows, the matrix profile peaks at the location that indicates
Thanksgiving. However, there are additional observations that we can make with the matrix
profile. There is a secondary anomaly occurring on Sunday, November 2; there appears to be
a spike in taxi demand at about 2:00 am. With a little thought, we realize this is exactly the

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

0 1000 2000 :ﬁ 3000
:> & “Anomaly” Anomely

‘Anomaly’ y _ corresponding to
corresponding to corresponding to Thanksgiving

Columbus Day daylight saving time

L
0 1000 2000 3000

The top motif in the Taxi data
Saturday 18 with part of Sunday
Saturday 25% with part of Sunday

Fig. 3 Top Normalized number of NYC taxi passengers over 10 weeks [4,25]. Middle The matrix profile
produces high values where the corresponding subsequences are unusual. Bottom The top motif corresponds
to two consecutive Saturdays

hour in which daylight saving time is observed in the USA. Setting the clock back one hour
gives the appearance of doubling the normal demand for taxis at that hour. There is arguably
a third anomaly in the dataset, with a more subtle, but still significant peak at October 13.
This day corresponds to Columbus Day. This holiday is all but ignored in most of the USA,
but it is still observed in New York, which has a strong and patriotic Italian community.

In Fig. 3 bottom, we show the top-1 motif from the dataset, which is extremely well
conserved. In many natural datasets, for example the circadian rhythm of an animal, the best
motifs are typically exactly twenty-four hours apart (a phenomenon known as persistence).
However, because this motif’s two occurrences are exactly seven days apart, the importance
of artificial divisions of the calendar on human behaviors becomes apparent. It is possible
that the regions of lower conservation with the motif are also telling. For example, from 24 to
26 (about 10-11 am), the motif corresponding to the 25th (green/bold) is a little higher than
the previous week. It was lightly raining (about 0.12 inches) at the time, which may explain
the slightly higher taxi demand in the late morning.

3 Notation and definitions

While we mostly follow the framework introduced in Yeh et al. [35], for completeness we
review all necessary definitions.

3.1 Definitions

We begin by defining the data type of interest, time series:

Definition 1 A time series T is a sequence of real-valued numbers t;:T = 11,13, ..., I,
where 7 is the length of T'.

We are interested in local, not global properties of time series. A local region of time
series is called a subsequence.

@ Springer

Y. Zhu et al.

0, query of

T, synthetic data \/L..-.\/‘/ length m
i B A
ID, a distance profile Note that |D| = |T|-|O|+1

0 m/4m/4 2,500

T, synthetic data / / \

P, a matrix D A
profile Note that |P| = |T|-|0|+1
L

J
0 2,500

Fig.4 Top One distance profile (Definition 3) created from a random query subsequence Q of T'. If we created
distance profiles for all possible query subsequences of 7', the element-wise minimum of this set would be the
matrix profile (Definition 4) shown at bottom. Note that the two lowest values in P are at the location of the
first motif [8,19]

Definition 2 A subsequence T; ,, of a time series T is a continuous subset of the values
from T of length m, which begin at position i. Formally, T; ,, = t;, ti41, . . ., ti+m—1, Where
1<i<n-—-m+1.

We can take a subsequence and compute its distance to all subsequences in the same time
series. This is called a distance profile.

Definition 3 A distance profile D; of time series T is a vector of the Euclidean distances
between a given query subsequence 7; ,, and each subsequence in time series 7. Formally,
D; =1[d;1,dip, ..., din—my1], where d; ; (1 < i, j < n—m+ 1)is the distance between
Timand Tj .

We assume that the distance is measured by Euclidean distance between z-normalized
subsequences [34].

We are interested in finding the nearest neighbors of all subsequences in T, as the closest
pairs of this are the classic definition of time series motifs [8,19]. Note that by definition,
the ith location of distance profile D; is zero, and it is close to zero just before and after
this location. Such matches are defined as trivial matches [19]. We avoid such matches by
ignoring an “exclusion zone” of length m /4 before and after the location of the query. In
practice, we simply set d; ; to infinity (i —m/4 < j <i + m/4) while evaluating D;.

We use a vector called matrix profile to represent the distances between all subsequences
and their nearest neighbors.

Definition 4 A matrix profile P of time series T is a vector of the Euclidean distances between
each subsequence 7; , and its nearest neighbor (i.e., the closest match) in time series 7.
Formally, P = [min(D1), min(D3), ..., min(D,_,;,+1)], where D; (1 <i <n—m+1)is
the distance profile D; of time series T .

We call this vector a matrix profile, since it could be computed by using the full distance
matrix of all pairs of subsequences in time series T, and evaluating the minimum value of
each column (although this method is naive and space-inefficient). Figure 4 illustrates both
a distance profile and a matrix profile created on the same raw time series 7 .

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

D, D, Dy
Dl d1,1 d1,2 dl,n-m+1
D 2 d2, 1 dZ, 2 L dZ, n-m+1
Dn—m+1 dn—m+l,l dnfm+l,2 dn—m+1,n—m+l
P | min(D;) | min(D,) | | min(D,ms1) |

Fig. 5 Anillustration of the relationship between the distance profile, the matrix profile and the full distance
matrix. For clarity, note that we do not actually create the full distance matrix, as this would have untenable
memory requirements

It is important to note that the full distance matrix is symmetric: D; is both the ith row
and the ith column of the full distance matrix. Figure 5 shows this more concretely.

The ith element in the matrix profile P indicates the Euclidean distance from subsequence
T; to its nearest neighbor in time series 7. However, it does not indicate the location of
that nearest neighbor. This information is recorded in a companion data structure called the
matrix profile index.

Definition 5 A matrix profile index I of time series T is a vector of integers: [=
[11, 12, . In—nz+l], where I,‘ =] ifdiyj = min(Di).

By storing the neighboring information in this manner, we can efficiently retrieve the nearest
neighbor of query T; ,, by accessing the ith element in the matrix profile index.

To briefly summarize this section, we can create two meta time series, the matrix profile
and the matrix profile index, to annotate a time series 7" with the distance and location of all
its subsequences’ nearest neighbors within 7'. As the reader may already have realized, the
smallest pair of values in the matrix profile correspond to the best motif pair by the classical
definition [8,14,19], and the corresponding values in the matrix profile index indicate the
location of the motif. Moreover, as both Mueen et al. [19] and Yeh et al. [35] argue, the top-k
motifs, range motifs, and any other reasonable variant of motifs can trivially be computed
from the information in the matrix profile, which is the focus of the remainder of this paper.

3.2 A brief review of the STAMP algorithm

The recently introduced STAMP algorithm can efficiently compute the full and exact matrix
profile and matrix profile index of a time series [35]. The STAMP algorithm essentially
evaluates the distance profile D; of a query subsequence T;, by utilizing the FFT(fast
Fourier transform) to calculate the dot product between 7; m and all of the subsequences of
the time series 7'. The overall time complexity of the algorithm is O(n2 log 1), and the space
complexity is O(n), where n is the length of time series 7. The STAMP algorithm can process
a time series with up to a million data points in tenable time. However, to solve the problems
in our motivating domain seismology, it is necessary to process even larger datasets. It would
take STAMP more than 20 years to analyze a seismology time series sampled at 20 Hz for
about 2 months, which is of length 100 million (see Table 4). In the next section, we will
show a new and fast algorithm, which can finish processing the same time series in only 4
days when it is built on top of a GPU.

@ Springer

Y. Zhu et al.

4 Algorithms

In this section, we begin by demonstrating that we can improve upon the STAMP algorithm
[35] to create the much faster STOMP algorithm. Then we demonstrate that the structure of
STOMP lends itself to porting to GPUs.

4.1 The STOMP algorithm

As explained below, STOMP is similar to STAMP [35] in that it can be viewed as highly
optimized nested loop searches with repeating calculations of distance profiles in the inner
loop. However, while STAMP must evaluate the distance profiles in a random order (to allow
its anytime behavior), STOMP performs an ordered search. By exploiting the locality of
these searches, we can reduce the time complexity by a factor of O(log n).

Before we explain the details of the algorithm, we first introduce a formula to calculate
the z-normalized Euclidean distance d;,; of two time series subsequences 7; ,, and T} ,, by
using their dot product, OT; ;:

b= /2,” (1- L) 0
' mo;o;

Here m is the subsequence length, u; is the mean of T; ,,, 1t ; is the mean of T ,,, o; is the
standard deviation of T; ;;, and o; is the standard deviation of T} .

The technique introduced in Rakthanmanon et al. [24] allows us to obtain the means
and standard deviations with O(1) time complexity; thus, the time required to compute d;_ ;
depends only on the time required to compute Q7T; ;. Here, we claim that QT; ; can also be
computed in O(1) time, once QT; 1, ;1 is known.

Note that Q7; 1 j—1 can be decomposed as the following:

m—1

OT;1j-1= Y ti-14ktj—1+4k (@)
k=0

and QT;, ; can be decomposed as the following:

m—1
OTij = Y titktjk 3
k=0

Thus we have:

OT;j = QTi—1,j—1 — ti—1lj—1 + litm—1Lj+m—1 4)

Therefore, our claim is proved.

Figure 6 visualizes the algorithm. Based on (1), we can map the distance matrix in Fig. 5
(also shown in Fig. 6.1eft) to its corresponding dot product matrix (shown in Fig. 6.right).

The arrows in Fig. 6.right show the data dependency indicated by (4): Once we have
QT;_1,j—1, we can compute QT; ; in O(1) time. However, note that (4) does not apply to the
special case wheni = 1 or j = 1 (the first row and the first column of Fig. 6.right, shown in
red). This problem is easy to solve: We can pre-compute the dot product values in these two
special cases with FFT, as shown in Table 1. Concretely, we use SlidingDotProduct(T ,,, T')

to calculate the first dot product vector: Q71 = [QT11,0T12,..., QT p—m+1] =
[0T1.1, 0721, ..., QTy—m+1,1]- The dot product vector is stored in memory and used as
needed.

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

D, dis di; dis d1met QT QTy, QT3 QT .mer
D, [52 dy3 A3 n-me1 ar,; [N am, Qs QT n.me1
D ds; s, D35 d30-me1 — ary;, [» af, QTs;3 QT3
N
Domer | Gomers | Gomerz | domess L - QTy s [NQTpmea Tomes3 Tometneme1

Fig. 6 Mapping the computation of the distance matrix (left) to the computation of its corresponding dot
product matrix (right) (color figure online)

Table 1 Calculate sliding dot product with FFT

Procedure SlidingDotProduct(Q, T)

Input: A query O, and a user provided time series 7

Output: The dot product between Q and all subsequences in 7'
n «— Length(T), m < Length(Q)

T, < Append T with n zeros

O, < Reverse(Q)

Q,a — Append Q, with 2n-m zeros

Oy — FFT(Q,), T,y FFT(T,)

OT « InverseFFT(ElementwiseMultiplication(Q,.; T,))
return QT[m:n]

~N O RN~

Table 2 STOMP algorithm

Procedure STOMP(T, m)

Input: A time series 7 and a subsequence length m

Output: Matrix profile P and the associated matrix profile index / of T
1 n «— Length(T), | < n-m+1

2 u, o «— ComputeMeanStd(T, m) // see [24]

3 QT « SlidingDotProduct(T[1:m], T), OT first — QT

4 D « CalculateDistanceProfile(QT, u, o, 1) // see (1)

5 P«— D, I+ ones // initialization

6 fori=2tol // in-order evaluation

7 Sfor j=[ldownto 2 // update dot product, see (4)
8 OT[j] < OT[j-1]-T[j-1] XT[i-1]+T[j+m-1] xT[i+m-1]
9 end for

10 OT[1] — OT first[i]

11 D « CalculateDistanceProfile(QT, u, o, i) // see (1)

12 P, I — ElementWiseMin(P, I, D, i)

13 | end for

14 | return P, I

After the first row and the first column in Fig. 6.right are computed, the rest of the dot
product matrix is evaluated row after row.

We are now in the position to introduce our STOMP algorithm in Table 2.

The algorithm begins in line 1 by computing the matrix profile length /. In line 2, the mean
and standard deviation of every subsequence in 7' are pre-calculated. Line 3 calculates the
first dot product vector QT with the algorithm in Table 1. In line 5, we initialize the matrix

@ Springer

Y. Zhu et al.

profile P and matrix profile index /. The loop in lines 6—13 calculates the distance profile of
every subsequence of T in sequential order. Lines 7-9 update QT according to (4). We update
QT(1] in line 10 with the pre-computed QT _first in line 3. Line 11 calculates distance profile
D according to (1). Finally, line 12 compares every element of P with D: if D[j] < P[j],
then P[j] = DIjl, I[j]1=1i.

The time complexity of STOMP is O(n?); thus, we have achieved a O(log n) factor
speedup over STAMP [35]. Moreover, it is clear that O(n?) is optimal for any exact motif
algorithm in the general case. The O(logn) speedup makes little difference for small datasets
and for those with just a few tens of thousands of data points [8]. However, as we consider
the datasets with millions of data points, this O(log n) factor begins to produce a very useful
order-of-magnitude speedup.

To better understand the efficiency of STOMP, it is important to clarify that the time
complexity of the classic brute-force algorithm is O(n?m). The value of m depends on the
domain, butin Sect. 5.8, we consider real-world applications where it is 2000. Most techniques
in the literature gain speedup by slightly reducing the n? factor; however, we gain speedup
by reducing the m factor to O(1). Moreover, it is important to remember that the techniques
in the literature can only reduce this n? factor if the data have a low intrinsic dimensionality
(recall Fig. 2), and the domain requires a short subsequence length. In contrast, the speedup
for STOMP is completely independent of both the structure of the data and the subsequence
length.

Despite this dramatic improvement, it still takes STOMP approximately 5-6 h to process
a time series of length one million. Can we further reduce the time?

It is important to note that the STOMP algorithm is extremely amenable to parallel com-
puting frameworks. This is not a coincidence; the algorithm was conceived with regard to
eventual hardware acceleration. Recall that the space requirement for the algorithm is only
O(n); there is no data dependency in the main inner loop of the algorithm (lines 7-9 of
Table 2), so we can update all entries of QT in parallel. The evaluation of each entry in
vectors D, P and [in lines 11 and 12 is also independent of each other. In the next section,
we will introduce a GPU-based version of STOMP, utilizing these observations to further
speed up the evaluation of the matrix profile and thus motif discovery.

4.2 Porting STOMP to a GPU framework

The Graphic Processor Unit, or GPU, is “especially well-suited to address problems that can
be expressed as data-parallel computations” [20]. It has its own memory, and it can launch
multiple threads in parallel. Here, we use the ubiquitous Single Instruction Multiple Data
(SIMD) NVIDIA CUDA architecture, where we can assign multiple threads to process the
same set of instructions on multiple data.

The threads on the GPU are managed in thread blocks. Threads in a thread block run
simultaneously, and they can cooperate with each other through shared local resources. A
CUDA function is called a kernel. When we launch a kernel, we can specify the number of
blocks and the number of threads in each block to run on GPU. For example, the NVIDIA
Tesla K80 allows launching at most 1024 threads within a block and as many as 2%% blocks
(a total of 273 threads), which is plentiful for processing a time series of length 100 million.

The GPU implementation of the STOMP algorithm in Table 2 can be decomposed into
four steps:

e CPU copies the time series to GPU global memory.
e CPU launches GPU kernels to evaluate u, o, the initial QT, D, P and I.

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

5 s

S [@ | @s | = | @nn | Qo |
“) T~
[a, | a7, | a5, | .. | af,na |
W Y Y Y Y
U d | di,l | di,z | di,3 | | di,n-m+1 |
pdate
ifSmaller ¢ \# \# \y
[o [P | P | o | Poma |

Fig. 7 Division of work among threads in the third step of GPU-STOMP

e CPU iteratively launches GPU kernels to update QT, D, P and I.
e CPU copies the final output (P and /) from GPU.

In the first step, the CPU copies time series T (input vector of Table 2) to the global memory of
GPU. The time used to copy a time series of length 100 million takes less than a second. Note
that in order to run the STOMP algorithm, we need to allocate space to store eight vectors in
the GPU global memory: T, u, o, QT, QT first, D, P and I. A double-precision time series
of length 100 million is approximately 0.8 GB, so the algorithm utilizes approximately 6.4
GB global memory space. This is feasible for NVIDIA Tesla K40 and K80 cards; however,
if the device used has less memory space available, we can split the time series into small
sections and evaluate one section at a time with the GPU.

In the second step, the CPU launches GPU kernels to evaluate the vectors in parallel.
The mean and standard deviation vectors in line 2 of Table 2 can be efficiently evaluated by
CUDA Thrust [20]. The first QT vector in line 3 can be evaluated in parallel by applying
CUFFT, the NVIDIA CUDA fast Fourier transform [21] to the SlidingDotProduct func-
tion in Table 1. We assign a total of n — m+1 threads to evaluate Q7 _first, D, P and [
in lines 3-5 in parallel. The jth thread processes the jth entry of these vectors one by
one.

Now that we have initialized QT, D, P, and I, we update them iteratively. In the third
step, the CPU runs the outer loop in lines 613 of Table 2 iteratively. In every iteration, the
CPU launches a GPU kernel with n — m + 1 threads, parallelizing the evaluation of OT,
D, P, and I. As shown in Fig. 7, the first thread reads Q7[1] from the pre-computed QT _first
vector, while the second to the last threads evaluate their corresponding entry of Q7 using
4).

Note that in contrast to the CPU STOMP algorithm, which uses only one vector QT to
store both QT;_; and QT;, here we use two vectors to separate them. This is necessary
because as the threads evaluate entries in QT in parallel, we need to avoid writing entries
before they are read. A simple and efficient way to accomplish this is to create two vectors,
OT odd and QT_even. When the outer loop variable i in line 6 is even, the threads read from
QT _odd and write to QT _even; when i is odd, the threads read data from QT _even and write
to QT _odd. Following this, the threads evaluate D with (1), and the jth thread updates P and
1if D[j] < P[j].

When all of the iterations are complete, we have reached the last step of GPU-STOMP,
where the CPU copies P and I back to the system memory.

@ Springer

Y. Zhu et al.

4.3 Further parallelizing STOMP with multiple GPUs

The parallelization scheme above is suitable if we only have one GPU device. Can we further
reduce the processing time if there are two or more GPUs available?

Thus far, we have been using CPU to iteratively control the outer loop of the STOMP
algorithm in Table 2. We start by computing the first distance profile (the first row) in Fig. 5
and its corresponding QT vector. Then in each iteration, we compute a new row of the distance
matrix in Fig. 5 and maintain the minimum-so-far values of each column in vector P. When
the iteration is complete, P becomes the exact matrix profile.

This outer loop computation can be further parallelized. Assume we have k independent
GPU devices, and we also have (n —m + 1)/ k = g. We can then divide the distance matrix
in Fig. 5 into k sections: device 1 evaluates the first to the gth rows, device 2 evaluates
the (¢ + 1)th to the (2¢)th rows, etc. Essentially, device k uses the parallelized version of
SlidingDotProduct function in Table 1 to calculate QT —1)+1 and Dyx—1)+1, and then it
evaluates the following ¢ — 1 rows iteratively. The k devices can run in parallel, and after
the evaluation completes, we can simply find the minimum among all the k matrix profile
outputs. In summary, we can achieve a k-times speedup by using k identical GPU devices.

By porting all the introduced techniques to NVIDIA Tesla K80, which contains two GPU
devices on the same unit, we are able to obtain the matrix profile and matrix profile index
of a seismology time series of length 100 million within 19 days. Are there any further
optimizations left?

4.4 A technique to further accelerate GPU-STOMP

Figure 7 shows the process to compute the ith row of the distance matrix in Fig. 5 by
n —m + 1 parallel threads. Recall that the distance matrix is symmetric; half of the distance
computations can be saved if we only evaluate the ith to the last columns. We show this
strategy in Fig. 8.top.

However, note that it is desirable to maintain the O(n) space complexity of our algo-
rithm; if we move on to the (i+1)th row Fig. 5 without further processing, then P, =
min(dy i, d2,; ..., d;;),and it would no longer be updated. To correct this, it is necessary to
launch another kernel after Fig. 8.7op is completed. The new kernel is shown in Fig. 8.bottom.

Essentially, we have used an analogous reduction technique as in Harris [10] to obtain
dmin = min(d; j+1,d;i+2, ..., di m+n—1), Which also is equivalent to min(d;+1,i, di+2.i,
<oy dy—pm+1,i) as a result of symmetry. If dmin < Pi, we set P; = dpin, S0 P; = min(D;).
Although itis necessary to launch an additional kernel to process each row, which will require
extra time, the extra time is still less than what is saved when handling large time series.

For example, this new technique reduced the time to process a time series of length 100
million from 19 days to approximately 12 days on NVIDIA Tesla K80. This indicates that it
is possible to finish five quadrillion pairwise comparison of subsequences within 12 days.

Note that fewer and fewer threads are being launched in each iteration. To apply this
new technique to multiple GPUs, it is necessary to ensure that each GPU is loaded with
similar amount of work, so they will finish in similar time. Here, for NVIDIA Tesla K80, we
computed the first (n —m + 1)(1 — 1/ \/E) distance profiles with the first GPU and the last
n—m+1)/ /2 distance profiles with the second GPU.

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

First Kernel Launch: Update P;to P, .,

g g

[Qo [ary, [o | QTunn | QTipma |

See (4) T s o~
[ar, | anu | - | Qlma |

See (1) ¢ ¢ ¢
| di,i | di,i+1 | | di,n-m+1 |

Update if Smaller \y v v
P | P [| Prma |

Second Kernel Launch: Evaluate Final Value of P;

| di,/'+1 | d/',i+2 | | di,n—m+l |
N J
Y min

Updateif Smaller

Fig. 8 Modifying the third step of GPU-STOMP. Top Launch only n — m — i + 2 threads (instead of the
n —m + 1 threads in Fig. 7) this time at the ith iteration. Bottom Launch another kernel to evaluate the final
value of P;

4.5 A final optimization: breaking the ten quadrillion pairwise comparison
barrier

In the last section, we demonstrated a technique to use parallel threads to evaluate the rows
of the distance matrix in Fig. 5 iteratively. Note that to compute one row, the technique
needs to launch two kernels, all threads need to be synchronized following the evaluation,
and the corresponding QT vector needs to be updated in GPU global memory. As there are
n —m + 1 rows in Fig. 5, when n becomes large, the time cost for kernel launch, and the
thread synchronization and memory writing become nontrivial.

As impressive as the results are in the last section, which breaks the 5 quadrillion pairwise
comparison barrier, there is one more optimization we can perform to further speed up the
GPU code. We denote this optimized version GPU-STOMPgpt. To help the reader better
understand how the GPU-STOMPopt works, we will first show our initial optimization
scheme in Fig. 9 and then further refine it in Figs. 10 and 11.

Figure 9 shows our key scheme to save the kernel launch and thread synchronization time:
Instead of launching a kernel for every single row in Fig. 5, we issue only one single kernel to
generate the entire matrix profile. Note that based on the one-to-one correspondence between
d; j and QT; ; (as shown in (1)), we can convert the symmetric distance matrix computation
into Fig. 9, where we evaluate the upper-right half of the dot product matrix. Since the value
of QT;, ; is only dependent on QT;_; ;| (according to [4]), the computation of each diagonal
in Fig. 9 is independent of any other diagonal. Thus, we assign n — m + 1 threads to compute
these diagonals in parallel.

@ Springer

Y. Zhu et al.

[an, | an. | - | QLppa | Qow | QTinma |
ar,, | arn; | [annrn | QLoma |
QT33 | QT3’4 | | QT_?,n—mﬂ |

| QTn-m,n-m | QTn-m,n-mﬂ |

QTn—m+1,n—m+1

Fig. 9 An optimization scheme for the third step of GPU-STOMP. We only need to launch one kernel to
evaluate all the rows of the distance matrix in Fig. 5

32 bit 32 bit
A A
{ N/ \

| P; l;

Fig. 10 We reduced the matrix profile to 32 bits and then combined each matrix profile entry and its corre-
sponding matrix profile index entry into a double-precision value to allow fast atomic updates

Once we obtain QT; ; , we can easily evaluate d; ; based on (1). Then we examine two
elements of the matrix profile: If d; ; < P;, we set P; = d; ;; and if d; ; < Pj, we set
P; = d; j. Note that as each thread in Fig. 9 operates independently, multiple threads may
attempt to update the same entry of the matrix profile at the same time. We need to use
CUDA atomic operations to organize this. Essentially, we set a lock for each entry of the
matrix profile. When multiple threads try to update the same matrix profile entry, they line
up to get the lock and perform an atomic Min operation in order. The reader may doubt that
this can result in a significant cost of time, as it is possible that all threads can be lining up to
update the same single matrix profile entry. However, in practice, we find that a large portion
of these atomic operations can be pruned from the calculation.

Assume we have twenty atomic operations lined up to update a matrix profile entry, which
has an initial value of 6.81, with the following distance values in order:

0.6, 4.46, 1.99, 6.98, 2.29, 2.95, 7.05, 1.47, 6.04, 2.72, 2.31, 3.2, 6.25, 9.33, 0.27, 2.62,
2.00,2.74, 6.67, 2.34.

Since the matrix profile entry keeps track of the minimum distance value, only two updates
would be executed: 0.6 and 0.27, that is, only 10% of this short sequence of data. Now let us
randomly shuffle the data:

7.05,2.29, 1.47, 0.27, 2.74, 2.95, 9.33, 2.34, 4.46, 2.00, 6.04, 2.72, 2.31, 3.2, 6.25, 6.98,
0.6, 2.62, 1.99, 6.67.

This time three updates would be executed: 2.29, 1.47, 0.27, that is, only 15% of the data;
so again, it is only a small portion.

Note that our toy example here is a very short data sequence. In practice, for most time
series only less than 0.1% distance values end up smaller than their corresponding matrix

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

P8 TPB TPB TPB
~ lock 4] .
AN block 3 TPB+1 AN
N N
N block 2 A synchronize threads
Jblock 1 N
N
N ~
N N
N N
N <
N N
N \
N N
N N
N
N Ar—
N S
N N
N N
N N
N \
(a) (b)
QTW. | QT/,/»J | | QTf,jWPBrx |

QTi1ju1

QTis02

Qi1 ji1p8

QTizjez

QTiuzjus

| Qtiis jurpaea |

———

| QT,y178 4708 | QT 198 j41p841 |

| QT1p8 4247781 |

(©)

Fig. 11 a Each thread block evaluates one meta diagonal of the distance matrix. b The parallelograms in a
meta diagonal are evaluated iteratively by a thread block. ¢ The threads in a block evaluate diagonals of a
parallelogram in parallel

profile elements. For example, for a random walk time series of length one million, we
executed on average only 39 atomic calls for each matrix profile entry; more than 99.996%
of the atomic operations are pruned.

By implementing the optimization scheme shown in Fig. 9, we have obtained about 3X
speedup over GPU-STOMP for medium-size time series (i.e., with less than 4 million data
points). However, as the time series gets even longer, less speedup is observed, as the time
spent on atomic operations and global memory writes become nontrivial.

To solve this, we use two strategies to refine our optimization scheme in Fig. 9.

The first strategy aims to accelerate each atomic write. As stated previously, multiple
independent threads can be attempting to update the matrix profile at the same time, so we
are using CUDA atomic Min operation to organize them. Note that when a matrix profile
entry (which is a 64-bit double-precision value) is updated, the corresponding matrix profile
index value (a 32-bit integer value) also needs to be updated. However, currently CUDA only
supports atomic operations on either one single 32-bit value or one single 64-bit value. To
tackle this, we initially set a lock on every entry of the matrix profile and used a critical section
to update both the matrix profile entry and the matrix profile index value when a thread gets
the lock; however, this solution is not scalable with longer time series inputs. As a result, we
turned to a better solution as shown in Fig. 10. Instead of using a time-consuming critical
section, we lower the precision of the matrix profile to 32 bits. We then combine the matrix
profile and the matrix profile index into one double-precision vector in the global memory
that can be atomically updated. For the ith entry of the double-precision vector, 32 bits are

@ Springer

Y. Zhu et al.

used to store the ith matrix profile value, and another 32 bits are used to store the ith matrix
profile index.

This refinement strategy largely accelerated the speed for atomic operations. Note that the
strategy will not result in large precision loss, as only the precision of the output is reduced;
we are still using 64 bits to store all the intermediate results during the evaluation process.

The second strategy is to utilize the CUDA shared memory to ease the contention for
global memory writes. The strategy, as shown in Fig. 11, can be viewed as 2-level hierarchy
of Fig. 9. Here we define TPB as the number of threads per block on CUDA.

Different from Fig. 9, in which each thread evaluates one single diagonal of the distance
matrix, here we divide the distance matrix into kmeta diagonals (as shown in Fig. 11.a, a meta
diagonal consists of TPB diagonals of the distance matrix; (k — 1) x TPB <n—m+1 <
k x T PB). Each meta diagonal is evaluated by one CUDA thread block. As shown in
Fig. 11.b, the thread block evaluates one parallelogram at a time, managing a local copy of
the matrix profile in the shared memory. The threads in a block (shown in Fig. 11.c) work very
similarly as those in Fig. 9, except that they atomically update the shared memory instead of
the global memory. After a parallelogram (Fig. 11.b) is evaluated, all the threads in the block
are synchronized. If any value in the shared memory is smaller than its corresponding entry
in the global memory, the global memory is updated.

With this refinement strategy, the contention of atomic updates in Fig. 9 is largely relieved.
The original scheme in Fig. 9 allowed a global memory location to be visited by all active
threads in all the thread blocks [which can be as many as (n —m + 1) threads] simultaneously.
In contrast, with the refined scheme in Fig. 11, the number of threads racing for a shared
memory location cannot be larger than 7PB, and a global memory location cannot receive
more than & atomic update requests at the same time. This brings about a large performance
gain.

Similar to GPU-STOMP, GPU-STOMPopt can easily be adapted to multiple GPUs as
well. For example, to evenly divide the work for an NVIDIA Tesla K80, we compute the odd
(first, third, fifth, etc., from the left) meta diagonals in Fig. 11.a with the first GPU, and the
even (second, fourth, sixth, etc., from the left) meta diagonals in Fig. 11.a with the second
GPU.

With all the optimization strategies, GPU-STOMPopt achieved more than 2X speedup
over GPU-STOMP for large datasets. Concretely, it further reduces the time to process a time
series of length 100 million from 12 days to about 4 days on NVIDIA Tesla K80. Furthermore,
for the first time in the literature, we are able to process a time series of length 143 million,
which is slightly more than ten quadrillion pairwise comparison of subsequences, within just
9 days.

5 Empirical evaluation

Although some parts of our experiments require access to a GPU, we have designed them
so they can be reproduced easily. To allow for the reproduction of our experiments, we have
constructed a webpage [22], which contains all datasets and code used in this work. We
begin with a careful comparison to STAMP, which is obviously the closest competitor, and
we consider more general rival methods later.

Unless otherwise noted, we used an Intel i7@4 GHz PC with 4 cores to evaluate all the
CPU-based algorithms; we used a server with two Intel Xeon E5-2620@2.4 GHz cores and
an NVIDIA Tesla K80 GPU to evaluate GPU-STOMP.

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

Table 3 Time required for motif discovery with m = 256, varying n, for the three algorithms under consid-
eration

Algorithm Value of n

217 2]8 2]9 220 22]
STAMP 15.1 min 1.17h 54h 24.4h 4.2 days
STOMP 4.21 min 0.3h 1.26 h 5.22h 0.87 days
GPU-STOMP 10s 18s 46's 2.5 min 9.25 min

Table 4 Time required for motif discovery with various m and various n, for the three algorithms under
consideration

Algorithm mln

2000 | 17,279,800 400 | 100,000,000
STAMP (estimated) 36.5 weeks 25.5 years
STOMP (estimated) 8.4 weeks 5.4 years
GPU-STOMP (actual) 9.27h 12.13 days

5.1 STAMP versus STOMP

We begin by demonstrating that STOMP is faster than STAMP, and also that this difference
grows as we consider increasingly large datasets. Furthermore, we measure the gains made
by using GPU-STOMP. In Table 3, we measure the performance of the three algorithms on
increasingly long random walk time series with a fixed subsequence length 256.

Note that we choose m’s length as a power-of-two only to offer the best case for (the
FFT-based) STAMP:; our algorithm is agnostic to such issues.

A recent paper on finding motifs in seismograph datasets also considers a dataset of about
219 in length and reports taking 1.6 h, which is approximately the same time it takes STOMP
[36]. However, their method is probabilistic and allows false negatives (twelve of which were
actually observed, after checking against the results of a 9.5 day brute-force search [36]).
Moreover, it requires careful tuning of several parameters, and it does not lend itself to GPU
implementation.

We wish to consider the scalability of even larger datasets with GPU-STOMP. However, in
order to do so, we must estimate the time it takes the other two other algorithms. Fortunately,
both of the other algorithms allow for an approximate prediction of the time needed, given the
data length . To obtain the estimated time, we evaluated only the first 100 distance profiles
of both STAMP and STOMP and multiplied the time used by (n —m + 1) /100. In Table 4, we
consider even larger datasets, one of which reflects the data used in a case study in Sect. 5.4.

Note that the 100-million-length dataset is one hundred times larger than the largest motif
search in the literature [14].

In all three algorithms under consideration, the time required is independent of the sub-
sequence length m, which is desirable. This is demonstrated in Table 5, where we measure
the time required with n fixed to 2!7, for increasing m.

Note that the time required for the longer subsequences is slightly shorter. This is true
since the number of pairs that must be considered for a time series join [35] is (n — m + 1),
so as m becomes larger, the number of comparisons becomes slightly smaller.

@ Springer

Y. Zhu et al.

Table 5 Time required for motif discovery with n = 217, varying m, for the three algorithms under consid-
eration

Algorithm Value of m

64 128 256 512 1024
STAMP 15.1 min 15.1 min 15.1 min 15.0 min 14.5 min
STOMP 4.23 min 4.33 min 4.21 min 4.23 min 2.92 min
GPU-STOMP 10s 10s 10s 10s 10s

5.2 GPU-STOMPgqprt breaks the ten quadrillion pairwise comparison barrier

In Table 6, we measure the performance of STAMP, STOMP, GPU-STOMP, and GPU-
STOMPoprt on increasingly long random walk time series with a fixed subsequence length
256. The italic values are duplicated from Table 3, but they are included for comparison.
Note that while some numbers are estimated, as explained in the next section, we can predict
the time and memory requirement of STAMP and STOMP very precisely (with less than 5%
error) for large datasets.

We note in passing that this experiment on a time series of length 143 million is the largest
time series ever searched for exact motifs. Moreover, we are confident that this is the first
time ten quadrillion pairwise comparisons have been made on a single dataset, in any context.

The time required for GPU-based algorithms can be divided into two parts. The first
part includes the data reading time and computation time; the second part includes the time
needed for kernel launch, data synchronization and memory writes. GPU-STOMP and GPU-
STOMPopr spent the same time in the first part. To further compare the effectiveness of the
two methods, in Table 7 we measure their run time in the second part.

We can wee that GPU-STOMPgpt achieved more than 4X speedup over GPU-STOMP
in the second part for large datasets.

5.3 STOMP versus state-of-the-art motif discovery algorithms

Beyond the independence of the subsequence length demonstrated in Table 5, all three matrix
profile-based algorithms are also independent of the intrinsic dimensionality of the data,
which is also desirable. To demonstrate this, we will compare the recently introduced Quick-
Motif framework [14] and the more widely known MK algorithm [19]. The Quick-Motif
method was the first technique to perform an exact motif search on one million subsequences.

To level the playing field, we do not avail of GPU acceleration, but instead, we use the
identical hardware (a PC with Intel i7-2600@3.40 GHz) and programming languages for all
algorithms. Note that for a fair comparison with STAMP [35], which is written in MATLAB,
in Sect. 5.1, we measured the performance of STOMP based on its MATLAB implementation.
However, because the two rival methods in this section (Quick-Motif and MK) are written
in C/C++, here we measure the runtime of (the CPU version of) STOMP based on its C++
implementation.

We use the original author’s executables [23] to evaluate the runtime of both MK and
Quick-Motif. The reader may wonder why the experiments here are less ambitious than in
the previous sections. The reason is that beyond time considerations, the rival methods have
severe memory requirements. For example, for a seismology data with m = 200, n = 2'8,
we measured the Quick-Motif memory footprint as large as 1.42 GB. In contrast, STOMP

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

sKep €€°6 sKep 16y yece U €6'c S ov SLI S6 S8 WogNOLS-NdD

(parewnsa) sAep G¢ sKep ¢1°C1 ULT6 un ¢z'6 un ¢°g S or S8I S01 dINOLS-NdD

(parewnso) s1eak 60 (pareumnso) sxeak g (parewnsa) syoam g s4vp £8°0 yees YTl yeo un j ' dINOLS

(parewnso) seak 7'1¢ (parewnso) s1eak 66 (paRWNSI) $HPIM C'9E sdop 7't Ypre yys ysrl u [°¢J dNVLS
000°000°¢t 1 000°000°001 008°6LT LI 12¢ 0z¢ 61¢ g1¢ 11¢

U JO AN[BA wiyLody

UOTBISPISUOD IOPUN SWIILIOS[E IN0J oY) J0J ‘U SUIATeA ‘9G7 = w4 Y)IM ATIAODISIP Jriowr J0J parmbar owi], 9 Jqey,

pringer

Qs

Y. Zhu et al.

Table 7 Time required for kernel launch, data synchronization and memory writes with m = 256, varying
n, for the two GPU-based algorithms

Algorithm Value of n

218 219 220 221 17,279,800 100,000,000
GPU-STOMP 17 s 41s 2.2 min 8.17 min 8.04 h 10.39 days
GPU-STOMPgp 8s 12s 32s 1.85 min 2.06 h 2.77 days

Table 8 Time required for motif discovery with n = 218, varying m, for various algorithms

Algorithm m

512 1024 2048 4096
STOMP 501 s (14 MB) 506 s (14 MB) 490 s (14 MB) 490 s (14 MB)
Quick-Motif 27 s (65 MB) 151 s (90 MB) 630 s (295 MB) 695 s (101 MB)
MK 2040 s (1.1 GB) N/A (>2 GB) N/A (>2 GB) N/A (>2 GB)

requires only 14 MB memory for the same data, which is less than 1/100 of this. If this ratio
linearly interpolates, Quick-Motif would need more than 1/2 terabyte of main memory to
tackle the one hundred million benchmark, which is infeasible. Moreover, for Quick-Motif, it
is possible that a different dataset of the same size could require a larger or smaller footprint.
In contrast, the space required for STOMP is independent of both the structure of data and
the subsequence length.

This severe memory requirement makes it impossible to compare the STOMP algorithm
with Quick-Motif on the seismology data, since Quick-Motif often crashed with an out-of-
memory error as we varied the value of m. However, we noticed that the memory footprint
for Quick-Motif tends to be much smaller with smooth data. Therefore, instead of comparing
performance of the algorithms on seismology data, in Table 8, we utilized the much smoother
ECG dataset (used in Rakthanmanon et al. [24]), which is an ideal dataset for both MK and
Quick-Motif to achieve their best performance.

Clearly, both the runtime and memory requirement for STOMP are independent of the
subsequence length. In contrast, Quick-Motif and MK both poorly scale in subsequence
length in both runtime and memory usage. Note that the memory requirement of Quick-
Motif is not monotonic in m, as reducing m from 4096 to 2048 requires three times as much
memory. This is not a flaw in implementation (we used the author’s own code), but a property
of the algorithm itself.

As indicated in Fig. 2, the Quick-Motif algorithm [14], the MK algorithm [19], and the
original motif discovery by projection algorithm [8] can all be fast in the best case. For
example, if there happens to be a perfect (zero Euclidean distance) motif in the dataset, they
will all discover it with O(n) work (with high constants), and all algorithms can use this
zero-valued best-so-far to prune all other possibilities for motif pairs. While we generally
do not expect to have a zero-distance motif in real-valued data, a very close motif pair in a
dataset with low intrinsic dimensionality (recall Fig. 2) can offer similar speedups. However,
that describes the best case for all three algorithms. Consider instead the worst case (for
example, the input signal is white noise, and all subsequences are effectively equidistant from
each other), all three rival algorithms degenerate to O(mn?) (again, with high constants). In
contrast, STOMP is unique in that its best case and worse case are identical, just O(nz).

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

Because m can be as large as 2000 (see Fig. 12), this can produce a significant speedup.
Moreover, as we will show in the next two sections, STOMP computes much more useful
information than the two rival methods.

Before demonstrating this, we show that the experiments in the previous table were spu-
rious for STOMP. We do not need to measure its time or memory footprint, because we can
predict it precisely. To the best of our knowledge, this property is unique among all motif
discovery algorithms proposed in the literature [8,14,19].

For STOMP (assuming only that m < n), given only n, we can predict how long the
algorithm will take to terminate and how much memory it will consume, which is completely
independent of the value of m and the data.

To do this, we need to do a single calibration run on the machine in question. With a time
series of length n, we measure T, the time taken to compute the matrix profile, and M, the
(maximum) amount of memory consumed. Then, for any new length 7y, Wwe can compute
Trequired, the time needed as the following:

2
Trequired = ; X Npew 5)

and we can compute Mequired the memory needed as the following:

M
Mrequired = 7 X Npew (6)

As long as we avoid trivial cases, such as m ~ n, npeyw is very small or n is very small, and
this formula will predict the resources needed with an error of less than 5%. To demonstrate
this, we performed the following experiment. On our machine (a PC with Intel i7-2600 @3.40
GHz) we ran STOMP (MATLAB version) on a random walk dataset of size 218, measuring
the resources consumed. Then, as shown in Table 9, we use the formulas above to predict the
resources needed to compute the matrix profile for datasets of size {2'8, 219,220, 221} Then
we measured these values with actual experiments on random walk data. From Table 9, the
agreement between our predictions and the observed values is clear.

This property has several desirable implications: We can carefully plan resources when
performing analytics on large data archives; we can easily divide the work to parallel com-
puting resources to finish our task in time; and we can show a perfectly accurate “progress
bar” to a user who is using STOMP interactively.

5.4 Case studies in seismology: infrequent earthquake case

To allow confirmation of the correctness and utility of STOMP, we begin by considering a
dataset for which we know the result from external sources. On April 30, 1996, there was
an earthquake of magnitude 2.12 in Sonoma County, California.> Then on December 29,
2009, about 13.6 years later, there was another earthquake with a similar magnitude. We
concatenated the two full days in question to create a single time series of length 17,279,800
(see Table 4 for timing results) and examined the top motifs with m = 2000 (20 s). Note that
we are using the raw data as provided to us by the seismologists, we are not preprocessing it
in anyway. As Fig. 12.7op illustrates, the top motif here is not an earthquake but an unusual
sensor artifact [11].

There are a handful of other such artifacts; however, as shown in Fig. 12.bottom, the fifth
best motif is the two occurrences of the earthquake. These misleading sensor artifacts are

2 A small earthquake of that magnitude would only be felt by attentive humans in the immediate vicinity of
the epicenter.

@ Springer

Y. Zhu et al.

(%8°0) %€ (%8°0) %€ (%0) % S0 (9%0) %0 10110 9ANR[IY

(4N 0F7) Ut 91| (4N 0T1) Ut $0g (4N 09) Ut 0°9. (4N 0¢) Ut (61 parpard (Arowaw) swm JINOLS

(4N ¢pQ) Ut 8°76T 1 (N 12T) U ' ¢1¢ (4N 09) Ut 9°g/, (4N 0€) Ut 0°61 paanseaw (Arowewr) dw JINOLS
12¢ 0z¢ 61¢ g1¢

u SA2INOSAY

u SukreA ‘96z = w YIm JINOLS 10J parmbair L1owow pue swil], ¢ dqeL

pringer

as

Exploiting a novel algorithm and GPUs to break the ten...

i
-

2009

1996, 1D:30104990

2009, ID:371327705

0 1000 2000 3000

Fig. 12 Motifs (colored) shown in context (gray). Top The top motif discovered in the Sonoma County dataset
is a sensor artifact, as are the next three motifs (not shown). Bottom The fifth motif is two true occurrences of
an earthquake that happen 4992 days apart (color figure online)

common, but they could be eliminated easily [11]. For example, the sensors could have a
zero crossing rate that is an order of magnitude lower than true earthquakes.

This example allows us to demonstrate yet another advantage of STOMP over rival meth-
ods. All the existing rival techniques can be expanded from top-1 motif discovery to top-k
motif discovery; however, increasing k by a modest amount will significantly degrade their
speed.

Furthermore, consider again the example in Fig. 12. It is not possible to have known the
“magic” value of k = 5 beforehand. If k was set to a large value to “be on the safe side,”
say k = 10, then all existing techniques would slow down because the best-so-far lower
bound that prunes unnecessary computations would be much looser. If we set k as a more
conservative value, say k = 3, then we would miss the most valuable information in this
seismology dataset. You might imagine that the rival methods could slowly increase from k
to k + 1 based on the user’s lack of satisfaction with the k motifs she has examined thus far;
however, each adjustment of k will require all existing techniques to perform significant extra
computation, even if they have cached the results of every calculation they have performed.

In contrast, the time needed for STOMP is completely independent of k. We only need to
run STOMP once; as the matrix profile obtained already contains all necessary information,
and it takes minimal additional effort to find the top k& motif, no matter how large k is.

5.5 Parameter settings

As we have previously noted, STOMP (together with STAMP) is unique among motif dis-
covery algorithms because it is parameter-free. In contrast, Random Projection [8] has four
parameters, Quick-Motif [14] has three parameters, Tree-Motif has four parameters [33],
MK [19] has one parameter, and FAST has three parameters [36].

That being said, the reader may wonder about the only input value besides the time series
of interest: the subsequence length m. Note that this is also a required input for all the other
existing techniques. However, we do not consider m to be a true parameter, as it is a user
choice, reflecting her prior knowledge of the domain. Nevertheless, it is interesting to ask how
sensitive motif discovery is to this choice; at least in the seismology domain that motivates us.

@ Springer

Y. Zhu et al.

raw seismograph data

wlt i m) i | b
THI " U i " L Ly

matrix profiles

s ‘\um‘mmww A SIS | T

Omin 30min

Fig. 13 Top Thirty minutes of seismograph data that has the two earthquakes from Fig. 12.bottom occur at 6
min 40 s and 20 min. Bottom The matrix profile computed if we use the suggested subsequence length 2000
(blue), or if we use twice the length (red), or half that length (green) (color figure online)

l_Y__, 38 secon_ds

1st February 2006 1:52am

1:45am

Fig. 14 The matrix profile of a seven-minute snippet from a seismograph recording at Mount St. Helens

To test this, we edited the data above such that the two earthquakes in Fig. 12.bottom
happen exactly 13 min 20 s apart. We reran motif discovery with m = 2000 (20 s), with
double that length (m = 4000), and with half that length (m = 1000). Figure 13 shows the
result.

The results are reassuring. At least for earthquakes, motif discovery is not sensitive to the
user input. Even a poor guess as to the best value for m, it will likely give accurate results.

5.6 Case studies in seismology: earthquake swarm case

In the previous section, we discovered a repeating earthquake source that has a frequency of
about once per 13.6 years. Here, we consider earthquakes that are tens of millions of times
more frequent.

Forecasting volcanic eruptions is of critical importance in many parts of the world [30].
For example, on May 18, 1980, Mount St. Helens had a paroxysmal eruption that killed 57
people [13]. It is conjectured that explosive eruptions are commonly preceded by elevated or
accelerated gas emissions and seismicity; thus, seismology is a major tool for both monitoring
and predicting such events.

In Fig. 14, we illustrate a short section of the matrix profile of a seismograph recording at
Mount St Helens. It is important to restate that this is not the raw seismograph data, but it is
the matrix profile that STOMP computed from it.

The image demonstrates a stunning regularity. Repeated earthquakes are occurring approx-
imately once every 38 s. This is consistent with the findings of a team from the US Geological
Survey who reported that the earthquakes, which accompanied a dome-building eruption,
appeared “... so regularly that we dubbed them ‘drumbeats’. The period between successive
drumbeats shifted slowly with time, but was 30-300 s [13].

This example shows a significant advantage of our approach that we share with STAMP
but no other motif discovery algorithm. Instead of computing only O(1) distance values for

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

the top k motifs, STOMP is computing all O(n) distances from every subsequence to their
nearest neighbors. By plotting the entire matrix profile, gain unexpected insights by viewing
the motifs in context. For example, in the example above, we can see both the surprising
periodicity of the earthquakes, and by comparing the smallest values in the matrix profile
with the mean or maximum values, we can get a sense of how well the motifs are conserved
relative to “chance” occurrences. It could also potentially indicate whether there were changes
to the earthquake source, reflecting changes in eruptive behavior over time.

A recent paper performed a similar analysis on the Mount Rainier volcano, making the
interesting and unexpected discovery that the frequency of earthquakes is correlated with
snowfall [2]. However, the paper bemoans at the number of ad hoc “hacks” that needed to
make such an exploration tenable. For example, “In order to save on computing time, we
cut out detections that are unlikely to contain a repeating earthquake event by excluding
events with a signal width”, and “To save on computing time, we define that in order to be
detected...”, etc. [2]. However, the results in Table 4 indicate that we could bypass these
issues by spending a few hours computing the full exact answers. This would eliminate the
risk that some speedup “trick” erases an interesting and unexpected pattern.

5.7 Case studies in seismology: detection of repeated low-frequency earthquakes

In the previous sections, we showed how STOMP could help us detect repeating earthquake
sources by evaluating the matrix profile of a single seismograph recording time series. Here
we show that by providing the matrix profiles of multiple seismograph recording time series,
STOMP allows us to detect low-frequency earthquakes (LFEs). LFEs are of great impor-
tance to the seismology community, as they could “potentially contribute to seismic hazard
forecasting by providing a new means to monitor slow slip at depth” [26]. LFEs recur episod-
ically, often during bursts of tectonic “tremor,” which are considered superpositions of many
LFEs in a short period of elevated seismic activity [27]. One traditional approach known
as “matched filtering” identifies repeated LFEs by evaluating the cross-correlation between
continuous waveform data (time series) and a template waveform (subsequence) (e.g., [28]).
However, this requires a suitable, carefully recorded template waveform of an LFE (an LFE
subsequence) to have been identified in advance, which is very difficult or even impossible in
many cases. In the face of this, similarity—join search through autocorrelation (e.g., [6]) has
been used to detect LFEs in several studies. However, the traditional similarity—join search
approach is computationally intensive (typically only one hour or less of continuously wave-
form data can be searched in feasible time), severely limiting the number and range of LFEs
that can be detected.

Consider an example of LFE detection along the central San Andreas fault near Parkfield,
CA. We search for LFEs in waveform data from a tremor burst that occurred on October,
6, 2007, in which many LFEs were detected by matched filtering [28]. As before, note that
we are using the raw data as provided to us by the seismologists, we are not preprocessing
it in anyway. The LFE template (subsequence) in Shelly et al. [28] was found by careful
visual examination of seismic recording from multiple temporary seismic stations located
close to the source (the green triangles in Fig. 15; temporary stations were set up near a
well-known earthquake source in this area) and subsequently also identified on more distant,
permanent High Resolution Seismic Network (HRSN, the red triangles). Note that our task
here is to detect all the LFEs automatically, and the only data available are those from the
HRSN stations (the red triangles in Fig. 15), since in most applications we do not know the
earthquake source location (thus the data from the temporary stations) until well after the
event.

@ Springer

Y. Zhu et al.

Only data from HRSN stations are
available. When an LFE occurs, it

Data from these stations should be detected by the three
are not available stations at a similar time.
Temporary Stations Station 1 Station 2 Station 3

Earthquake source

Fig. 15 LFEs can be detected from the seismograph recording of HRSN stations

L J
0 24 hrs

Fig. 16 The sum of three matrix profiles of the 24-hour seismograph recording at three HRSN stations near
the central San Andreas fault

Apart from the lack of the temporary station data, what makes our task even more difficult
is that the data from HRSN stations are noisy and many contain a lot of false positives. For
example, the top 15 motifs (repeating templates) found from the data of an HRSN station
near central San Andreas fault are either sensor artifacts (similar to Fig. 12) or instrument
noise in the station itself. However, in spite of all these difficulties, we will demonstrate that
STOMP allows us to detect LTEs from long seismic recordings.

We ran GPU-STOMPgopt on the seismic recording time series from three HRSN stations
for a 24-hour period spanning the tremor burst. The three HRSN stations are located close to
each other. The data were sampled at 20 Hz, for a total of ~1.7 million samples per station
time series. Figure 16 shows the sum of the three matrix profiles obtained.

The reader may wonder why we are summing the three matrix profiles here. This simple
step greatly reduces the false positives in the data. As the three HRSN stations are located
close to each other, when an LFE occurs, the stations should detect it at a similar time. As
a result, the matrix profile values of the three stations should all be low at the occurrence
of the LFE. The sum of the matrix profiles shows low values at such time instants, which
strengthens the LFE signal and thus weakens the false positives, which are local to each
sensor. We discovered that the top seven motifs identified in this way were either glitches
in the waveform data (sensor artifacts, again, recall Fig. 12), or signals that could not be
separated into individual LFEs; however, as shown in Fig. 17, the 8th best motif showed

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

- J

0 40s

Fig. 17 The 40-second LFE snippet detected from the three HRSN station time series

Y-axis magnetometry

514,000 524,000

Fig. 18 Left The Magellanic penguin is a strong swimmer. Right A four-minute snippet of the full dataset
reveals high levels of noise and no obvious structure

strong characteristics, in terms of frequency content, waveform shape and duration, of an
LFE, and the origin time of this LFE is consistent with the results in Shelly et al. [28], which
may be regarded as the ground truth.

In contrast to Shelly et al. [28], which detects the LFE pattern with weeks of enormous
human effort, we are able to complete the same task automatically in approximately 3 min
with GPU-STOMPgopt on NVIDIA Tesla K80.

5.8 A case study in animal behavior

While seismology is the primary motivator for this work, nothing about our algorithm assumes
anything about the data’s structure, or precludes us from considering other datasets. To
demonstrate this, in this section, we briefly consider telemetry collected from Magellanic pen-
guins (Spheniscus magellanicus). Adult Magellanic penguins can regularly dive to depths of
between 20 and 50m deep in order to forage for prey and may spend as long as fifteen minutes
under water. The data were collected by attaching a small multi-channel data-logging device
to the bird. The device recorded tri-axial acceleration, tri-axial magnetometry, pressure, etc.
As shown in Fig. 18, for simplicity we consider only Y-axis magnetometry. Note that, as
with the seismology, we are not preprocessing this data source in anyway, no smoothing, not
downsampling, etc.

An observer with binoculars labels the data; thus, we have a coarse ground truth for the
animal’s behavior. The full data consist of 1,048,575 data points recorded at 40 Hz (about
7.5 h). We ran GPU-STOMPgpt on this dataset, using a subsequence length of 2000. This

@ Springer

Y. Zhu et al.

> TN

0 1000 2000

Fig. 19 The top motif of length 2000 discovered in the penguin dataset. Only three examples are shown for
visual clarity, and there are eight such patterns. This behavior may be part of a “porpoise”” maneuver

took our algorithm just 49 s to compute. As shown in Fig. 19, the top motif is a surprisingly
well conserved “shark fin” like pattern.

What (if anything) does this pattern indicate? Suggestively, we observed this pattern does
not occur in any of the regions labeled as nesting, walking, washing, etc., but only during
regions labeled foraging. Could this motif be related to a diving (for food) behavior?

Fortunately, diving is the one behavior we can unambiguously determine from the data,
as the pressure sensor reading increases by orders of magnitude when the penguin is under
water. We discovered that the motif occurs moments before each dive, and nowhere else.
This pattern appears to be part of a ritual behavior made by the bird before diving. It has
been reported that “The only time penguins are airborne is when they leap out of the water.
Penguins will often do this to get a gulp of air before diving back down for fish.” Thus, we
suspect this pattern in part of a “porpoise” behavior [29].

Generally speaking, we see this example as typical of the interactions that motif discovery
supports. In most cases, motif discovery is not the end of analyses, but only the beginning. By
correlating the observed motifs with other (internal or external) data, we can form hypotheses
and open avenues for further research. Recall the previous section; this is rather similar to
the team studying Mount Rainier’s seismology discovered that its earthquakes are correlated
with snowfall [2]. We believe that the STOMP algorithm may enable many such unexpected
discoveries in a vast array of domains.

6 Conclusions

We introduced STOMP, a new algorithm for time series motif discovery, and showed that
it is theoretically and empirically faster than its strongest rivals in the literature, STAMP
[35], Quick-Motif [14] and MK [19]. In the limited domain of seismology, we showed that
STOMP is at least as fast as the recently introduced FAST algorithm [36], but STOMP does
not allow false negatives and does not need careful parameter tuning. Moreover, for datasets
and subsequences lengths encountered in the real world, STOMP requires one to three orders
of magnitude less memory than rival methods. Thus, even if we are willing to wait a longer
period of time for the rival methods to search a large (ten million-plus) dataset, we will almost
certainly run out of main memory. Given that these algorithms require random access to the
data, disk-based implementations are infeasible. This is not a gap that is likely to be closed by
anew implementation of these algorithms, because STOMP is unique among motif discovery
algorithms in not extracting subsequences, but performing all the computations in situ.

We further demonstrated optimizations that allow STOMP to take advantage of GPU
architecture, opening an even greater performance gap and allowing the first exact motif
search in a time series of length one hundred and forty-three-million.

In future work, we plan to investigate multidimensional and incremental versions of our
algorithms. The latter may have implications for real-time earthquake warning systems, which

@ Springer

Exploiting a novel algorithm and GPUs to break the ten...

will reduce the probability of false alarms by quickly searching dictionaries of previously
confirmed events [36].

Acknowledgements This research was funded by NSF IIS-1161997 II, NSF 1IS-1510741, NSF CCF-
1528181, NSF CCF-1527127 and USGS Earthquake Hazard Program Award G16AP00034. We gratefully
acknowledge all the donors of the datasets.

References

19.
20.

21.

25.

26.

217.

. Agrawal R, Faloutsos C, Swami A (1993) Efficient similarity search in sequence databases. Foundations

of data organization and algorithmsm, 69-84

Allstadt K, Malone SD (2014) Swarms of repeating stick-slip icequakes triggered by snow loading at
Mount Rainier volcano. J Geophys Res Earth Surf 119(5):1180-1203

Balasubramanian A, Wang J, Balakrishnan P (2016) Discovering multidimensional motifs in physiological
signals for personalized healthcare. IEEE J Sel Top Signal Process 10(5):832-841

Bailis P, Gan E, Rong K et al (2017) Prioritizing attention in fast data: principles and promise. In: CIDR
Brown AEX, Yemini EI, Grundy LJ et al (2013) A dictionary of behavioral motifs reveals clusters of
genes affecting caenorhabditis elegans locomotion. Proc Natl Acad Sci 110(2):791-796

Brown JR, Beroza GC, Shelly DR (2008) An autocorrelation method to detect low frequency earthquakes
within tremor. Geophys Res Lett 35, L16305. https://doi.org/10.1029/2008 GL034560

Chandola V, Banerjee A, Kumar V (2007) Anomaly detection: a survey. Technical report, University of
Minnesota

Chiu B, Keogh E, Lonardi S (2003) Probabilistic discovery of time series motifs. In: SIGKDD, pp 493498
Geller RJ, Mueller CS (1980) Four similar earthquakes in central California. Geophys Res Lett 7(10):821—
824

Harris M (2007) Optimizing parallel reduction in CUDA. NVIDIA Developer Technology 2.4

. Havskov J, Alguacil G (2004) Instrumentation in earthquake seismology, vol 358. Springer, Dordrecht

Igarashi T, Matsuzawa T, Hasegawa A (2003) Repeating earthquakes and interplate aseismic slip in the
northeastern Japan subduction zone. J Geophys Res 108, 2249. https://doi.org/10.1029/2002JB001920.
Iverson RM, Dzurisin D, Gardner CA et al (2006) Dynamics of seismogenic volcanic extrusion at Mount
St. Helens in 2004-2005. Nature 444(7118):439-443

Li Y, U LH, Yiu ML, Gong Z (2015) Quick-motif: An efficient and scalable framework for exact motif
discovery. In: ICDE, IEEE, pp 579-590

Luo W, Tan H, Mao H et al (2012) Efficient similarity joins on massive high-dimensional datasets using
mapreduce. In: MDM, IEEE, pp 1-10

McGovern A, Rosendahl D, Brown R et al (2011) Identifying predictive multi-dimensional time series
motifs: an application to severe weather prediction. Data Min Knowl Discov 22(1):232-258

Meng X, Yu X, Peng Z et al (2012) Detecting earthquakes around salton sea following the 2010 mw7.2
El Mayor-Cucapah earthquake using GPU parallel computing. Procedia Comput Sci 9:937-946
Minnen D, Isbell CL, Essa I et al (2007) Discovering multivariate motifs using subsequence density
estimation and greedy mixture learning. In: AAAI, pp 615-620

Mueen A, Keogh E, Zhu Q et al (2009) Exact discovery of time series motifs. In: SDM, pp 473-484
NVIDIA CUDA C Programming Guide (2016) Version 7.5. http://docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf

NVIDIA CUFFT Library User’s Guide (2016) Version 7.5. http://docs.nvidia.com/cuda/pdf/CUFFT_
Library.pdf

Project Website (2017) http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

. Quick Motif (2015) http://degroup.cis.umac.mo/quickmotifs/

Rakthanmanon T, Campana B, Mueen A et al (2013) Addressing big data time series: mining trillions of
time series subsequences under dynamic time warping. TKDD 7(3):10

Rong K, Bailis P (2017) ASAP: prioritizing attention via time series smoothing. VLDB Endowment
10(11):1358-1369

Shelly DR, Beroza GC, Ide S et al (2006) Low-frequency earthquakes in Shikoku, Japan, and their
relationship to episodic tremor and slip. Nature 442(7099):188-191

Shelly DR, Beroza GC, Ide S (2017) Non-volcanic tremor and low-frequency earthquake swarms. Nature
446(7133):305-307

@ Springer

https://doi.org/10.1029/2008GL034560
https://doi.org/10.1029/2002JB001920
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf
http://www.cs.ucr.edu/~eamonn/MatrixProfile.html
http://degroup.cis.umac.mo/quickmotifs/

Y. Zhu et al.

28.

29.

30.
31.

32.

33.

34.

35.

36.

Shelly DR, Ellsworth WL, Ryberg T et al (2009) Precise location of San Andreas Fault tremors near
Cholame, California using seismometer clusters: Slip on the deep extension of the fault? Geophys Res
Lett 36, LO1303. https://doi.org/10.1029/2008 GL036367

Simeone A, Wilson RP (2003) In-depth studies of Magellanic penguin (Spheniscus magellanicus) forag-
ing: Can we estimate prey consumption by perturbations in the dive profile? Mar Biol 143(4):825-831
Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210(1):1-15

Tanaka Y, Iwamoto K, Uehara K (2005) Discovery of time-series motif from multi-dimensional data
based on MDL principle. Mach Learn 58(2):269-300

Vahdatpour A, Amini N, Sarrafzadeh M (2009) Toward unsupervised activity discovery using multi-
dimensional motif detection in time series. IICAI 9:1261-1266

Wang L, Chng ES, Li H (2010) A tree-construction search approach for multivariate time series motifs
discovery. Pattern Recognit Lett 31(9):869-875

Wang X, Mueen A, Ding H et al (2013) Comparison of representation methods and distance measures
for time series data. Data Min Knowl Discov 26(2):275-309

Yeh CCM, Zhu Y, Ulanova L et al (2016) Matrix profile I: all pairs similarity joins for time series: a
unifying view that includes motifs, discords and shapelets. In: ICDM, IEEE, pp 579-588

Yoon CE, O’Reilly O, Bergen KJ et al (2015) Earthquake detection through computationally efficient
similarity search. Sci Adv 1(11):e1501057

Yan Zhu is a Ph.D. student at the University of California, Riverside.
She received her M.S. and B.S. degrees in 2013 and 2010, respectively,
both from Shanghai Jiao Tong University, Shanghai, China. She has
published papers in top data mining venues, including ICDM, ECML-
PKDD, Data Mining and Knowledge Discovery, etc. Her research
interests include data mining and machine learning.

Zachary Zimmerman is a Ph.D. student in computer science at
the University of California, Riverside, where he also received his
Bachelor’s and Master’s degrees in 2015 and 2017, respectively. His
research interests include high-performance computing, data mining
and machine learning. He is especially interested in scalable algorithms
for real-time data.

@ Springer

https://doi.org/10.1029/2008GL036367

Exploiting a novel algorithm and GPUs to break the ten...

Nader Shakibay Senobari received his B.S. in Physics from Sharif
University of Technology, Iran in 2010. In 2013, He started his Ph.D.
in Geophysics program at the University of California, Riverside. His
research is mostly in the crossover between geodesy and seismology.
He is using the data and methods from both of these subjects to study
Earth’s interior structure, fault behavior and the physics of earthquakes.
He has received NASA Earth and Space Science Fellowship (NESSF)
for three consecutive years (2015-17).

Chin-Chia Michael Yeh received his B.S. and M.S. degrees from
Virginia Tech and University of California, Los Angeles in 2010 and
2011, respectively. From 2011 to 2014, he joined Research Center for
Information Technology Innovation at Academia Sinica, Taiwan as a
Research Assistant. He has been a Ph.D. Student at University of Cali-
fornia, Riverside, since 2014. His research interests include time series
analysis, data mining and machine learning.

Gareth Funning received a M.Sc. degree in Geophysics from the
University of Durham in 2000 and a D.Phil. in Earth Sciences from
Hertford College, Oxford in 2005. His doctoral research focused on
methods for combining InSAR and teleseismic waveform data into
joint inversions for earthquake source parameters. In 2005, he joined
the Berkeley Seismological Laboratory as a postdoctoral researcher.
Since 2007, he has been on the faculty of the University of California,
Riverside, in the Department of Earth Sciences. His research interests
include the study of fault creep using geodetic and seismic methods,
reconciling earthquake centroid locations between InSAR and long-
period seismology, detailed investigations of the earthquake source
from geodetic data, and studies of anthropogenic deformation sources.

@ Springer

Y. Zhu et al.

@ Springer

Abdullah Mueen is an assistant professor at the Department of Com-
puter Science in the University of New Mexico. Earlier, he served as
a scientist in Microsoft Corporation (2012-2013). Dr. Mueen is inter-
ested in analyzing large data to discover patterns and anomalies. He is
the runner-up of ACM SIGKDD Doctoral Dissertation Award 2012 and
his paper on mining trillion subsequences has won the best paper award
in the ACM SIGKDD conference in 2012.

Philip Brisk received the B.S., M.S., and Ph.D. degrees, all in Com-
puter Science, from UCLA in 2002, 2003 and 2006, respectively. From
20062009, he was a Postdoctoral Scholar in the Processor Architec-
ture laboratory in the School of Computer and Communication Sci-
ences at the Ecole Polytechnique Fédérale de Lausanne, (EPFL), in
Lausanne, Switzerland. Since 2009, he has been an Assistant Professor
in the Department of Computer Science and Engineering at the Uni-
versity of California, Riverside and has been promoted to Associate
Professor as of July 1, 2015. His work has received the Best Paper
Award at CASES 2007 and FPL 2009, and been nominated for the Best
Paper Award at DAC 2007 and HiPEAC 2010. Dr. Brisk has been the
general (co-)chair of IEEE SIES 2009, IEEE SASP 2010 and IWLS
2011.

Eamonn Keogh a full professor at the University of California, River-
side, is a top-ten most prolific author in all three of the top ranked data
mining conferences, SIGKDD, ICDM and SDM, and the most pro-
lific author in the Data Mining and Knowledge Discovery Journal. Dr.
Keogh has won best paper awards at ICDM, SIGKDD and SIGMOD.
His H-index of 78 reflects the influence of time series representations
and algorithms. He has given well-received tutorials at SIGKDD (five
times), ICDM (four times), VLDB, SDM and CIKM.

	Exploiting a novel algorithm and GPUs to break the ten quadrillion pairwise comparisons barrier for time series motifs and joins
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Motif discovery background
	2.2 Seismological background
	2.3 Developing intuitions for the matrix profile

	3 Notation and definitions
	3.1 Definitions
	3.2 A brief review of the STAMP algorithm

	4 Algorithms
	4.1 The STOMP algorithm
	4.2 Porting STOMP to a GPU framework
	4.3 Further parallelizing STOMP with multiple GPUs
	4.4 A technique to further accelerate GPU-STOMP
	4.5 A final optimization: breaking the ten quadrillion pairwise comparison barrier

	5 Empirical evaluation
	5.1 STAMP versus STOMP
	5.2 GPU-STOMPOPT breaks the ten quadrillion pairwise comparison barrier
	5.3 STOMP versus state-of-the-art motif discovery algorithms
	5.4 Case studies in seismology: infrequent earthquake case
	5.5 Parameter settings
	5.6 Case studies in seismology: earthquake swarm case
	5.7 Case studies in seismology: detection of repeated low-frequency earthquakes
	5.8 A case study in animal behavior

	6 Conclusions
	Acknowledgements
	References

