
The Visual Basic .NET Coach
1

Chapter 4 – Decision Making
A useful computer requires the ability to make decisions.

The key to programming the computer to make correct decisions is making sure you
understand how to represent and evaluate the expression representing the decision properly.

The Visual Basic .NET Coach
2

Chapter 4 – Decision Making
4.1 If Statements
Visual Basic .NET offers more than one way for decisions to be made.

The If statement matches the idea of a single decision to a single result.

You can program an If statement by using the following code illustrating its syntax:

If (Expression) Then
Program statements to execute if expression evaluates to True

End If

An If statement consists of an expression that determines whether a program statement or
statements execute.

An expression can be the comparison of two values.

To compare values you may use any of the following operators:

Equal to=

Not equal to<>

Greater than or equal to>=

Less than or equal to<=

Greater than>

Less than<

The Visual Basic .NET Coach
3

Chapter 4 – Decision Making
With either a variable or a constant value placed on both sides of the operator, an expression
can be evaluated to either True or False.

When the condition in an If statement evaluates to True, the statements immediately
following it are executed until an End If statement is reached.

If the If statement evaluates to False, the statements immediately after it, until the End If,
are not executed.

“D” = “D”

“A” <> “a”

“a” <> “c”

1 < 2

1 <> 2

1 <= 2

2 >= 2

2 >= 1

1 = 1

Here are some expressions that
evaluate to True:

Here are some expressions that
evaluate to False:

“D” <> “D”

“A” = “a”

1 >= 2

1 <> 1

3 > 4

2 < 2

2 <= 1

1 = 2

The Visual Basic .NET Coach
4

Chapter 4 – Decision Making
Drill 4.1
Indicate whether each expression evaluates to True or False

1 (5 >= 4) Answer: True

2 (-3 < -4) Answer: False

3 (5 = 4) Answer: False

4 (5 <> 4) Answer: True

5 (4 >= 4) Answer: True

6 (4 <= 4) Answer: True

The Visual Basic .NET Coach
5

Chapter 4 – Decision Making
Simple If Statement
Write a program that will output a message if the user enters the word “Yes” in a text box.

By using an If statement, you can determine if the value that is entered in a text box is equal to
the value you desire.

The following code is an example that compares the text box contents to the String “Yes”.

The code assumes that a btnIf button has been created to place the code and a txtInput
text box and a lblOutput label have been created to hold the input and output.

Private Sub btnIf_Click(...
If (txtInput.Text = “Yes”) Then
lblOutput.Text = “This will output, because the user entered Yes”

End If
End Sub

The Visual Basic .NET Coach
6

Chapter 4 – Decision Making
Simple If Statement Continued
What do you think would be contained in lblOutput:

1 If the user enters “Yes” in the txtInput text box?

Answer: The condition will evaluate to True and the text “This out output, because the user
entered Yes” is placed in the lblOutput label.

2 If the user enters “No” in the txtInput text box?

Answer: The condition will evaluate to False and the txtOutput text box remain empty.

The Visual Basic .NET Coach
7

Chapter 4 – Decision Making
Simple If Statement with Code Following It
Some statements execute based on a decision and some regardless of the evaluation of the
condition.

The following program is modified from the previous one.

Private Sub btnIf_Click(...
If (txtInput.Text = “Yes”) Then
lblOutput.Text = “This will output, because the user entered Yes”

End If

lblOutput.Text &= “ and this is here as well”
End Sub

The Visual Basic .NET Coach
8

Chapter 4 – Decision Making
Simple If Statement with Code Following It Continued
What do you think would be contained in lblOutput:

1 If the user enters “Yes” in the txtInput text box?

Answer: The output will be “This will output, because the user entered Yes and this is here as
well”

2 If the user enters “No” in the txtInput text box?

Answer: The output will be “ and this is here as well”

The Visual Basic .NET Coach
9

Chapter 4 – Decision Making
Drill 4.2
Given the following code, what do you think would be contained in lblOutput?

Private Sub btnIf_Click(...
Dim intUserValue As Integer

intUserValue = Val(txtInput.Text)

If (intUserValue > 2) Then
lblOutput.Text = “The first statement prints”

End If
lblOutput.Text = lblOutput.Text & “ and the second statement prints”

End Sub

1 If the user enters 1 in the txtInput text box?

Answer: The output will be “ and the second statement prints”

2 If the user enters 2 in the txtInput text box?

Answer: The output will be “ and the second statement prints”

3 If the user enters 3 in the txtInput text box?

Answer: The output will be “The first statement prints and the second statement prints”

The Visual Basic .NET Coach
10

Chapter 4 – Decision Making
Drill 4.3
Given the following code, what do you think would be contained in lblOutput?

Private Sub btnIf_Click(...
Dim intUserValue As Integer

intUserValue = Val(txtInput.Text)

If (intUserValue < 2) Then
lblOutput.Text = “The first statement prints”

End If
lblOutput.Text = lblOutput.Text & “ and the second statement prints”

End Sub

1 If the user enters 1 in the txtInput text box?

Answer: The output will be “The first statement prints and the second statement prints”

2 If the user enters 2 in the txtInput text box?

Answer: The output will be “ and the second statement prints”

3 If the user enters 3 in the txtInput text box?

Answer: The output will be “ and the second statement prints”

The Visual Basic .NET Coach
11

Chapter 4 – Decision Making
Drill 4.4
Given the following code, what do you think would be contained in lblOutput?

Private Sub btnIf_Click(...
Dim intUserValue As Integer

intUserValue = Val(txtInput.Text)

If (intUserValue >= 2) Then
lblOutput.Text = “The first statement prints”

End If
lblOutput.Text = lblOutput.Text & “ and the second statement prints”

End Sub

1 If the user enters 1 in the txtInput text box?

Answer: The output will be “ and the second statement prints”

2 If the user enters 2 in the txtInput text box?

Answer: The output will be “The first statement prints and the second statement prints”

3 If the user enters 3 in the txtInput text box?

Answer: The output will be “The first statement prints and the second statement prints”

The Visual Basic .NET Coach
12

Chapter 4 – Decision Making
Drill 4.5
Given the following code, what do you think would be contained in lblOutput?

Private Sub btnIf_Click(...
Dim intUserValue As Integer

intUserValue = Val(txtInput.Text)

If (intUserValue <= 2) Then
lblOutput.Text = “The first statement prints”

End If
lblOutput.Text = lblOutput.Text & “ and the second statement prints”

End Sub

1 If the user enters 1 in the txtInput text box?

Answer: The output will be “The first statement prints and the second statement prints”

2 If the user enters 2 in the txtInput text box?

Answer: The output will be “The first statement prints and the second statement prints”

3 If the user enters 3 in the txtInput text box?

Answer: The output will be “ and the second statement prints”

The Visual Basic .NET Coach
13

Chapter 4 – Decision Making
Example: In Stock?

Problem Description
The application will ask the user to enter the amount of a product a company has on hand.

If the number is greater than 0, then the program outputs that the “Product is in Stock”.

Otherwise, it outputs that the “Product is Sold Out”.

Problem Discussion
It will require creating a form with a txtStockAmount text box to store the amount of a product
a company has in stock, a lblAmount label with the Text property set to “Amount in
Stock”, another label, lblInStock, to hold a message, and a button with the Text property
set to “Calculate”.

The code of the program compares the number entered by the user to 0.

The Visual Basic .NET Coach
14

Chapter 4 – Decision Making
Problem Solution

Create Project and Form
Step 1: From the Start window, click on New Project. The New Project window will

appear.

Step 2: Specify the name of the application as InStock.

Step 3: Specify the location as "C:\VB Net Coach\Chapter 4\Code\ ".

Step 4: Click on the OK button.

Step 5: Rename the form to frmInStock.

Step 6: Rename the file by right-clicking on the file name in the Solution Explorer

and setting the name to frmInStock.vb.

Step 7: Set the Text property of the form to In Stock.

The Visual Basic .NET Coach
15

Chapter 4 – Decision Making
Add the In Stock Label
Step 1: Place a label control across the top of the form.

Step 2: Set the Name property to lblInStock.

Step 3: Clear the Text property.

Add the Amount In Stock Label
Step 1: Place a label control to the right and about halfway down the form.

Step 2: Set the Name property to lblAmount.

Step 3: Set the Text property to Amount in Stock.

Step 4: Set the Font Bold property to True.

Add the Stock Amount Text Box
Step 1: Place a text box control below the In Stock label.

Step 2: Set the Name property to txtStockAmount.

Step 3: Clear out the default value from the Text property.

The Visual Basic .NET Coach
16

Chapter 4 – Decision Making
Add the Calculate Button
Step 1: Place a button control in the left side of the form, below the text box.

Step 2: Set the Name property to btnCalculate.

Step 3: Set the Text property to Calculate.

Step 4: Double-click on the button.

Step 5: Attach the code to output a message as to whether an item is in stock.

The Visual Basic .NET Coach
17

Chapter 4 – Decision Making
Here are two possible outputs.

The Visual Basic .NET Coach
18

Chapter 4 – Decision Making
Example: Expenses?

Problem Description
Write a program that outputs the difference between the amount of your income versus the
amount of your expenses, as well as printing a message that indicates whether you are spending
more than you are making.

Problem Discussion
First, you must create a form that has two text boxes: txtIncome and txtExpenses.

Each should have a label above it indicating what is stored in the text box: income & expenses.

Additionally, you need two labels to store the difference between the income and expenses and
one to hold your output message.

Finally, you need a button to calculate the difference and output the message.

The Visual Basic .NET Coach
19

Chapter 4 – Decision Making
Problem Solution

Create Project and Form
Step 1: From the Start window, click on New Project. The New Project window will

appear.

Step 2: Specify the name of the application as IncomeAndExpense.

Step 3: Specify the location as "C:\VB Net Coach\Chapter 4\Code\ ".

Step 4: Click on the OK button.

Step 5: Rename the form to frmIncomeExpenses.

Step 6: Rename the file by right-clicking on the file name in the Solution Explorer

and setting the name to frmIncomeExpenses.vb.

The Visual Basic .NET Coach
20

Chapter 4 – Decision Making
Add the Result Label
Step 1: Place a label control across the top of the form.

Step 2: Set the Name property to lblResult.

Step 3: Remove the default value from the Text property.

Add the Income Label
Step 1: Place a label control a little below the lblResult label.

Step 2: Set the Name property to lblIncome.

Step 3: Set the Text property to Income.

Step 4: Set the Font Bold property to True.

Add the Income Text Box
Step 1: Place a text box control below the income label.

Step 2: Set the Name property to txtIncome.

Step 3: Clear out the default value from the Text property.

The Visual Basic .NET Coach
21

Chapter 4 – Decision Making

Add the Expense Text Box
Step 1: Place a text box control below the expenses label.

Step 2: Set the Name property to txtExpenses.

Step 3: Remove the default value from the Text property.

Add the Expense Label
Step 1: Place a label control to the right of the income label.

Step 2: Set the Name property to lblExpenses.

Step 3: Set the Text property to Expenses.

Step 4: Set the Font Bold property to True.

The Visual Basic .NET Coach
22

Chapter 4 – Decision Making

Add the Difference Label
Step 1: Place a label control below the difference title label.

Step 2: Set the Name property to lblDifference.

Step 3: Remove the default value from the Text property.

Add the Difference Title Label
Step 1: Place a label control below the income text box.

Step 2: Set the Name property to lblDifferenceTitle.

Step 3: Set the Text property to Difference.

Step 4: Set the Font Bold property to True.

The Visual Basic .NET Coach
23

Chapter 4 – Decision Making
Add the Calculate Button
Step 1: Place a button control in the left side of the form, below the text box.

Step 2: Set the Name property to btnCalculate.

Step 3: Set the Text property to Calculate.

Step 4: Double-click on the button.

Step 5: Attach the code to output a message as to whether an item is in stock.

The Visual Basic .NET Coach
24

Chapter 4 – Decision Making
Add the Calculate Button Continued
The code for the button could also have been written by comparing the difference of the income
and expenses to 0. This illustrates the fact that there are many different ways to solve the same
problem.

The Visual Basic .NET Coach
25

Chapter 4 – Decision Making
Example: Voting Booth Application

Problem Description
With all the commotion surrounding the 2000 presidential election, a better voting booth is
needed.

Throughout the next few chapters you will develop a number of Voting Booth applications.

You will see how, as you learn more commands and controls in the Visual Basic .NET
language, you will be able to improve the accuracy of the voting booth.

Maybe you can sell it in Florida!

The Visual Basic .NET Coach
26

Chapter 4 – Decision Making
Problem Discussion
Your first application will allow voters to enter the name of the person they wish to vote for,
thereby adding 1 for each vote to that person’s counter.

You will have one counter for Bush, Gore, and Nader.

You will create a text box that will accept the name of the person to vote for and a button to
process the actual vote.

You will add a results button that will display the final results of the election.

The Visual Basic .NET Coach
27

Chapter 4 – Decision Making
Problem Discussion Continued
In order to store the number of votes for each candidate, you will require a variable for each
candidate.

Since the number of votes a candidate can have is a whole number, an Integer data type
variable will be used.

These variables will need to be accessed from both the Vote and Results buttons’ Click events.

Therefore, the variables will need to be declared in the Declarations section of the form.

One other issue you will have to deal with is to initialize these variables.

Technically, you do not have to because the default value for an Integer is 0, but it is always
a good habit to initialize them.

Forms, like all objects, have a special routine called a constructor.

A constructor is called before the actual object is completely created.

This is the appropriate place for initialization of variable in a form.

The Visual Basic .NET Coach
28

Chapter 4 – Decision Making
Problem Solution

Create Project and Form
Step 1: From the Start window, click on New Project. The New Project window will

appear.

Step 2: Specify the name of the application as Voting Booth 1.

Step 3: Specify the location as "C:\VB Net Coach\Chapter 4\Code\ ".

Step 4: Click on the OK button.

Step 5: Rename the form to frmVotingBooth.

Step 6: Rename the file by right-clicking on the file name in the Solution Explorer

and setting the name to frmVotingBooth.vb.

Step 7: Set the Text property of the form to TextBox Based Voting Booth.

The Visual Basic .NET Coach
29

Chapter 4 – Decision Making
Add Variable Declarations and Initialization
Step 1: Insert the code shown into the Declarations section of the form.

The Visual Basic .NET Coach
30

Chapter 4 – Decision Making
Add Variable Declarations and Initialization Continued
Step 2: Add the code to the form’s constructor so that the variables are initialized. In order to
add code to the constructor, make it visible. If you view the forms code before you have added
any other code than the variable declarations, it will look like this:

If you click on the + next to the Windows Form Designer generated code box, the code will
expand:

The Visual Basic .NET Coach
31

Chapter 4 – Decision Making
Add Variable Declarations and Initialization Continued
Your code to initialize the variables should go directly after the comment ‘Add any
initialization after the InitializeComponent() call’:

The Visual Basic .NET Coach
32

Chapter 4 – Decision Making
Add Title Label
Step 1: Place a label control across the top of the form.

Step 2: Set the Name property to lblTitle.

Step 3: Set the Text property to The Coach Voting Booth.

Step 4: Set the Font Bold property to True.

Step 5: Set the Font Size property to 18.

Step 6: Set the TextAlign property to MiddleCenter.

The Visual Basic .NET Coach
33

Chapter 4 – Decision Making
Add Instructions Label
Step 1: Place a label control below the previous one.

Step 2: Set the Name property to lblDirections.

Step 3: Set the Text property to “Enter the name of the candidate you wish to
cast your vote for”.

The Visual Basic .NET Coach
34

Chapter 4 – Decision Making
Add Results Label
Step 1: Place a label control at the bottom of the form. Make sure it is large enough to display
the election results.

Step 2: Set the Name property to lblResults.

Step 3: Remove the default value from the Text property.

The Visual Basic .NET Coach
35

Chapter 4 – Decision Making
Add Voting Text Box
Step 1: Place a text box control below the instructions label.

Step 2: Set the Name property to txtVote.

Step 3: Clear out the default value from the Text property.

The Visual Basic .NET Coach
36

Chapter 4 – Decision Making
Add Vote Button
Step 1: Place a button control in the left side of the form, below the text box.

Step 2: Set the Name property to btnVote.

Step 3: Set the Text property to Vote.

The Visual Basic .NET Coach
37

Chapter 4 – Decision Making
Add Vote Button Continued
Step 4: Double-click on the button.

Step 5: Attach the code to process the vote. It must add 1 to the appropriate variable that
stores the number of votes for each person.

Private Sub btnVote_Click(...
If (txtVote.Text = "Bush") Then

intBushCount = intBushCount + 1
End If
If (txtVote.Text = "Gore") Then

intGoreCount = intGoreCount + 1
End If
If (txtVote.Text = "Nader") Then

intNaderCount = intNaderCount + 1
End If
'Erase the vote
txtVote.Text = ""

End Sub

The Visual Basic .NET Coach
38

Chapter 4 – Decision Making
Add Results Button
Step 1: Place a button control to the right of the other button.

Step 2: Set the Name property to btnResults.

Step 3: Set the Text property to Results.

The Visual Basic .NET Coach
39

Chapter 4 – Decision Making
Add Results Button Continued
Step 4: Double-click on the button.

Step 5: Attach the code to display the results of the election in the lblResults label control.

Private Sub btnResults_Click(...
lblResults.Text = "Bush had " & Str(intBushCount) & _
" Votes, Gore had " & intGoreCount & _
" Votes, and Nader had " & intNaderCount & " Votes"

End Sub

The Visual Basic .NET Coach
40

Chapter 4 – Decision Making
What’s Wrong with Your Application?
The voting system you have developed is problematic for a number of reasons:

1. It allows only three options to vote for. No way exists to enter choices other than the
three.

2. If the name is entered in any variation of a proper spelling of the name other than the one
in the If statement, then it will be ignored.

3. Finally, the program is inefficient because if the vote is for Bush, it still checks the other
options.

The Visual Basic .NET Coach
41

Chapter 4 – Decision Making
4.2 Else and ElseIf Statements
Previous examples did not require something to be performed when the condition in the If
statement evaluated to False.

Visual Basic .NET provides the Else and ElseIf keywords to handle these cases.

When an If statement’s expression evaluates to False, the next ElseIf condition is
evaluated.

If it evaluates to True, then the statements directly after it are executed.

Any additional ElseIf statements are evaluated in the same fashion.

After all ElseIf statements are evaluated, if they all evaluate to False and an Else
statement is included, then the statements directly following the Else keyword will be executed.

If (Condition) Then
Do Something

ElseIf (Condition 2) Then
Do Something Else

ElseIf (Condition 3) Then
Do Something Else

...
Else

Do Something Else
End If

The Visual Basic .NET Coach
42

Chapter 4 – Decision Making
Simple If/Else Statement
Write a program similar to the earlier one that outputs a message if the user enters “Yes”.

If the user enters anything but “Yes”, then you will output a message indicating that “Yes” was
not entered.

The code assumes that a btnIfElse button has been created to place the code and that
txtInput text boxes and a lblOutput label were created to hold the input and output.

Private Sub btnIfElse_Click(...
If (txtInput.Text = “Yes”) Then
lblOutput.Text = “The user answered the question with a Yes”

Else
lblOutput.Text = “The user did not answer the question with a Yes”

End If
End Sub

If the user enters “Yes”, the text “The user answered the question with a Yes” is placed in the
label. Otherwise, “The user did not answer the question with a Yes” is placed in the label.

The Visual Basic .NET Coach
43

Chapter 4 – Decision Making
Another Simple If/Else Statement Example
Write a program that will output a message if a discount will be applied, which is to happen if
the purchase price is more than $100.

If the purchase price is more than $100, then the code will place “DISCOUNT” in txtOutput.

Otherwise, the code will place “FULL PRICE” in the text box.

The code assumes that a btnIfElse button has been created to place the code and that a
text boxes txtInput was create to hold the input and label lblOutput the output.

Private Sub btnIfElse_Click(...
Dim sngPurchasePrice As Single

sngPurchasePrice = Val(txtInput.Text)

If (sngPurchasePrice > 100) Then
lblOutput.Text = “DISCOUNT”

Else
lblOutput.Text = “FULL PRICE”

End If
End Sub

The Visual Basic .NET Coach
44

Chapter 4 – Decision Making
Another Simple If/Else Statement Continued
What do you think would be contained in lblOutput:

1 If the user enters 199.95 in the txtInput text box?

2 If the user enters 99.95 in the txtInput text box?

Answer: The condition will evaluate to True and the text “DISCOUNT” is placed in the
lblOutput label. No other statements after Else are executed.

Answer: The condition will evaluate to False. All the statements until Else are not executed.
The text “FULL PRICE” is placed in the lblOutput text box.

The Visual Basic .NET Coach
45

Chapter 4 – Decision Making
Drill 4.6
Using the same application, but changing the code in the button as follows, what do you think
the output would be if the value entered by the user is 0, 1, and then 2, respectively?

Private Sub btnIfElse_Click(...
Dim intDrillValue As Integer

intDrillValue = Val(txtInput.Text)

If (intDrillValue <= 1) Then
lblOutput.Text = “This will output, because intDrillValue <= 1”

Else
lblOutput.Text = “Instead this outputs, because intDrillValue > 1”

End If
lblOutput.Text &= “ and this is here as well”

End Sub

Answer: If the input is 0, the output is “This will output, because intDrillValue <= 1 and this is
here as well”.

If the input is 1, the output is “This will output, because intDrillValue <= 1 and this is here as
well”.

If the input is 2, the output is “Instead this outputs, because intDrillValue > 1 and this is here as
well”.

The Visual Basic .NET Coach
46

Chapter 4 – Decision Making
Drill 4.7
Using the same application, but changing the code in the button as follows, what do you think
the output would be if the value entered by the user is 0, 1, and then 2, respectively?

Private Sub btnIfElse_Click(...
Dim intDrillValue As Integer

intDrillValue = Val(txtInput.Text)

If (intDrillValue < 1) Then
lblOutput.Text = “This will output, because intDrillValue < 1”

Else
lblOutput.Text = “Instead this outputs, because intDrillValue >= 1”

End If
lblOutput.Text &= “ and this is here as well”

End Sub

Answer: If the input is 0, the output is “This will output, because intDrillValue < 1 and this is here
as well”.

If the input is 1, the output is “Instead this outputs, because intDrillValue >= 1 and this is here
as well”.

If the input is 2, the output is “Instead this outputs, because intDrillValue >= 1 and this is here
as well”.

The Visual Basic .NET Coach
47

Chapter 4 – Decision Making
Simple If/ElseIf/Else Statement
Write a program that applies a varied discount based on the total purchase price.

The application should compute how much of a discount should be applied to a purchase.

If the purchase price is more than $100, then the discount should be 5%.

If the purchase price is more than $500, then the discount should be 10%.

The code should place the amount of the discount in the lblOutput label. If no discount is
applied, then place the String "NO DISCOUNT" in the label.

Private Sub btnIfElse_Click(...
Dim sngPurchasePrice As Single

sngPurchasePrice = Val(txtInput.Text)

If (sngPurchasePrice > 500) Then
lblOutput.Text = (sngPurchasePrice * 0.1).ToString()

ElseIf (sngPurchasePrice > 100) Then
lblOutput.Text = (sngPurchasePrice * 0.05).ToString()

Else
lblOutput.Text = “NO DISCOUNT”

End If
End Sub

The Visual Basic .NET Coach
48

Chapter 4 – Decision Making
Simple If/ElseIf/Else Statement
What do you think would be contained in lblOutput:

1 If the user enters 600.00 in the txtInput text box?

2 If the user enters 250.00 in the txtInput text box?

3 If the user enters 50.00 in the txtInput text box?

Answer: The first condition will evaluate to True and the text “60” is placed in the lblOutput
label. No other statements after ElseIf or Else are executed.

Answer: The first condition will evaluate to False. All the statements until ElseIf are not
executed. The second condition will evaluate to True and the text “12.5” is placed in the
lblOutput label. No other statements after Else are executed.

Answer: The first and second condition will evaluate to False. Only the statements after the
Else statement and before the End If are executed and the text “NO DISCOUNT” is placed in
the lblOutput label.

The Visual Basic .NET Coach
49

Chapter 4 – Decision Making
Drill 4.8
Assume that the code for the previous example was instead coded as follows:

Private Sub btnIfElse_Click(...
Dim sngPurchasePrice As Single

sngPurchasePrice = Val(txtInput.Text)

If (sngPurchasePrice > 100) Then
lblOutput.Text = (sngPurchasePrice * 0.05).ToString()

ElseIf (sngPurchasePrice > 500) Then
lblOutput.Text = (sngPurchasePrice * 0.1).ToString()

Else
lblOutput.Text = “NO DISCOUNT”

End If
End Sub

The Visual Basic .NET Coach
50

Chapter 4 – Decision Making
Drill 4.8 Continued
What do you think would be contained in lblOutput:

1 If the user enters 600.00 in the txtInput text box?

2 If the user enters 250.00 in the txtInput text box?

3 If the user enters 50.00 in the txtInput text box?

Answer: The first condition will evaluate to True and the text “30” is placed in the lblOutput
label. No other statements after ElseIf or Else are executed.

Answer: The first condition will evaluate to True and the text “12.5” is placed in the lblOutput
label. No other statements after ElseIf or Else are executed.

Answer: The first and second condition will evaluate to False. Only the statements after the
Else statement and before the End If are executed and the text “NO DISCOUNT” is placed
in the lblOutput label.

The Visual Basic .NET Coach
51

Chapter 4 – Decision Making
Drill 4.9
The code assumes that a btnIfElse button has been created to place the code and that a
txtInput text box and a lblOutput label were created to hold the input and output,
respectively. What do you think the output would be if the value entered by the user is -1, 0, and
then 1, respectively?

Private Sub btnIfElse_Click(...
Dim intDrillValue As Integer

intDrillValue = Val(txtInput.Text)

If (intDrillValue > 0) Then
lblOutput.Text = “The number if positive”

ElseIf (intDrillValue < 0) Then
lblOutput.Text = “The number is negative”

Else
lblOutput.Text = “ I got a big zero”

End Sub

Answer: If the input is -1, the output is “The number is negative”

If the input is 0, the output is “I got a big zero”

If the input is 1, the output is “The number is positive”

The Visual Basic .NET Coach
52

Chapter 4 – Decision Making
Example: Letter Grade Program

Problem Description
Write a program that will display a letter grade based on a number grade entered.

The program should assign an A if the grade is greater than or equal to 90, a B if the grade is
between an 80 and an 89, a C if the grade is between a 70 and a 79, and a D if the grade is
between a 60 and a 69. Otherwise, the program assigns an F.

The Visual Basic .NET Coach
53

Chapter 4 – Decision Making
Problem Discussion
The application will require a text box to accept the numerical grade and a label to output the
result.

The actual computation of the letter grade will be performed in the Click event of a button.

The letter grade can be determined using an If statement with a few ElseIf statements
checking the range of each possible letter grade.

Using an If statement with ElseIf statements is preferred over using a series of If
statements because once a letter grade has been determined, it would be wasteful to check the
remaining If statements.

The Visual Basic .NET Coach
54

Chapter 4 – Decision Making
Problem Solution

Create Project and Form
Step 1: From the Start window, click on New Project. The New Project window will

appear.

Step 2: Specify the name of the application as Grade Giver.

Step 3: Specify the location as "C:\VB Net Coach\Chapter 4\Code\ ".

Step 4: Click on the OK button.

Step 5: Rename the form to frmGradeGiver.

Step 6: Rename the file by right-clicking on the file name in the Solution Explorer

and setting the name to frmGradeGiver.vb.

Step 7: Set the Text property of the form to Grade Giver.

The Visual Basic .NET Coach
55

Chapter 4 – Decision Making
Add Title Label
Step 1: Place a label control across the top of the form.

Step 2: Set the Name property to lblTitle.

Step 3: Set the Text property to The Coach Grade Giver.

Step 4: Set the Font Size property to 18.

Step 5: Set the Font Bold property to True.

Step 6: Set the TextAlign property to MiddleCenter.

The Visual Basic .NET Coach
56

Chapter 4 – Decision Making
Add Numeric Grade Label
Step 1: Place a label control near the left side of the form.

Step 2: Set the Name property to lblNumericGradeTitle.

Step 3: Set the Text property to Numeric Grade.

Step 4: Set the Font Size property to 12.

Step 5: Set the Font Bold property to True.

The Visual Basic .NET Coach
57

Chapter 4 – Decision Making
Add Numeric Grade Text Box
Step 1: Place a text box control below the numeric grade label.

Step 2: Set the Name property to txtNumericGrade.

Step 3: Clear out the default value from the Text property.

The Visual Basic .NET Coach
58

Chapter 4 – Decision Making
Add Letter Grade Label
Step 1: Place a label control near the right side of the form.

Step 2: Set the Name property to lblLetterGradeTitle.

Step 3: Set the Text property to Letter Grade.

Step 4: Set the Font Size property to 12.

Step 5: Set the Font Bold property to True.

The Visual Basic .NET Coach
59

Chapter 4 – Decision Making
Add lblGrade Label
Step 1: Place a label control below the letter grade title label.

Step 2: Set the Name property to lblLetterGrade.

Step 3: Clear the Text property.

Step 4: Set the Font Size property to 48.

Step 5: Set the Font Bold property to True.

Step 6: Set the TextAlign property to MiddleCenter.

The Visual Basic .NET Coach
60

Chapter 4 – Decision Making
Add Compute Grade Button
Step 1: Place a button control in the bottom left side of the form.

Step 2: Set the Text property to Compute Grade.

Step 3: Set the Name property to btnCompute.

The Visual Basic .NET Coach
61

Chapter 4 – Decision Making
Add Compute Grade Button Continued
Step 4: Double-click on the button.

Step 5: Attach the code to display the results of the grade calculation in the lblLetterGrade
label control.

The Visual Basic .NET Coach
62

Chapter 4 – Decision Making
Example: Improved Voting Booth

Problem Description
Previously, your Voting Booth application did not keep track of the number of errors in voting.

Aside from curiosity’s sake, there is an important reason to track these errors.

A good voting machine should prevent mistakes from ever being entered.

The application will look relatively the same.

The only visible difference will be the additional of the display of the number of improper votes
being cast.

The Visual Basic .NET Coach
63

Chapter 4 – Decision Making
Problem Discussion
Your new application will take advantage of ElseIf and Else statements to total the votes
more efficiently as well as keep a total of improper votes.

By using the ElseIf statement, you can process each vote more efficiently.

By using the Else statement, you can capture all of the errors.

The Visual Basic .NET Coach
64

Chapter 4 – Decision Making
Problem Solution

Create Project and Form
Step 1: From the Start window, click on New Project. The New Project window will

appear.

Step 2: Specify the name of the application as ErrorTrackingVotingBooth.

Step 3: Specify the location as "C:\VB Net Coach\Chapter 4\Code\ ".

Step 4: Click on the OK button.

Step 5: Rename the form to frmVoting.

Step 6: Rename the file by right-clicking on the file name in the Solution Explorer

and setting the name to frmVoting.vb.

Step 7: Set the Text property to TextBox Based Voting Booth.

The Visual Basic .NET Coach
65

Chapter 4 – Decision Making
Modify the Applications’ Code
Follow the instructions on adding the controls as before. The code, however, has a few
modifications.

You must first declare an additional variable, in the Declarations section of the form, to hold
the number of errors encountered.

Dim intBushCount As Integer
Dim intGoreCount As Integer
Dim intNaderCount As Integer
Dim intErrorCount As Integer

The Visual Basic .NET Coach
66

Chapter 4 – Decision Making
Modify the Applications’ Code Continued
You must make sure that you initialize that variable to 0 in the constructor of the form.

Public Sub New()
MyBase.New()

'This call is required by the Windows Form Designer.
InitializeComponent()

'Add any initialization after the InitializeComponent() call
intBushCount = 0
intGoreCount = 0
intNaderCount = 0
intErrorCount = 0

End Sub

The Visual Basic .NET Coach
67

Chapter 4 – Decision Making
Modify the Applications’ Code Continued
You need to modify the btnVote button so that it will use ElseIf and Else statements to
process the vote efficiently and so that it now records the number of errors by using the Else
statement.

Private Sub btnVote_Click(...
If (txtVote.Text = "Bush") Then

intBushCount += 1
ElseIf (txtVote.Text = "Gore") Then

intGoreCount += 1
ElseIf (txtVote.Text = "Nader") Then

intNaderCount += 1
Else

intErrorCount += 1
End If
'Erase the vote
txtVote.Text = ""

End Sub

The Visual Basic .NET Coach
68

Chapter 4 – Decision Making
Modify the Applications’ Code Continued
You need to modify the btnResults button so that it will display the additional information.

Private Sub btnResults_Click(...
lblResults.Text = "Bush had " & Str(intBushCount) & _

" Votes, Gore had " & intGoreCount & _
" Votes, and Nader had " & intNaderCount & " Votes" & _
", and there were " & intErrorCount & " Errors"

End Sub

The Visual Basic .NET Coach
69

Chapter 4 – Decision Making
4.3 Compound Conditional Statements
Sometimes comparisons are not as simple as a single comparison.

The more complex conditions are known as compound expressions.

Visual Basic .NET gives you additional expression operators to help you map a problem or
algorithm to a program. Boolean logic operators like And, Or, and Not assist you in
representing a condition.

The Visual Basic .NET Coach
70

Chapter 4 – Decision Making
And is used to represent the logical “anding” of two conditions. A simple truth table of all the
possible conditions follows:

False And False = False

False And True = False

True And False = False

True And True = True

Or is used to represent the logical or. Here is a simple truth table of all the possibilities:

False Or False = False

False Or True = True

True Or False = True

True Or True = True

Not is used to negate the value of an expression. Here is a truth table of all the possibilities:

Not False = True

Not True = False

The Visual Basic .NET Coach
71

Chapter 4 – Decision Making

Here are some expressions that evaluate to False:

Not (“A” = “a”)

(“a” <> “c”) Or (“b” <> “c”)

(“CAT” = “CAT”) And (1 < 2)

(1 < 2) And (1 <> 2)

(1 <= 2) Or (2 > 1)

(2 >= 2) And (1 < 3)

(2 >= 1) Or (1 <> 1)

(1 = 1) And (2 = 2)

Here are some expressions that evaluate to True:

(“a” = “A”) Or (“b” = “B”)

Not (1 = 1)

(1 >= 2) Or (2 < 1)

(3 > 4) And (3 < 5)

(2 < 2) And (1 = 1)

(2 <= 1) Or (1 > 2)

(1 = 2) Or (2 = 1)

The Visual Basic .NET Coach
72

Chapter 4 – Decision Making
Drill 4.10
Indicate whether each expression evaluates to True or False

1 Not (5 >= 4) Answer: False

2 (-3 < -4) Or (1 = 1) Answer: True

3 (“BOB” = “bob”) And (2 >= 2) Answer: False

4 (2 < 1) Or (5 <> 4) Answer: True

5 (1 < 2) Or (4 >= 4) Answer: True

6 Not (4 <= 4) And (1 <= 1) Answer: False

The Visual Basic .NET Coach
73

Chapter 4 – Decision Making
If Statement Using an And Operator
You can use compound conditional expressions in a program the same way as with the
previous conditional statements.

The following code shows the use of a compound conditional statement. The code assumes
that a button, btnCompoundIf, has been created to contain the code. Three text boxes –
txtRetailPrice, txtSalePrice, and txtOutput have been created to hold the input and
output of the user.

Private Sub btnCompoundIf_Click(...
Dim sngRetailPrice As Single
Dim sngSalesPrice As Single

sngRetailPrice = Val(txtRetailPrice.Text)
sngSalesPrice = Val(txtSalesPrice.Text)

If ((sngRetailPrice = sngSalesPrice) And (sngRetailPrice > 100)) Then
txtOutput.Text = "This product is not on sale and is expensive"

Else
txtOutput.Text = "This product may not be too expensive and " _

"may be on sale"
End If

End Sub

The Visual Basic .NET Coach
74

Chapter 4 – Decision Making
If Statement Using an And Operator Continued
What do you think would be contained in txtOutput:

1 If the user enters 50.25 for the retail price and 50.25 for the sales price?

2 If the user enters 125.13 for the retail price and 125.13 for the sales price?

3 If the user enters 150.00 for the retail price and 125.13 for the sales price?

4 If the user enters 99.90 for the retail price and 75.00 for the sales price?

Answer: The condition will evaluate to False and the text “This product may not be too
expensive and may be on sale” is assigned to the output text box.

Answer: The condition will evaluate to True and the text “This product is not on sale and is
expensive” is assigned to the output text box.

Answer: The condition will evaluate to False and the text “This product may not be too
expensive and may be on sale” is assigned to the output text box.

Answer: The condition will evaluate to False and the text “This product may not be too expensive
and may be on sale” is assigned to the output text box.

The Visual Basic .NET Coach
75

Chapter 4 – Decision Making
If Statement Using an Or Operator
This code demonstrates the use of an Or operator. It assumes that a button, btnCompoundIf,
has been created to contain the code.

Three text boxes – txtRetailPrice, txtSalePrice, and txtOutput have been created to
hold the input and output of the user.

Private Sub btnCompoundIf_Click(...
Dim sngRetailPrice As Single
Dim sngSalesPrice As Single

sngRetailPrice = Val(txtRetailPrice.Text)
sngSalesPrice = Val(txtSalesPrice.Text)

If ((sngRetailPrice = sngSalesPrice) Or (sngRetailPrice > 100)) Then
txtOutput.Text = "This product is either not on sale or very

expensive"
Else

txtOutput.Text = "This product is on sale and not expensive“
End If

End Sub

The Visual Basic .NET Coach
76

Chapter 4 – Decision Making
If Statement Using an Or Operator Continued
What do you think would be contained in txtOutput:

1 If the user enters 50.25 for the retail price and 50.25 for the sales price?

2 If the user enters 125.13 for the retail price and 125.13 for the sales price?

3 If the user enters 150.00 for the retail price and 125.13 for the sales price?

4 If the user enters 99.90 for the retail price and 75.00 for the sales price.

Answer: The condition will evaluate to True and the text “This product is either not on sale or
very expensive” is assigned to the output text box.

Answer: The condition will evaluate to True and the text “This product is either not on sale or
very expensive” is assigned to the output text box.

Answer: The condition will evaluate to True and the text “This product is either not on sale or
very expensive” is assigned to the output text box.

Answer: The condition will evaluate to False and the text “This product is on sale and not
expensive” is assigned to the output text box.

The Visual Basic .NET Coach
77

Chapter 4 – Decision Making
If Statement Using a Not Operator
This code demonstrates the use of an Not operator.

It assumes that a button, btnCompoundIf, has been created to contain the code as in
previous examples.

Private Sub btnCompoundIf_Click(...
Dim sngRetailPrice As Single
Dim sngSalesPrice As Single

sngRetailPrice = Val(txtRetailPrice.Text)
sngSalesPrice = Val(txtSalesPrice.Text)

If (Not (sngRetailPrice >= sngSalesPrice)) Then
txtOutput.Text = “The Sales Price is greater than the Retail Price”

Else
txtOutput.Text = “The Sales Price is less than or equal to “_

“the Retail Price”
End If

End Sub

The Visual Basic .NET Coach
78

Chapter 4 – Decision Making
If Statement Using a Not Operator Continued
What do you think would be contained in txtOutput:

1 If the user enters 50.25 for the retail price and 50.25 for the sales price?

2 If the user enters 49.95 for the retail price and 125.13 for the sales price?

Answer: The condition will evaluate to False and the text “The Sales Price is less than or
equal to the Retail Price” is assigned to the output text box.

Answer: The condition will evaluate to True and the text “The Sales Price is greater than the
Retail Price” is assigned to the output text box.

The Visual Basic .NET Coach
79

Chapter 4 – Decision Making
Drill 4.11
Use the same application as the previous drills, but change the code in the button as follows:

Private Sub btnCompoundIf_Click(...
Dim sngRetailPrice As Single
Dim sngSalesPrice As Single

sngRetailPrice = Val(txtRetailPrice.Text)
sngSalesPrice = Val(txtSalesPrice.Text)

If ((sngRetailPrice >= sngSalesPrice) And _
(Not (sngSalesPrice > 75))) Then
txtOutput.Text = “This crazy drill outputs True”

Else
txtOutput.Text = “This crazy drill outputs False”

End If
End Sub

The Visual Basic .NET Coach
80

Chapter 4 – Decision Making
Drill 4.11 Continued
What do you think would be contained in txtOutput:

1 If the user enters 99.95 for the retail price and 50.25 for the sales price?

2 If the user enters 199.95 for the retail price and 99.95 for the sales price?

Answer: The condition will evaluate to True and the text “This crazy drill outputs True” is
assigned to the output text box.

Answer: The condition will evaluate to False and the text “This crazy drill outputs False” is
assigned to the output text box.

The Visual Basic .NET Coach
81

Chapter 4 – Decision Making
Example: Improved Voting Booth

Problem Description
Our previous Voting Booth application allowed for the counting of votes for three candidates
and a count of the number of incorrect votes.

If this system were used in the real world, you would have a great number of incorrect votes
that were really meant to be a vote for one of the three candidates.

Since you checked only the spelling for each name, what do you think would happen if you type
Al Gore instead of Gore? The answer is that the vote would be counted as an incorrect vote.

Problem Discussion
One way to solve this problem is to use compound conditional statements to check for the
additional spellings of each name.

The only modification required to the application would be the code in the btnVote button’s
Click event.

The Visual Basic .NET Coach
82

Chapter 4 – Decision Making
Problem Solution
Observe the modifications to the btnVote button that add additional spellings for each
candidate.

Private Sub btnVote_Click(...
If (txtVote.Text = "Bush") Or (txtVote.Text = "George Bush") Then

intBushCount += 1
ElseIf (txtVote.Text = "Gore") Or (txtVote.Text = "Al Gore") Then

intGoreCount += 1
ElseIf (txtVote.Text = "Nader") Or (txtVote.Text = "Ralph Nader") Then

intNaderCount += 1
Else

intErrorCount += 1
End If

'Erase the vote
txtVote.Text = ""

End Sub

The Visual Basic .NET Coach
83

Chapter 4 – Decision Making
4.4 Nested Conditional Statements
Compound conditional statements are useful for mapping real-world situations to the computer.

If a part of the condition needs to be repeated more than once, it would be inefficient to repeat
the check of that condition each time.

Visual Basic .NET provides the ability to nest conditional statements.

It is simply a matter of placing one conditional statement inside another.

This simply requires treating the inner If statement as an individual If statement to be
evaluated as you would any other statement.

Here is a real-world example of when this would be useful:

The Visual Basic .NET Coach
84

Chapter 4 – Decision Making
Nested If Statements
The following code loosely implements the previous flowchart. It will not ask the questions
depicted, it will process the answers to the three questions as if they were asked as portrayed
in the flowchart.

The code assumes that a btnCompoundConditional button has been created to place the
code and that three text boxes – txtQuestion1, txtQuestion2, and txtOutput were
created to hold the input and output.

Private Sub btnCompoundConditional_Click(...
If (txtQuestion1.Text = "Yes") Then

If (txtQuestion2.Text = "Yes") Then
txtOutput.Text = "Basketball"

Else
txtOutput.Text = "Hockey"

End If
Else

If (txtQuestion2.Text = "Yes") Then
txtOutput.Text = "Opera"

Else
txtOutput.Text = "Philharmonic"

End If
End If

End Sub

The Visual Basic .NET Coach
85

Chapter 4 – Decision Making
Nested If Statements Continued
What do you think would be contained in txtOutput:

1 If the user enters “Yes” in txtQuestion1 and “Yes” in txtQuestion2?

2 If the user enters “Yes” in txtQuestion1 and “No” in txtQuestion2?

3 If the user enters “No” in txtQuestion1 and “Yes” in txtQuestion2?

4 If the user enters “No” in txtQuestion1 and “No” in txtQuestion2?

Answer: The text “Basketball” is placed in the text box.

Answer: The text “Hockey” is placed in the text box.

Answer: The text “Opera” is placed in the text box.

Answer: The text “Philharmonic” is placed in the text box.

The Visual Basic .NET Coach
86

Chapter 4 – Decision Making
Drill 4.12
Assume that a btnCompoundConditional button has been created to place the code and
that two text boxes, txtInput and txtOutput were created to hold the input and output.

Private Sub btnCompoundConditional_Click(...
Dim intDrillValue As Integer
intDrillValue = Val(txtInput.Text)
If (intDrillValue = 1) Then

If (intDrillValue <= 1) Then
txtOutput.Text = "This will output, from the 1st Inner If"

Else
txtOutput.Text = "This will output, from the 1st Inner Else"

End If
Else

If (intDrillValue < 1) Then
txtOutput.Text = "This will output, from the 2nd Inner If"

Else
txtOutput.Text = "This will output, from the 2nd Inner Else"

End If
End If

End Sub

The Visual Basic .NET Coach
87

Chapter 4 – Decision Making
Drill 4.12 Continued
What do you think would be contained in txtOutput:

1 If the user enters 0 in txtInput?

2 If the user enters 1 in txtInput?

3 If the user enters 2 in txtInput?

Answer: The text “This will output, from the 2nd Inner If” is placed in the text box.

Answer: The text “This will output, from the 1st Inner If” is placed in the text box.

Answer: The text “This will output, from the 2nd Inner Else” is placed in the text box.

The Visual Basic .NET Coach
88

Chapter 4 – Decision Making
Example: Improved Voting Booth

Problem Description
Imagine if instead of writing a Voting Booth application for a single presidential race, you
needed to develop a Voting Booth application that could be used for additional races as well.

Change your current application to count votes for the presidential and vice presidential
elections.

For simplicity’s sake, you will limit the candidates to George Bush and Al Gore for the
presidency and Dick Cheney and Joe Lieberman for the vice presidency.

The Visual Basic .NET Coach
89

Chapter 4 – Decision Making
Problem Discussion
You will need a variable for each candidate to track the number of valid votes that they receive.

You will also keep a single variable to track all of the improperly cast votes.

Additionally, you will need to modify the results to display the additional candidates and modify
the processing of the votes to handle the new race text box as well as the additional
candidates.

The Visual Basic .NET Coach
90

Chapter 4 – Decision Making
Problem Solution
The code required for the additional variables needs to be declared in the Declarations
section of the form.

Dim intBushCount As Integer
Dim intGoreCount As Integer
Dim intCheneyCount As Integer
Dim intLiebermanCount As Integer
Dim intErrorCount As Integer

You would need to change the code for the btnResults button so that it outputs all of the results
of the election.

Private Sub btnResults_Click(...
lblResults.Text = "Bush had " & intBushCount.ToString() & _
" Votes, Gore had " & intGoreCount.ToString() & _
" Votes, Cheney had " & intCheneyCount.ToString() & _
" Votes, Lieberman had " & intLiebermanCount.ToString() & " Votes" & _
" and " & intErrorCount.ToString() & " Errors"

End Sub

The Visual Basic .NET Coach
91

Chapter 4 – Decision Making
Problem Solution Continued
If you didn’t nest the conditional statements, your code would execute more slowly.

When a condition is repeatedly checked, consider using the nested form.

Each time you check a candidate which the nonnested example, you have to recheck the
condition to indicate whether this vote is for a president or a vice president.

The Visual Basic .NET Coach
92

Chapter 4 – Decision Making
Problem Solution Continued
Here is correct code for the btnVote Click even:

Private Sub btnVote_Click(...
If (txtRace.Text = "Pres") Then

If (txtVote.Text = "Bush") Or (txtVote.Text = "George Bush") Then
intBushCount += 1

ElseIf (txtVote.Text = "Gore") Or (txtVote.Text = "Al Gore") Then
intGoreCount += 1

Else
intErrorCount += 1

End If
ElseIf (txtRace.Text = "Vice") Then

If (txtVote.Text = "Cheney") Or (txtVote.Text = "Dick Cheney") Then
intCheneyCount += 1

ElseIf (txtVote.Text = "Lieberman") Or
(txtVote.Text = "Joe Lieberman") Then

intLiebermanCount += 1
Else

intErrorCount += 1
End If

Else
intErrorCount += 1

End If

'Erase the vote
txtVote.Text = ""
txtRace.Text = ""

End Sub

The Visual Basic .NET Coach
93

Chapter 4 – Decision Making
Problem Solution Continued
Here is incorrect code for the btnVote Click even:

Private Sub btnVote_Click(...
If (txtRace.Text = "Pres") And _

((txtVote.Text = "Bush") Or (txtVote.Text = "George Bush")) Then
intBushCount += 1

ElseIf (txtRace.Text = "Pres") And _
((txtVote.Text = "Gore") Or (txtVote.Text = "Al Gore")) Then
intGoreCount += 1

ElseIf (txtRace.Text = "Vice") And _
((txtVote.Text = "Cheney") Or (txtVote.Text = "Dick Cheney")) Then
intCheneyCount += 1

ElseIf (txtRace.Text = "Vice") And _
((txtVote.Text = "Lieberman") Or _
(txtVote.Text = "Joe Lieberman")) Then
intLiebermanCount += 1

Else
intErrorCount += 1

End If

'Erase the vote
txtVote.Text = ""
txtRace.Text = ""

End Sub

The Visual Basic .NET Coach
94

Chapter 4 – Decision Making
4.5 Select Case Statements
As your applications become more complex, you may have many conditions to check.

Using multiple If, ElseIf, and Else statements can become burdensome.

A Select Case statement gives the programmer the ability to shortcut the process of
describing under what conditions certain code should be executed.

Select Case Expression
Case Possible Value or Range of Values

Statement(s)
Case Another Possible Value or Range of Values

Statement(s)
.
.
.

Case Else
Statement(s)

End Select

The Visual Basic .NET Coach
95

Chapter 4 – Decision Making
The expression in a Select Case statement may be

a numeric variable

a string variable

a simple expression composed of operators and variables

The possible values in a Case statement may be

a numeric constant

a string constant

a numeric variable

a string variable

a range of values

a combination of the above

The Visual Basic .NET Coach
96

Chapter 4 – Decision Making
Select Case Statement with Numeric Values
You can use a Select Case statement in a program in the same way as conditional statements.

The following code shows the use of a Select Case statement to demonstrate how many
dozens of roses are being ordered.

The code assumes that a button, btnSelectCase, has been created to contain the code.

The text boxes txtInput and txtOutput have been created to hold the input and output,
respectively.

Private Sub btnSelectCase_Click(...
Dim intExampleValue As Integer

intExampleValue = Val(txtInput.Text)

Select Case intExampleValue
Case 12

txtOutput.Text = "Your order of a dozen roses has been placed"
Case 24

txtOutput.Text = "Your order of two dozen roses has been placed"
Case Else

txtOutput.Text = "You must order either one or two dozen roses"
End Select

End Sub

The Visual Basic .NET Coach
97

Chapter 4 – Decision Making
Select Case Statement with Numeric Values Continued
What do you think would be contained in txtOutput:

1 If the user enters 12 in txtInput?

2 If the user enters 24 in txtInput?

3 If the user enters 0 in txtInput?

Answer: The text “Your order of a dozen roses has been placed” is placed in the text box.

Answer: The text “Your order of two dozen roses has been placed” is placed in the text box.

Answer: The text “You must order either one or two dozen roses” is placed in the text box.

The Visual Basic .NET Coach
98

Chapter 4 – Decision Making
Select Case Statement with String Values
Select Case statements can also be used with Strings.

The following code shows the use of Strings.

Private Sub btnSelectCase_Click(...
Select Case txtPlayer.Text
Case "Allen Iverson"

txtOutput.Text = "Iverson Rules the NBA"
Case "Theo Ratliff"

txtOutput.Text = "Ratliff is the ultimate shot blocker"
Case Else

txtOutput.Text = "Try again"
End Select

End Sub

The Visual Basic .NET Coach
99

Chapter 4 – Decision Making
Select Case Statement with Numeric Values Continued
What do you think would be contained in txtOutput:

1 If the user enters “Allen Iverson” in txtInput?

2 If the user enters “Theo Ratliff” in txtInput?

3 If the user enters “Michael Jordan” in txtInput?

Answer: The text “Iverson Rules the NBA” is placed in the text box.

Answer: The text “Ratliff is the ultimate shot blocker” is placed in the text box.

Answer: The text “Try again” is placed in the text box.

The Visual Basic .NET Coach
100

Chapter 4 – Decision Making
Select Case Statement with Multiple String Values
One great feature of a Select Case statement is the ability to indicate a Case as a series of
Strings to compare against.

If you wish the same code to execute for more than one String, simply list them one after
another separated by commas.

Select Case VariableToTestAgainst
Case "FirstString", "SecondString", "ThirdString"

txtOutput.Text = "1st Output"
Case "FourthString", "FifthString", "SixthString"

txtOutput.Text = "2nd Output"
.
.
.

Case Else
txtOutput.Text = "String Not Found"

End Select

The Visual Basic .NET Coach
101

Chapter 4 – Decision Making
Select Case Statement with Multiple String Values Continued
Following is a simple example demonstrating how you can check for which sport an athlete plays.

It takes advantage of the use of multiple Strings in a Select Case statement to simplify the
code and assumes a text box txtAthlete has been created.

Select Case txtAthlete.Text
Case "Serena Williams", "Martina Hingis", "Anna Kournikova"

txtOutput.Text = "Tennis"
Case "Sheryl Swoopes", "Katie Smith", "Brandy Reed"

txtOutput.Text = "Basketball"
Case "Marion Jones", "Michelle Kwan"

txtOutput.Text = "Olympics"
Case Else

txtOutput.Text = "Some Other Event"
End Select

The Visual Basic .NET Coach
102

Chapter 4 – Decision Making
Select Case Statement with Multiple String Values Continued
What do you think would be contained in txtOutput:

1 If the user enters “Serena Williams” in txtInput?

2 If the user enters “Katie Smith” in txtInput?

3 If the user enters “Michael Jordan” in txtInput?

Answer: The text “Tennis” is placed in the text box.

Answer: The text “Basketball” is placed in the text box.

Answer: The text “Some Other Event” is placed in the text box.

The Visual Basic .NET Coach
103

Chapter 4 – Decision Making
Select Case Statement with a Range of Values
Select Case statements can also be used with multiple values in each Case statement. The
following code shows the use of a compound conditional expression and assumes a txtPoints
text box has been created.

Private Sub btnSelectCase_Click()
Dim intTotalPoints As Integer

intTotalPoints = Val(txtPoints.Text)
Select Case intTotalPoints

Case 0 To 10
txtOutput.Text = "Quite a bad night for Iverson"

Case 11 To 20
txtOutput.Text = "Allen should be able to do better"

Case 21 To 30
txtOutput.Text = "Not too shabby"

Case Is > 30
txtOutput.Text = "He shoots, he scores!"

Case Else
txtOutput.Text = "Error in Input"

End Select
End Sub

The Visual Basic .NET Coach
104

Chapter 4 – Decision Making
Select Case Statement with a Range of Values Continued
What do you think would be contained in txtOutput:

1 If the user enters 0 in txtInput?

2 If the user enters 15 in txtInput?

3 If the user enters 30 in txtInput?

4 If the user enters 50 in txtInput?

5 If the user enters -5 in txtInput?

Answer: The text “Quite a bad night for Iverson” is placed in the text box.

Answer: The text “Allen should be able to do better” is placed in the text box.

Answer: The text “Not too shabby” is placed in the text box.

Answer: The text “He shoots, he scores!” is placed in the text box.

Answer: The text “Error in Input” is placed in the text box.

The Visual Basic .NET Coach
105

Chapter 4 – Decision Making
Drill 4.13
The following code assumes that a button, btnSelectCase, has been created to contain the
code. Additionally, the text boxes txtInput and txtOutput have been created to hold the
input and output, respectively, of the user.

Private Sub btnSelectCase_Click(...

Dim intDrillValue As Integer
intDrillValue = Val(txtInput.Text)

Select Case intDrillValue
Case Is < 0

txtOutput.Text = "Error in Input"
Case 0 To 20

txtOutput.Text = "2nd Case Statement"
Case 21 To 30

txtOutput.Text = "3rd Case Statement"
Case 31 To 50

txtOutput.Text = "4th Case Statement"
Case Is > 50

txtOutput.Text = "5th Case Statement"
Case Else

txtOutput.Text = "Can I get here?"
End Select

End Sub

The Visual Basic .NET Coach
106

Chapter 4 – Decision Making
Drill 4.13 Continued
What do you think would be contained in txtOutput:

1 If the user enters 0 in txtInput?

2 If the user enters 100 in txtInput?

3 If the user enters -50 in txtInput?

4 Is there any value that the user can enter that will allow the Case Else statement to
execute?

Answer: The text “2nd Case Statement” is placed in the text box.

Answer: The text “5th Cast Statement” is placed in the text box.

Answer: The text “Error in Input” is placed in the text box.

Answer: No.

The Visual Basic .NET Coach
107

Chapter 4 – Decision Making
Example: Improved Compute Grade Application

Problem Description
The Compute Grade application from Section 4.2 determined a letter grade for a class given a
numerical grade as input.

Rewrite that example but implement it using a Select Case statement instead of If, ElseIf,
and Else statement.

To the user of the application it will appear that nothing has changed.

Problem Discussion
The only code that must change is in btnCompute_Click().

You can take advantage of the fact that you can list multiple String values to check against for a
single case on a single line to greatly simplify the code.

The Visual Basic .NET Coach
108

Chapter 4 – Decision Making
Problem Solution
Examine the following code:

Private Sub btnCompute_Click(...
Dim intGrade As Integer 'Declare temporary variable

intGrade = Val(txtNumericGrade.Text) 'Convert user input to an Integer

'Compute Grade
Select Case intGrade
Case Is >= 90

lblLetterGrade.Text = "A"
Case Is >= 80

lblLetterGrade.Text = "B"
Case Is >= 70

lblLetterGrade.Text = "C"
Case Is >= 60

lblLetterGrade.Text = "D"
Case Else

lblLetterGrade.Text = "F"
End Select

End Sub

The Visual Basic .NET Coach
109

Chapter 4 – Decision Making
4.6 Case Study
Problem Description
This case study will be a continuation of last chapter’s case study to compute the payroll of four
workers for a company.

You want to add the functionality to compute the pay of each worker at two different pay rates.

You will have a rate of $25/hour for workers who are in the sales department and a rate of
$15/hour for workers in the processing department.

You will need a set of text box controls that allow the user to indicate a department for each
employee.

The Visual Basic .NET Coach
110

Chapter 4 – Decision Making
Problem Description Continued
Here is a sample input and output of your application.

The Visual Basic .NET Coach
111

Chapter 4 – Decision Making
Problem Discussion
The solution to the problem does not change much from the previous chapter’s case study.

The main difference is that you need to check which pay rate to use in the calculation of the
weekly pay.

Again, most of the controls for your application were placed on the form in the previous chapter.

You need only add the controls for the department label and text boxes.

What you call the label control is unimportant.

You should call the department text boxes txtDept1, txtDept2, txtDept3, and txtDept4.

The Visual Basic .NET Coach
112

Chapter 4 – Decision Making
Problem Solution
Although it is not required, the use of constants in this solution is desirable.

You should code a constant to indicate the pay rates for the sales and processing departments.

The constant for the sales department and processing department pay rates will be called
decSalesPayRate and decProcessingPayRate, respectively.

This way you can change either pay rate once and have it affect the entire application.

To set the constant, perform the following steps:

Step 1: Right-click the mouse button and click on View Code.

Step 2: Select the Declarations area of code.

Step 3: Type "Const decSalesPayRate As Decimal = 25".

Step 4: Type "Const decProcessingPayRate As Decimal = 15".

Your code should look like this:

Const decSalesPayRate As Decimal = 25
Const decProcessingPayRate As Decimal = 15

The Visual Basic .NET Coach
113

Chapter 4 – Decision Making
Problem Solution Continued
The btnCalculate button’s Click event code must set each weekly pay’s value to the
number of hours worked multiplied by the pay rate associated with each employee’s
department. The code is shown here:
Private Sub btnCalculate_Click(...

'Temporary Variables to Store Calculations
Dim decTotalPay As Decimal
Dim decWeeklyPay As Decimal

'First Person’s Calculations
If (txtDept1.Text = "Sales") Then

decWeeklyPay = decSalesPayRate * Val(txtHours1.Text)
ElseIf (txtDept1.Text = "Processing") Then

decWeeklyPay = decProcessingPayRate * Val(txtHours1.Text)
Else

decWeeklyPay = 0
End If
txtWeeklyPay1.Text = decWeeklyPay.ToString
decTotalPay = decWeeklyPay

'Second Person’s Calculations
If (txtDept2.Text = "Sales") Then

decWeeklyPay = decSalesPayRate * Val(txtHours2.Text)
ElseIf (txtDept2.Text = "Processing") Then

decWeeklyPay = decProcessingPayRate * Val(txtHours2.Text)
Else

decWeeklyPay = 0
End If
txtWeeklyPay2.Text = decWeeklyPay.ToString()
decTotalPay += decWeeklyPay

The Visual Basic .NET Coach
114

Chapter 4 – Decision Making
Problem Solution Continued
code continued:

'Third Person’s Calculations
If (txtDept3.Text = "Sales") Then

decWeeklyPay = decSalesPayRate * Val(txtHours3.Text)
ElseIf (txtDept3.Text = "Processing") Then

decWeeklyPay = decProcessingPayRate * Val(txtHours3.Text)
Else

decWeeklyPay = 0
End If
txtWeeklyPay3.Text = decWeeklyPay.ToString()
decTotalPay += decWeeklyPay

'Fourth Person’s Calculations
If (txtDept4.Text = "Sales") Then

decWeeklyPay = decSalesPayRate * Val(txtHours4.Text)
ElseIf (txtDept4.Text = "Processing") Then

decWeeklyPay = decProcessingPayRate * Val(txtHours4.Text)
Else

decWeeklyPay = 0
End If
txtWeeklyPay4.Text = decWeeklyPay.ToString()
decTotalPay += decWeeklyPay

'Convert Total Pay to a string and copy to TextBox
txtTotalPay.Text = decTotalPay.ToString()

End Sub

The Visual Basic .NET Coach
115

Chapter 4 – Decision Making
Problem Solution Continued
The final application should look like this:

The Visual Basic .NET Coach
116

Chapter 4 – Decision Making
Coach’s Corner
Adding Functionality to the Message Box
With a slight modification to the MsgBox command, you can ask the user a question and get an
answer without having to create new forms.

If you want to ask a simple Yes/No question, you can ask it using the MsgBox command.

The following code will ask the question “Should everyone in the class get an A?” and store the
result in the variable intAnswer.

intAnswer = MsgBox("Should everyone in the class get an A?", _
MsgBoxStyle.YesNo, "Question")

The message box would look like this:

The Visual Basic .NET Coach
117

Chapter 4 – Decision Making

Retry/Cancel

Ok/Cancel

Yes/No/Cancel

Yes/No

RetryCancel

OkCancel

YesNoCancel

YesNo

By using the following constants, you can create dialog boxes with the following buttons:

RetryvbRetry

OK

Cancel

No

Yes

vbOk

vbCancel

vbNo

vbYes

By using the following constants, you can check to see what the user’s response was:

The Visual Basic .NET Coach
118

Chapter 4 – Decision Making
Short Circuit Analysis of Conditional Statements
In Visual Basic .NET, the evaluation of conditional statements is performed using short circuit
analysis.

A very loose definition is that the conditional statement is evaluated as long as the outcome of
the conditional statement is unknown.

Once the outcome is determined, the evaluation of the conditional statement ceases.

When you use short circuit analysis, the performance of your applications increases.

Imagine if you wanted to write a conditional statement that displayed whether the average of a
series of homework grades was passing or failing.

You could use code as follows:

If (intNumberGrades > 0) And (intGradeTotal / intNumberGrades >= 65)Then
MsgBox("Pass")

Else
MsgBox("Fail")

End If

Without short circuit evaluation, if intNumberGrades equals 0, the execution of the code
would cause a run-time error.

With short circuit evaluation, the second condition never evaluates and the message box
displays "Fail".

The Visual Basic .NET Coach
119

Chapter 4 – Decision Making
Drill 4.14
Determine if the following conditions and values cause all the conditional expressions to be
evaluated.

Dim intDrillValue As Integer
intDrillValue = 70
If ((intDrillValue >= 65) And (intDrillValue <= 75)) Then

Answer: Both conditions have to be evaluated and the result is True

Dim intDrillValue As Integer
intDrillValue = 70
If ((intDrillValue >= 65) Or (intDrillValue <= 75)) Then

Answer: Only the first condition is evaluated and the result is True

Dim intDrillValue As Integer
intDrillValue = 70
If ((intDrillValue <= 65) Or (intDrillValue >= 75)) Then

Answer: Both conditions must be evaluated and the result is False

