
The Visual Basic .NET Coach
1

Chapter 3 – Performing
Operations and Storing the Results

3.1 Variables
Visual Basic .NET allows you to store values in a variable.

Creating a variable requires the same specifications as creating an object.

You must allocate the appropriate amount of space and associate a name and data type for it.

To reference the stored value throughout the program you must give variable a valid variable
name.

You must select from a list of variable data types indicating to Visual Basic .NET how much
space to allocate and how to process and display the variable.

The Visual Basic .NET Coach
2

Chapter 3 – Performing
Operations and Storing the Results

Variable Data Types
Variables of different data types exist so that you can store different types of values.

Integer is one of the data types available in Visual Studio .NET to represent whole numbers.

Typically you would represent integers are a number following the pattern:

-3 -2 -1 0 1 2 3

Positive, negative numbers, and the number 0 are all numbers included.

The Visual Basic .NET Coach
3

Chapter 3 – Performing
Operations and Storing the Results

Selecting the Proper Data Type
Visual Basic .NET provides three data types that store integers.

Which data type is chosen depends on the range of values required by the variable.

Maximum and minimum size of a variable must be taken into account.

Short data type is for values between –32,768 and 32,767.

Integer data type can store a value from –2,147,483,648 to 2,147,483,647.

Long can store a value from –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

The Visual Basic .NET Coach
4

Chapter 3 – Performing
Operations and Storing the Results

Selecting the Proper Data Type Continued
You can use the Long data type in all cases to safeguard against choosing the wrong data type.

However, this will waste memory, since Long variable takes twice the space of an Integer
variable.

If you choose a variable to be a Short and then set it to a value out of the range of the variable,
you will get an execution error (a run-time error).

Overflow is the term used to describe when you try to store a value in a variable that is too big.

If you run the following code, you will get an execution error like shown below.

Private Sub btnCalculate_Click(…
Dim shtVariable As Short

shtVariable = 32767
shtVariable = shtVariable + 1

End Sub

The Visual Basic .NET Coach
5

Chapter 3 – Performing
Operations and Storing the Results

Other Variable Data Types
Visual Basic .NET provides multiple options for selecting the data type of the variable to use
when storing decimal numbers.

Each data type for numerical values has different precisions and storage requirements.

You can select from Single, Double, or Decimal when creating a decimal variable (listed in
increasing order of precision and storage requirements).

Visual Basic .NET provides the String data type to allow the storage of characters.

You do not need to define how much space is required for Strings because a String’s storage
requirement is directly related to the length of the string that you wish to store.

A String is specified as a double quote (“), a series of characters, and another double quote.

The Date data type allows you to store a date. You need to enclose the date in # signs to use
this data type.

The Visual Basic .NET Coach
6

Chapter 3 – Performing
Operations and Storing the Results

Data Types, Summary

Varies based on the number of
characters

Character dataString

Floating point number with up to 6
digits of accuracy

Small floating point numbersSingle

-32,768 to 32,767Small integer numbersShort

–9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Really large integer numbersLong

-2,147,483,648 to 2,147,483,647Large integer numberInteger

Floating point number with up to 14
digits of accuracy

Large or high precision floating
point numbers

Double

Varies in size depending on the value
stored; can hold values much larger or
more precise than a Double

Large floating point numberDecimal

January 0100, to December 31, 9999Date and time dataDate

True or FalseLogical dataBoolean

RangeDescriptionData Type

The Visual Basic .NET Coach
7

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.1
In each real-world situation that follows, list the variable data type that would be most
appropriate.

1 A variable to store an hourly wage of an employee.

Answer: Decimal

2 A variable to store the average score on an exam that has the lowest possible grade of 0 and
highest grade of 100.

Answer: Short

3 A variable to store the sum of 50 test scores on an exam that has the lowest possible

grade of 0 and highest grade of 100.

Answer: Short

4 A variable to store the sum of 500 test scores on an exam that has the lowest possible

grade of 0 and highest grade of 100.
Answer: Integer

The Visual Basic .NET Coach
8

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.1 Continued
In each real-world situation that follows, list the variable data type that would be most
appropriate.

5 A variable to store the sum of 5,000 test scores on an exam that has the lowest

possible grade of 0 and highest grade of 100.

Answer: Integer

6 A variable to store the total number of products ordered. Up to 1 billion orders

can be placed, and each order can contain up to three products.

Answer: Long

7 A variable to store the expression “The 76ers are looking great this year!”

Answer: String

8 A variable to store tomorrow’s date.

Answer: Date

The Visual Basic .NET Coach
9

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.2
If the following code were executed, would an overflow occur? If so, why?

Private Sub btnCalculate_Click(...
Dim shtVariable As Integer

shtVariable = -32768
shtVariable = shtVariable + 1

End Sub

Answer: An overflow will not occur.

The Visual Basic .NET Coach
10

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.3
If the following code were executed, would an overflow occur? If so, why?

Private Sub btnCalculate_Click(...
Dim shtVariable As Integer

shtVariable = 10000
shtVariable = shtVariable * 3

End Sub

Answer: An overflow will not occur.

The Visual Basic .NET Coach
11

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.4
If the following code were executed, would an overflow occur? If so, why?

Private Sub btnCalculate_Click(...
Dim shtVariable As Integer

shtVariable = 32767
shtVariable = shtVariable – 5
shtVariable = shtVariable + 5
shtVariable = shtVariable + 1

End Sub

Answer: An overflow will occur on the last assignment of shtVariable.

The Visual Basic .NET Coach
12

Chapter 3 – Performing
Operations and Storing the Results

Variable Names
A variable name in Visual Basic .NET begins with a letter and may be followed by any
combination of letters, underscores, or digits. It can be as small as one letter or as large as 255
letters, underscores, and digits combined.

Variable name should be representative of the value that it is storing. More readable variable
names will make the program easier to follow.

Visual Basic .NET does not differentiate between two variable names that are identical except
for the case of the letters in their names. Therefore, it is not case sensitive with regard to
variable names.

Letters used in variable names can be either lowercase or uppercase. If you refer to the
variable with a different capitalization later in the program, Visual Basic .NET will convert the
capitalization to the one used earlier in the program.

The Visual Basic .NET Coach
13

Chapter 3 – Performing
Operations and Storing the Results

Variable Names Continued
Visual Basic .NET will immediately provide feedback if you have violated the rules of declaring
a variable: an underline will appear under the violating text.

If you then move the mouse pointer over the underlined text, a pop-up message with an
explanation of the error will appear.

The Visual Basic .NET Coach
14

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.5
Determine which of the following variable names are valid:

1 Maura

2 Ben

3 Maura&Ben

4 Maura_Ben

5 _MauraBen

6 IsThisLegal

7 HowAboutThis?

8 PrivateDancerWasTheNameOfASong

9 Private

Answer: 1, 2, 4, 6 , 8 are valid variable names

The Visual Basic .NET Coach
15

Chapter 3 – Performing
Operations and Storing the Results

Declaring a Variable
To use a variable in Visual Basic .NET, you must tell the compiler that the variable exists before
you actually access it. This is called declaring a variable.

Declaring or allocating a variable means that you are indicating to the computer the type of
variable that you wish to use as well as the name that you will use to reference it from within the
program.

By default, Visual Basic .NET will not allow you to use a variable that you have not declared.

By adding the code Option Strict On to the beginning of your module, you can prevent the
accidental conversion of one variable data type to another.

The Visual Basic .NET Coach
16

Chapter 3 – Performing
Operations and Storing the Results

The Dim and Public Keywords
There are two statements you can use to declare a variable.

The degree of visibility that other areas of code can see a variable is known as the scope of a
variable.

The Public keyword is used when you create applications with multiple forms. For now, stick to
using the Dim keyword when declaring a variable.

You need to first type the word Dim, followed by a space, followed by the variable name,
followed by the word As, followed by the data type of the variable.

The Visual Basic .NET Coach
17

Chapter 3 – Performing
Operations and Storing the Results

Adding a Comment
It is always a good idea to add a comment on the same line indicating the purpose of the
variable.

You add a comment to a line by typing a single quote and then the comment that you wish to
make.

Comments are not part of the actual code but a way of documenting the code so that it is more
understandable.

The Visual Basic .NET Coach
18

Chapter 3 – Performing
Operations and Storing the Results

Ambiguity in Variable Names
It is important when writing computer programs that you do not create ambiguous conditions.

If there is no clear indication of what you intend the computer to accomplish, then the computer
will not be able to guess what you intend.

That’s why you cannot use a dash in a variable name: there is no way to distinguish between
the minus operation and the dash.

The Visual Basic .NET Coach
19

Chapter 3 – Performing
Operations and Storing the Results

Naming Conventions
It is a good practice to use a naming convention when declaring variables.

All variable names start with a three-letter abbreviation indicating the variable’s data type.

After that, a variable should be described in enough detail so that its purpose is self-
explanatory.

It is a good standard to capitalize the first letter of each word used in the variable name.

Be consistent with any abbreviation that you might use repeatedly throughout your code.

strString

sngSingle

shtShort

lngLong

intInteger

dblDouble

decDecimal

dteDate

blnBoolean

PrefixData Type

The Visual Basic .NET Coach
20

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.6
What would happen if you tried to write code as follows?

Private Sub btnDrill_Click(...
strDrillValue = “Initial Value”
Dim strDrillValue As String
strDrillValue = “What will be the output?”
MsgBox(strDrillValue)

End Sub

Answer: With the default settings, you would have received an error indicating that a
reference to strDrillValue existed before the declaration of the variable.

The Visual Basic .NET Coach
21

Chapter 3 – Performing
Operations and Storing the Results

3.2 Simple Operators
Visual Basic .NET allows you to perform all the numerical operations you are familiar with.

A computer uses symbols called operators to indicate that an operation is to be performed.

Addition, subtraction, multiplication, and division are supported using operators +, -, *, and /
respectively.

The assignment operator is the equals size (=).

The exponent operator ^ is used to raise a number to a power.

The values that operators perform their actions upon are known as operands.

The Visual Basic .NET Coach
22

Chapter 3 – Performing
Operations and Storing the Results

Example of Operator Use
Follow this simple example to see how operators can be used.

Create Form
Step 1: Create a new project.

Step 2: Set the Name property of the form to frmAdd.

Step 3: Set the Text property to Addition Operator.

Add Output Label
Step 1: Place a label control in the middle of the form.

Step 2: Set the Name property to lblTotal.

Step 3: Clear the default text from the Text property.

The Visual Basic .NET Coach
23

Chapter 3 – Performing
Operations and Storing the Results

Example of Operator Use Continued

Add Button
Step 1: Place a button control below the lblTotal label.

Step 2: Set the Name property to btnAdd.

Step 3: Set the Text property to Add.

Step 4: Double-click on the btnAdd button and add the code shown below.

The Visual Basic .NET Coach
24

Chapter 3 – Performing
Operations and Storing the Results

Example of Operator Use Continued
The result is shown below.

The Visual Basic .NET Coach
25

Chapter 3 – Performing
Operations and Storing the Results

Order of Precedence
Expressions may contain not only values and operators but also parentheses.

Parenthesis tell the computer to calculate the operations inside the parentheses before
performing the rest of the calculations.

The order in which the operations are performed is referred to as the order of precedence of
the operations.

When reading from left to right, you perform all the operations in the parentheses first, then the
exponentiations, then all the multiplications and divisions, and finally all the additions and
subtractions.

Addition and Subraction+ -

Multiplication and Division* /

Exponentiation^

Parenthesis()

OperationsOperators

The Visual Basic .NET Coach
26

Chapter 3 – Performing
Operations and Storing the Results

Converting Data Types
Visual Basic .NET allows you to convert numerical values using a special routine, ToString,
to convert a numerical value to a String data type.

The routine ToString is called a method.

The Visual Basic .NET Coach
27

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.7
The following code snippets are designed to test your order of precedence knowledge. Try
working out each example first; then type in the snippet and execute it. Compare your results to
the answers found at the end of the chapter.

Private Sub btnDrill_Click(...
lblOutput.Text = (4 + 5 * 6 – 3 / 3 + 6).ToString

End Sub

Answer: 39

Private Sub btnDrill_Click(...
lblOutput.Text = ((4 + 5) * 6 – (3 / 3 + 6)).ToString

End Sub

Answer: 47

Private Sub btnDrill_Click(...
lblOutput.Text = ((4 + 5) / (1 + 2)).ToString

End Sub

Answer: 3

The Visual Basic .NET Coach
28

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.7 Continued

Private Sub btnDrill_Click(...
lblOutput.Text = (4 * 5 * (3 + 3)).ToString

End Sub

Answer: 120

Private Sub btnDrill_Click(...
lblOutput.Text = (2 – 2 / 2 + 2 * 2 - 3).ToString

End Sub

Answer: 2

Private Sub btnDrill_Click(...
lblOutput.Text = (2 + 2 * 2 ^ 3 - 3).ToString

End Sub

Answer: 15

The Visual Basic .NET Coach
29

Chapter 3 – Performing
Operations and Storing the Results

Enforcement of Proper Data Type
Visual Basic .NET is not as strict in enforcing the use of proper data types as some other
languages are.

Other languages do not produce results of one data type when the calculation is performed on
operands of another data type.

The Visual Basic .NET Coach
30

Chapter 3 – Performing
Operations and Storing the Results

Example: Counter Application
Create an application that acts as a counter.

A counter should start at 0 and increment by 1 each time a button is pressed.

It is also useful to have an additional button that will reset the counter to 0.

The Visual Basic .NET Coach
31

Chapter 3 – Performing
Operations and Storing the Results

Perform the following steps

Create Form
Step 1: Create a new project.

Step 2: Set the Name property of the form to frmCounter.

Step 3: Set the Text property to Simple Counter Application.

Step 4: Right-click on Form1.vb in the Solution Explorer and rename the form to
frmCounter.vb.

The Visual Basic .NET Coach
32

Chapter 3 – Performing
Operations and Storing the Results

Add intCounter Variable
Step 1: Right-click on the form.

Step 2: Click on the View Code item in the pop-up menu.

Step 3: Your code should default to the Declarations section. The pull-downs of your code
should look like this one below.

Switch back to the object view of the application by clicking on the
frmCounter.bn[Design]* tab.

The Visual Basic .NET Coach
33

Chapter 3 – Performing
Operations and Storing the Results

Add Title Label
Step 1: Place a label control in the middle of the form.

Step 2: Set the Name to lblTitle.

Step 3: Set the Text to Simple Counter Application.

Step 4: Set the Font Size property to 14 and the Font Bold to True.

Step 5: Set the TextAlign property to MiddleCenter.

The Visual Basic .NET Coach
34

Chapter 3 – Performing
Operations and Storing the Results

Add Counter Label
Step 1: Place a label control in the middle of the form.

Step 2: Set the Name to lblCounter.

Step 3: Set the Text to 0.

Step 4: Set the Font Size property to 24 and the Font Bold to True.

Step 5: Set the TextAlign property to MiddleCenter.

The Visual Basic .NET Coach
35

Chapter 3 – Performing
Operations and Storing the Results

Add Counter Button
Step 1: Place a button control in the lower-left side of the form.

Step 2: Set the Name to btnCounter.

Step 3: Set the Text to Counter.

Step 4: Double-click on the button.

Step 5: Attach the code to add 1 to the counter as shown below.

The Visual Basic .NET Coach
36

Chapter 3 – Performing
Operations and Storing the Results

Add Reset Button
Step 1: Place a button control in the lower-right side of the form.

Step 2: Set the Name to btnReset.

Step 3: Set the Text to Reset.

Step 4: Double-click on the button.

Step 5: Attach the code to reset the counter to 0 as shown below.

The Visual Basic .NET Coach
37

Chapter 3 – Performing
Operations and Storing the Results

In the end your form should look like this:

Run this application to make sure it executes as expected.

The Visual Basic .NET Coach
38

Chapter 3 – Performing
Operations and Storing the Results

3.3 Local and Global Variables
When a variable is declared within an event, it is only visible within the code for that event.
Variables of this nature are known as local in scope.

When a variable is declared within the Declarations section of a form, it is visible to the
entire form and known as global in scope.

The Visual Basic .NET Coach
39

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.8
If the following three Click events are coded, what would be the output if the buttons were
clicked in the following order: btnInitialize, btnAdd, and btnOutput?

Public Class frmDrills
Inherits System.Windows.Forms.Form

Private Sub btnInitialize_Click(...
Dim intDrillValue As Integer
intDrillValue = 10

End Sub

Private Sub btnAdd_Click(...
intDrillValue = intDrillValue + 10

End Sub

Private Sub btnOutput_Click(...
MsgBox(intDrillValue.ToString())

End Sub
End Class

Answer: You will receive a build error stating that intDrillValue is not declared, and you
won’t be able to run the program.

The Visual Basic .NET Coach
40

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.9
If the following three Click events are coded, and the variable intDrillValue is declared in each
of the events, what would be the output if the buttons were clicked in the following order:
btnInitialize, btnAdd, and btnOutput?

Public Class frmDrills
Inherits System.Windows.Forms.Form
Dim intDrillValue As Integer

Private Sub btnInitialize_Click(...
intDrillValue = 10

End Sub

Private Sub btnAdd_Click(...
intDrillValue = intDrillValue + 10

End Sub

Private Sub btnOutput_Click(...
MsgBox(intDrillValue.ToString())

End Sub
End Class

Answer: When btnInitialize is clicked, intDrillValue becomes 10. When btnAdd is clicked,
intDrillValue becomes 20. Finally, then btnOutput is clicked, 20 is displayed.

The Visual Basic .NET Coach
41

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.10
If the following three Click events are coded, and the variable intDrillValue is declared in the
Declarations section, what would be the output if the buttons were clicked in the following
order: btnInitialize, btnAdd, and btnOutput?

Public Class frmDrills
Inherits System.Windows.Forms.Form
Dim intDrillValue As Integer

Private Sub btnInitialize_Click(...
Dim intDrillValue As Integer
intDrillValue = 10

End Sub

Private Sub btnAdd_Click(...
intDrillValue = intDrillValue + 10

End Sub

Private Sub btnOutput_Click(...
MsgBox(intDrillValue.ToString())

End Sub
End Class

Answer: The final output of the message box is 10.

The Visual Basic .NET Coach
42

Chapter 3 – Performing
Operations and Storing the Results

3.4 Constants
Values that will not change during the execution of the program are called constants.

By adding a name to associate with the value, your program becomes more readable.

Additionally, with the use of constants, you only have to change the value in a single place.

You wouldn’t want to risk the chance that you could inadvertently change a value that shouldn’t
be changed.

With the constant, you cannot. That is the reason why variables are not used in place of
constants.

The Visual Basic .NET Coach
43

Chapter 3 – Performing
Operations and Storing the Results

Defining a Constant
In order to declare a constant, you type the keyword Const, a space, followed by the name of
the constant, followed by a space, followed by an equals sign, followed by the value to set the
constant to.

Const ConstantName = Value

You may also include a data type for the constant and use an expression instead of the value.

Const ConstantName As DataType = Value

The Visual Basic .NET Coach
44

Chapter 3 – Performing
Operations and Storing the Results

Example: Sales Tax Calculation
Create a simple application to calculate the sales tax for a purchase. It will use a constant in
order to indicate the sales tax percentage. Perform the following steps

Create Form
Step 1: Create a new project called Sales Tax Calculation.

Step 2: Set the Name property of the form to frmSalesTax.

Step 3: Set the Text property to Sales Tax Calculation.

Step 4: Right-click on Form1.vb in the Solution Explorer and rename the form to
frmSalesTax.vb.

The Visual Basic .NET Coach
45

Chapter 3 – Performing
Operations and Storing the Results

Add Title Label
Step 1: Click on the label control in the Control toolbox.

Step 2: Draw a label control on the form.

Step 3: Set the Name property of the label to lblTitle.

Step 4: Change the Text property to Sales Tax Calculation.

Step 5: Change the Font Size property to 14 and the Font Bold to True.

Step 6: Change the TextAlign property to MiddleCenter.

The Visual Basic .NET Coach
46

Chapter 3 – Performing
Operations and Storing the Results

Add Purchase Price Label
Step 1: Place a label control on the form.

Step 2: Change the Name property to lblPurchasePrice.

Step 3: Change the Text property to Purchase Price.

Step 4: Change the Font Size property to 14 and the Font Bold property to True.

Add Sales Tax Label
Step 1: Place a label control on the form.

Step 2: Change the Name property to lblSalesTax.

Step 3: Change the Text property to Sales Tax.

Step 4: Change the Font Size property to 14 and the Font Bold property to True.

The Visual Basic .NET Coach
47

Chapter 3 – Performing
Operations and Storing the Results

Add Final Price Label
Step 1: Place a label control on the form.

Step 2: Change the Name property to lblFinalPrice.

Step 3: Change the Text property to Final Price.

Step 4: Change the Font Size property to 14 and the Font Bold property to True.

The Visual Basic .NET Coach
48

Chapter 3 – Performing
Operations and Storing the Results

Add Purchase Price Text Box
Step 1: Place a text box control on the form.

Step 2: Change the Name property to txtPurchasePrice.

Step 3: Erase the value in the Text property.

Add Sales Tax Text Box
Step 1: Place a text box control on the form.

Step 2: Change the Name property to txtSalesTax.

Step 3: Erase the value in the Text property.

The Visual Basic .NET Coach
49

Chapter 3 – Performing
Operations and Storing the Results

Add Final Price Text Box
Step 1: Place a text box control on the form.

Step 2: Change the Name property to txtFinalPrice.

Step 3: Erase the value in Text property.

The Visual Basic .NET Coach
50

Chapter 3 – Performing
Operations and Storing the Results

Add Calculation Button
Step 1: Place a button control on the form.

Step 2: Set the Name property of the control to btnCalculate.

Step 3: Change the Text property to Calculate.

The Visual Basic .NET Coach
51

Chapter 3 – Performing
Operations and Storing the Results

Add Code to the Button
Step 1: Double-click on the btnCalculate button.

Step 2: Type the declaration to define a constant called decSalesTaxRate as a Decimal
data type and set it equal to 0.06.

Step 3: Declare three variables: decSalesTaxAmount, decFinalPrice, and
decPurchasePrice.

Step 4: Convert the value stored in the txtPurchasePrice text box to a numerical value and
store it in the decPurchasePrice variable.

Step 5: Calculate the decSalesTaxAmount by multiplying the decSalesTaxRate by
decPurchasePrice.

Step 6: Calculate the decFinalPrice by adding the amount stored in the
decPurchasePrice and decSalesTaxAmount.

Step 7: Store the decSalesTaxAmount in the txtSalesTax text box.

Step 8: Store the decFinalPrice in the txtFinalPrice text box.

The Visual Basic .NET Coach
52

Chapter 3 – Performing
Operations and Storing the Results

Add Code to the Button Continued

The Visual Basic .NET Coach
53

Chapter 3 – Performing
Operations and Storing the Results

3.5 Complex Operators
Visual Basic .NET provides several complex operators.

You will often wish to perform such mathematical operations as adding a number to, subtracting
a number from, or multiplying a number by an existing variable and store the result back in the
same variable.

Refer to this table for a list of operators for that purpose:

strVar &= “New Text”strVar = strVar & “New Text”String
concatenation

intVar *= 1intVar = intVar * 1Multiplication

intVar /= 1intVar = intVar / 1Division

intVar -= 1intVar = intVar – 1Subtraction

intVar += 1intVar = intVar + 1Addition

Short Way of Writing the
Statement

Long Way of Writing the StatementOperation

The Visual Basic .NET Coach
54

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.11
What is the output if the btnOperators’ Click event is executed?

Private Sub btnOperators_Click(...
Dim intDrillValue As Integer

intDrillValue = 10
intDrillValue += 5

MsgBox(intDrillValue.ToString)
End Sub

Answer: The final value of intDrillValue is 15 and it is output in a message box.

The Visual Basic .NET Coach
55

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.12
What is the output if the btnOperators’ Click event is executed?

Private Sub btnOperators_Click(...
Dim intDrillValue As Integer

intDrillValue = 1
intDrillValue *= 5
intDrillValue += 5

MsgBox(intDrillValue.ToString)
End Sub

Answer: The final value of intDrillValue is 10 and it is output in a message box.

The Visual Basic .NET Coach
56

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.13
What is the output if the btnOperators’ Click event is executed?

Private Sub btnOperators_Click(...
Dim strDrillValue As String

strDrillValue = “This “
strDrillValue &= “and “
strDrillValue &= “that”

MsgBox(strDrillValue)
End Sub

Answer: “This and that” is output in the message box.

The Visual Basic .NET Coach
57

Chapter 3 – Performing
Operations and Storing the Results

Drill 3.14
What is the output if the btnOperators’ Click event is executed?

Private Sub btnOperators_Click(...
Dim strDrillValue As String

strDrillValue = “This “
strDrillValue = “and “
strDrillValue = “that”

MsgBox(strDrillValue)
End Sub

Answer: “that” is output in the message box.

The Visual Basic .NET Coach
58

Chapter 3 – Performing
Operations and Storing the Results

3.6 Using the Debugger
As your programs become more complex, you will need more sophisticated ways of
determining the source of errors.

You must learn how to use the Debugger.

You will use the previous example and step through its execution.

You will set a breakpoint at the start of the code you wrote.

A breakpoint is a signal to the Debugger to stop the execution of the application and wait for
further instructions on how to continue executing the application

The Visual Basic .NET Coach
59

Chapter 3 – Performing
Operations and Storing the Results

Start the Debugger
Step 1: A breakpoint is set by clicking to the left of the code you wish to be set as the
breakpoint. In the figure below the breakpoint is set to the beginning of the Click event code
for the btnCalculate button.

The Visual Basic .NET Coach
60

Chapter 3 – Performing
Operations and Storing the Results

Execute the Application
Step 2: Start running the application in the normal manner by clicking on the Start button or
hitting the <F5> key.

Step 3: Enter a value for the purchase price, 49.95. Do not enter the dollar sign.

The Visual Basic .NET Coach
61

Chapter 3 – Performing
Operations and Storing the Results

Stepping Into Code
Step 4: Click on the btnCalculate button. Notice that instead of executing the code, the
actual code is displayed. You are now in the Visual Basic .NET Debugger. The yellow
highlighting indicated what line you are about to execute. You can step through the Click
event line by line by clicking on the Debug menu item and then clicking on Step Into or you
can press the <F11> key.

The Visual Basic .NET Coach
62

Chapter 3 – Performing
Operations and Storing the Results

Stepping Over Code
Step 5: Unlike in Step 4, to move to the next line of code, use the <F10> key instead of
<F11>. The <F10> key will step over code instead of stepping into it. By stepping over code
you will prevent the accidental entry into additional code that may complicate the tracing of the
application. Press the <F10> key once. Notice how the yellow line skips over the declarations
and is over the first line of code to be executed. You cannot trace the declaration of variables.

The Visual Basic .NET Coach
63

Chapter 3 – Performing
Operations and Storing the Results

Displaying the Initial Value
Step 6: If you move the mouse pointer over objects and variables and then pause, the object’s
or variable’s value will be displayed in a mini pop-up window.

The Visual Basic .NET Coach
64

Chapter 3 – Performing
Operations and Storing the Results

Displaying Value
Step 7: Press the <F10> key one more time. The yellow highlighting is now over the next line
of code that is about to be executed.

Step 8: Place your mouse pointer over the variable decPurchasePrice to see its
value.

The Visual Basic .NET Coach
65

Chapter 3 – Performing
Operations and Storing the Results

Resume Execution
Step 9: You can either press the <F5> key once or press <F10> a few more times and the rest
of the code is executed.

The Visual Basic .NET Coach
66

Chapter 3 – Performing
Operations and Storing the Results

3.7 Case Study
Problem Description
This case study will modify the one from Chapter 3 and add the computational functionality that
was missing. You need to add a btnCalculate button that will automatically calculate a
person’s weekly pay as well as the total payroll cost.

A person’s weekly pay is calculated by multiplying the number of hours a person worked by a
fixed hourly rate of $9.50/hour.

The Visual Basic .NET Coach
67

Chapter 3 – Performing
Operations and Storing the Results

Problem Description Continued
After the btnCalculate button is clicked, the sample output for input shown previously should be
like this:

The Visual Basic .NET Coach
68

Chapter 3 – Performing
Operations and Storing the Results

Problem Discussion
The solution to the problem will entail two basic steps. You must compute the values for weekly
and total pay, and then you must assign those values to the text box controls for display.

Problem Solution
You need to add a button control, btnCalculate. This control will perform the calculations
necessary for the application.

The use of constant in this solution is desirable to indicate the pay rate.

To set the constant, perform the following steps:

Step 1: Right-click the mouse and click on View Code in the pop-up menu.

Step 2: Type “Const sngPayRate As Single = 9.5”.

The Visual Basic .NET Coach
69

Chapter 3 – Performing
Operations and Storing the Results

Place a Button
Step 1: Click on the frmPayroll.vb [Design] tab.

Step 2: Click on the button control in the toolbox.

Step 3: Draw a button control on the form.

Step 4: Change the Name property to btnCalculate.

Step 5: Change the Text property to Calculate.

Step 6: Add the code for the button.

The Visual Basic .NET Coach
70

Chapter 3 – Performing
Operations and Storing the Results

Button Code
Private Sub btnButton_Click(...

'Temporary Variables to Store Calculations
Dim decTotalPay As Decimal
Dim decWeeklyPay As Decimal

'First Person's Calculations
'Compute weekly pay of 1st person
decWeeklyPay = Val(txtHours1.Text) * sngPayRate
'Convert weekly pay to String and output
txtWeeklyPay1.Text = decWeeklyPay.ToString
'Initialize total pay to first person's weekly pay
decTotalPay = decWeeklyPay

'Second Person's Calculations
'Compute weekly pay of 2nd person
decWeeklyPay = Val(txtHours2.Text) * sngPayRate
'Convert weekly pay to String and output
txtWeeklyPay2.Text = decWeeklyPay.ToString
'Add to total pay 2nd person's pay
decTotalPay += decWeeklyPay

The Visual Basic .NET Coach
71

Chapter 3 – Performing
Operations and Storing the Results

Button Code Continued
'Third Person's Calculations
'Compute weekly pay of 3rd person
decWeeklyPay = Val(txtHours3.Text) * sngPayRate
'Convert weekly pay to String and output
txtWeeklyPay3.Text = decWeeklyPay.ToString
'Add to total pay 3rd person's pay
decTotalPay += decWeeklyPay

'Fourth Person's Calculations
'Compute weekly pay of fourth person
decWeeklyPay = Val(txtHours4.Text) * sngPayRate
'Convert weekly pay to String and output
txtWeeklyPay4.Text = decWeeklyPay.ToString
'Add to total pay 4th person's pay
decTotalPay += decWeeklyPay

'Convert Total Pay to a string and copy to TextBox
txtTotalPay.Text = decTotalPay.ToString

End Sub

The Visual Basic .NET Coach
72

Chapter 3 – Performing
Operations and Storing the Results

Final Result

The Visual Basic .NET Coach
73

Chapter 3 – Performing
Operations and Storing the Results

Converting Data Types
When a value is stored in a text box, it is stored as a String. In order to perform mathematical
calculations, you need to convert it to a numerical value.

Built-in function Val will return the numerical value for the String placed within the
parentheses.

To place the value back into the text box, you use the ToString method, which converts a
numerical value to a String data type.

The Visual Basic .NET Coach
74

Chapter 3 – Performing
Operations and Storing the Results

Coach’s Corner
Using MsgBox
You can use a message box to display information to the user of the application but not take
up space on your form for it.

The syntax of a simple call to a message box is illustrated below:

MsgBox (“Message”)

MsgBox is the function that indicates to Visual Basic .NET that you wish a message to be
displayed in a small window. Small windows like the one used for a message box are
commonly referred to as a dialog box.

To display a message, place any text you want displayed within a series of double quotes.

The Visual Basic .NET Coach
75

Chapter 3 – Performing
Operations and Storing the Results

Using MsgBox Continued
Follow these steps to create a message box:

Step 1: Add a button to a blank form.

Step 2: Change the Name property of the button to btnMessage.

Step 3: Change the Text property of the button to Message.

The Visual Basic .NET Coach
76

Chapter 3 – Performing
Operations and Storing the Results

Using MsgBox Continued
Step 4: Assign the code MsgBox(“Don’t Forget to Pay Your Taxes”) to the button.

The Visual Basic .NET Coach
77

Chapter 3 – Performing
Operations and Storing the Results

Using MsgBox Continued
Step 5: Run the application.

Step 6: Click on the button.

Step 7: The message box appears.

The Visual Basic .NET Coach
78

Chapter 3 – Performing
Operations and Storing the Results

More Complex Message Boxes
When you typed MsgBox and then a space, additional information appeared. This information
serves as a guide for you to provide additional options to the MsgBox command.

The first option is for the Prompt. The Prompt is the value that you typed to be displayed.

The other items are optional ways of further modifying the message box displayed. By selecting
different values, you can change the way your message box is displayed.

The Visual Basic .NET Coach
79

Chapter 3 – Performing
Operations and Storing the Results

Examples of Using MsgBox
Here are two examples of code followed by the resulting message box.

MsgBox (“Division By Zero Occurred”, MsgBoxStyle.Critical)

MsgBox (“You Had Better Pay Your Taxes Now”, MsgBoxStyle.Exclamation)

The Visual Basic .NET Coach
80

Chapter 3 – Performing
Operations and Storing the Results

More Complex Message Boxes Continued
You should explore more options by checking the help system or by exploring the type ahead
feature.

If you have typed your commands up to and including the comma after the prompt, a list
appears that you may choose from. Most options are self-explanatory.

The Visual Basic .NET Coach
81

Chapter 3 – Performing
Operations and Storing the Results

Adding a Title to the Message Box
By adding an additional parameter to the MsgBox statement, you can specify a title for the title
bar of the message box so that the message box does not use the title of the project as the title
of the window.

MsgBox (“Don’t Forget To Pay Your Taxes”, MsgBoxStyle.OkOnly, “Tax
Message”)

