Outline

- Attributes and Objects
- Types of Data
- Data Quality
- Data Preprocessing
- Similarity/Dissimilarity Measures

What is Data?

- Collection of data objects and their attributes
- Attribute is a property or characteristic of an object
- Examples: eye color of a person, temperature, etc.
- Attribute is also known as variable, field, characteristic, feature, or observation
- A collection of attributes describe an object
- Object is also known as record, point, case, sample,
 entity, or instance

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
- Same attribute can be mapped to different attribute values
- Example: height can be measured in feet or meters
- Different attributes can be mapped to the same set of values
- Example: Attribute values for ID and age are integers
- But properties of attribute values can be different
- ID has no limit but age has a maximum and minimum value

Types of Attributes

- There are different types of attributes
- Nominal
- Examples: ID numbers, eye color, zip codes
- Ordinal
- Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in \{tall, medium, short\}
- Interval
- Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- Ratio
- Examples: temperature in Kelvin, length, time, counts

Properties of Attribute Values

- The type of an attribute depends on which of the following properties it possess:
- Distinctness: $=\neq$
- Order: < >
- Addition: + -
- Multiplication: */
- Nominal attribute: distinctness
- Ordinal attribute: distinctness \& order
- Interval attribute: distinctness, order \& addition
- Ratio attribute: all 4 properties

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: \{male, female $\}$	mode, entropy, contingency correlation, χ^{2} test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, \{good, better, best $\}$, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. $(+,-)$	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*,/)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

$\begin{array}{c}\text { Attribute } \\ \text { Level }\end{array}$	Transformation	Comments
Nominal	Any permutation of values	$\begin{array}{l}\text { If all employee ID numbers } \\ \text { were reassigned, would it } \\ \text { make any difference? }\end{array}$
Ordinal	$\begin{array}{l}\text { An order preserving change of } \\ \text { values, i.e., } \\ \text { new_value }=\text { f(old_value }) \\ \text { where } f \text { is a monotonic function. }\end{array}$	$\begin{array}{l}\text { An attribute encompassing } \\ \text { the notion of good, better } \\ \text { best can be represented } \\ \text { equally well by the values } \\ \{1,2,3\} \text { or by }\{0.5,1,\end{array}$
$10\}$.		

Celsius temperature scales

differ in terms of where

their zero value is and the

size of a unit (degree).\end{array}\right\}\)

Discrete and Continuous Attributes

- Discrete Attribute
- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes
- Continuous Attribute
- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Types of data sets

- Common Types
- Record
- Graph
- Ordered
- General Characteristics:
- Dimensionality
- Sparsity
- Resolution

Record Data

- Data that consists of a collection of records, each of which consists of a fixed set of attributes

| Tid | Refund | Marital
 Status | Taxable
 Income | Cheat |
| :--- | :--- | :--- | :--- | :--- |$|$| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Yes | Single | 125 K | No |
| 2 | No | Married | 100 K | No |
| 3 | No | Single | 70 K | No |
| 4 | Yes | Married | 120 K | No |
| 5 | No | Divorced | 95 K | Yes |
| 6 | No | Married | 60 K | No |
| 7 | Yes | Divorced | 220 K | No |
| 8 | No | Single | 85 K | Yes |
| 9 | No | Married | 75 K | No |
| 10 | No | Single | 90 K | Yes |

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of \mathbf{x} Load	Projection of \mathbf{y} load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Document Data

- Each document becomes a `term' vector,
- each term is a component (attribute) of the vector,
- the value of each component is the number of times the corresponding term occurs in the document.

	$\begin{aligned} & \mathbb{\otimes} \\ & \stackrel{\#}{3} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{\circ} \end{aligned}$	$\stackrel{\text { D }}{0}$	$\stackrel{\text { ¢ }}{\underline{\text { ¢ }}}$	$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{\rightharpoonup}{\infty} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{3} \\ & \stackrel{\rightharpoonup}{\top} \end{aligned}$	\sum_{\vdots}^{ξ}	¢		® N $\stackrel{0}{\circ}$
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

- A special type of record data, where
- each record (transaction) involves a set of items.
- For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

- Examples: Generic graph and HTML Links


```
<a href="papers/papers.html#bbbb">
Data Mining </a>
<li>
<a href="papers/papers.html#aaaa">
Graph Partitioning </a>
<li>
<a href="papers/papers.html#aaaa">
Parallel Solution of Sparse Linear System of Equations </a>
<li>
<a href="papers/papers.html#fff">
N-Body Computation and Dense Linear System Solvers
```


Chemical Data

- Benzene Molecule: $\mathrm{C}_{6} \mathrm{H}_{6}$

Ordered Data

- Sequences of transactions

Items/Events

An element of the sequence

Ordered Data

- Genomic sequence data

> GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

Ordered Data

- Spatio-Temporal Data

Jan

Average Monthly Temperature of land and ocean

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?
- Examples of data quality problems:
- Noise and outliers
- missing values
- duplicate data

Noise

- Noise refers to modification of original values
- Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

Two Sine Waves

Two Sine Waves + Noise

Outliers

- Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

Missing Values

- Reasons for missing values
- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
- Eliminate Data Objects
- Estimate Missing Values
- Ignore the Missing Value During Analysis
- Replace with all possible values (weighted by their probabilities)

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
- Major issue when merging data from heterogeous sources
- Examples:
- Same person with multiple email addresses
- Data cleaning
- Process of dealing with duplicate data issues

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Aggregation

- Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
- Data reduction
- reduce the number of attributes or objects
- Change of scale
- cities aggregated into regions, states, countries, etc
- More "stable" data
- aggregated data tends to have less variability

Aggregation

Variation of Precipitation in Australia

Standard Deviation of Average Monthly Precipitation

Standard Deviation of Average
Yearly Precipitation

Sampling

- Sampling is the main technique employed for data selection
- It is often used for both the preliminary investigation of the data and the final data analysis
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming
- Sampling is used in data mining because it is too expensive or time consuming to process all the data

Sampling ...

- The key principle for effective sampling is the following:
- using a sample will work almost as well as using the entire data sets, if the sample is representative
- A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling
- There is an equal probability of selecting any particular item
- Sampling without replacement
- As each item is selected, it is removed from the population
- Sampling with replacement
- Objects are not removed from the population as they are selected for the sample.
- In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
- Split the data into several partitions; then draw random samples from each partition

Sample Size

8000 points

2000 Points

500 Points

Sample Size

- What sample size is necessary to get at least one object from each of $\mathbf{1 0}$ groups.

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Dimensionality Reduction

- Purpose:
- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise
- Techniques
- Principle Component Analysis
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Dimensionality Reduction: PCA

- Goal is to find a projection that captures the largest amount of variation in data

Dimensionality Reduction: PCA

- Find the eigenvectors of the covariance matrix
- The eigenvectors define the new space

Dimensionality Reduction: ISOMAP

By: Tenenbaum, de Silva, Langford (2000)

- Construct a neighbourhood graph
- For each pair of points in the graph, compute the shortest path distances - geodesic distances

Feature Subset Selection

- Another way to reduce dimensionality of data
- Redundant features
- duplicate much or all of the information contained in one or more other attributes
- Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
- contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA

Feature Subset Selection

- Techniques:
- Brute-force approch:
-Try all possible feature subsets as input to data mining algorithm
- Embedded approaches:
- Feature selection occurs naturally as part of the data mining algorithm
- Filter approaches:
- Features are selected before data mining algorithm is run
- Wrapper approaches:
- Use the data mining algorithm as a black box to find best subset of attributes

Feature Creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
- Feature Extraction
- domain-specific
- Mapping Data to New Space
- Feature Construction
- combining features

Mapping Data to a New Space

- Fourier transform
- Wavelet transform

Discretization Using Class Labels

- Entropy based approach

3 categories for both \mathbf{x} and \mathbf{y}

5 categories for both \mathbf{x} and y

Discretization

- Some techniques don't use class labels.

Attribute Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
- Simple functions: $\mathrm{x}^{\mathrm{k}}, \log (\mathrm{x}), \mathrm{e}^{\mathrm{x}},|\mathrm{x}|$
- Standardization and Normalization

Similarity and Dissimilarity

- Similarity
- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range $[0,1]$
- Dissimilarity
- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute Type	Dissimilarity	Similarity
Nominal	$d= \begin{cases}0 & \text { if } p=q \\ 1 & \text { if } p \neq q\end{cases}$	$s=\left\{\begin{array}{ll\|}1 & \text { if } p=q \\ 0 & \text { if } p \neq q\end{array}\right.$
Ordinal	$d=\frac{\|p-q\|}{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s=1-\frac{\|p-q\|}{n-1}$
Interval or Ratio	$d=\|p-q\|$	$s=-d, s=\frac{1}{1+d}$ or $s=1-\frac{d-m \text { min_d }}{\text { max-d-min-d }}$

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

- Euclidean Distance

$$
d i s t=\sqrt{\sum_{k=1}^{n}\left(p_{k}-q_{k}\right)^{2}}
$$

Where n is the number of dimensions (attributes) and p_{k} and q_{k} are, respectively, the $\mathrm{k}^{\text {th }}$ attributes (components) or data objects p and q.

- Standardization is necessary, if scales differ.

Euclidean Distance

	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2.828	3.162	5.099
$\mathbf{p 2}$	2.828	0	1.414	3.162
$\mathbf{p 3}$	3.162	1.414	0	2
$\mathbf{p 4}$	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

- Minkowski Distance is a generalization of Euclidean Distance

$$
\operatorname{dist}=\left(\sum_{k=1}^{n}\left|p_{k}-q_{k}\right|^{r}\right)^{\frac{1}{r}}
$$

Where r is a parameter, n is the number of dimensions (attributes) and p_{k} and q_{k} are, respectively, the kth attributes (components) or data objects p and q.

Minkowski Distance: Examples

- $r=1$. City block (Manhattan, taxicab, L_{1} norm) distance.
- A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- $r=2$. Euclidean distance
- $r \rightarrow \infty$. "supremum" ($\mathrm{L}_{\max }$ norm, L_{∞} norm) distance.
- This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	\mathbf{x}	\mathbf{y}
$\mathbf{p 1}$	0	2
$\mathbf{p 2}$	2	0
$\mathbf{p 3}$	3	1
$\mathbf{p 4}$	5	1

$\mathbf{L 1}$	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	4	4	6
$\mathbf{p 2}$	4	0	2	4
$\mathbf{p 3}$	4	2	0	2
$\mathbf{p 4}$	6	4	2	0

$\mathbf{L 2}$	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2.828	3.162	5.099
$\mathbf{p 2}$	2.828	0	1.414	3.162
$\mathbf{p 3}$	3.162	1.414	0	2
$\mathbf{p 4}$	5.099	3.162	2	0

\mathbf{L}_{∞}	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2	3	5
$\mathbf{p 2}$	2	0	1	3
$\mathbf{p 3}$	3	1	0	2
$\mathbf{p 4}$	5	3	2	0

Distance Matrix

Mahalanobis Distance

$$
\text { mahalanobi } s(p, q)=(p-q) \Sigma^{-1}(p-q)^{T}
$$

Σ is the covariance matrix of the input data X

$$
\Sigma_{j, k}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)\left(X_{i k}-\bar{X}_{k}\right)
$$

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Mahalanobis Distance

Covariance Matrix:

$$
\Sigma=\left[\begin{array}{ll}
0.3 & 0.2 \\
0.2 & 0.3
\end{array}\right]
$$

A: $(0.5,0.5)$
B: $(0,1)$
C: $(1.5,1.5)$
$\operatorname{Mahal}(A, B)=5$
$\operatorname{Mahal}(A, C)=4$

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.

1. $d(p, q) \geq 0$ for all p and q and $d(p, q)=0$ only if $p=q$. (Positive definiteness)
2. $\quad d(p, q)=d(q, p)$ for all p and q. (Symmetry)
3. $d(p, r) \leq d(p, q)+d(q, r)$ for all points p, q, and r. (Triangle Inequality)
where $d(p, q)$ is the distance (dissimilarity) between points (data objects), p and q.

- A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.

1. $s(p, q)=1$ (or maximum similarity) only if $p=q$.
2. $s(p, q)=s(q, p)$ for all p and q. (Symmetry)
where $s(p, q)$ is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities
$M_{01}=$ the number of attributes where p was 0 and q was 1
$M_{10}=$ the number of attributes where p was 1 and q was 0
$\mathrm{M}_{00}=$ the number of attributes where p was 0 and q was 0
$M_{11}=$ the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients

SMC = number of matches $/$ number of attributes
$=\left(M_{11}+M_{00}\right) /\left(M_{01}+M_{10}+M_{11}+M_{00}\right)$
$J=$ number of 11 matches $/$ number of not-both-zero attributes values
$=\left(M_{11}\right) /\left(M_{01}+M_{10}+M_{11}\right)$

SMC versus Jaccard: Example

$$
\begin{aligned}
& p=10000000000 \\
& q=0000001001
\end{aligned}
$$

$M_{01}=2$ (the number of attributes where p was 0 and q was 1)
$M_{10}=1$ (the number of attributes where p was 1 and q was 0)
$M_{00}=7$ (the number of attributes where p was 0 and q was 0)
$M_{11}=0$ (the number of attributes where p was 1 and q was 1)

$$
\begin{aligned}
& \text { SMC }=\left(M_{11}+M_{00}\right) /\left(M_{01}+M_{10}+M_{11}+M_{00}\right)=(0+7) /(2+1+0+7)=0.7 \\
& J=\left(M_{11}\right) /\left(M_{01}+M_{10}+M_{11}\right)=0 /(2+1+0)=0
\end{aligned}
$$

Cosine Similarity

- If d_{1} and d_{2} are two document vectors, then

$$
\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \cdot d_{2}\right) /\left\|d_{1}\right\|\left\|d_{2}\right\|
$$

where \bullet indicates vector dot product and $\|d\|$ is the length of vector d.

- Example:

$$
\begin{aligned}
& d_{1}=3205000200 \\
& d_{2}=1000000102
\end{aligned}
$$

$$
\begin{aligned}
& d_{1} \bullet d_{2}=3^{*} 1+2^{*} 0+0^{*} 0+5^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+2^{*} 1+0^{*} 0+0^{*} 2=5 \\
& \left\|d_{1}\right\|=\left(3^{*} 3+2^{*} 2+0^{*} 0+5^{*} 5+0^{*} 0+0^{*} 0+0^{*} 0+2^{*} 2+0^{*} 0+0^{*} 0\right)^{0.5}=(42)^{0.5}=6.481 \\
& \left\|d_{2}\right\|=\left(1^{*} 1+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+1^{*} 1+0^{*} 0+2^{*} 2\right)^{0.5}=(6)^{0.5}=2.245
\end{aligned}
$$

$$
\cos \left(d_{1}, d_{2}\right)=.3150
$$

Extended Jaccard Coefficient (Tanimoto)

- Variation of Jaccard for continuous or count attributes
- Reduces to Jaccard for binary attributes

$$
T(p, q)=\frac{p \bullet q}{\|p\|^{2}+\|q\|^{2}-p \bullet q}
$$

Correlation

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, p and q, and then take their dot product

$$
\begin{aligned}
& p_{k}^{\prime}=\left(p_{k}-\operatorname{mean}(p)\right) / \operatorname{std}(p) \\
& q_{k}^{\prime}=\left(q_{k}-\operatorname{mean}(q)\right) / \operatorname{std}(q) \\
& \text { correlation }(p, q)=p^{\prime} \bullet q^{\prime}
\end{aligned}
$$

Visually Evaluating Correlation

> Scatter plots showing the similarity from -1 to 1 .

General Approach for Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.

1. For the $k^{t h}$ attribute, compute a similarity, s_{k}, in the range $[0,1]$.
2. Define an indicator variable, δ_{k}, for the $k_{t h}$ attribute as follows:
$\delta_{k}= \begin{cases}0 & \text { if the } k^{t h} \text { attribute is a binary asymmetric attribute and both objects have } \\ & \text { a value of } 0, \text { or if one of the objects has a missing values for the } k^{t h} \text { attribute } \\ 1 & \text { otherwise }\end{cases}$
3. Compute the overall similarity between the two objects using the following formula:

$$
\operatorname{similarity}(p, q)=\frac{\sum_{k=1}^{n} \delta_{k} s_{k}}{\sum_{k=1}^{n} \delta_{k}}
$$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
- Use weights w_{k} which are between 0 and 1 and sum to 1.

$$
\begin{aligned}
& \operatorname{similarity}(p, q)=\frac{\sum_{k=1}^{n} w_{k} \delta_{k} s_{k}}{\sum_{k=1}^{n} \delta_{k}} \\
& \operatorname{distance}(p, q)=\left(\sum_{k=1}^{n} w_{k}\left|p_{k}-q_{k}\right|^{r}\right)^{1 / r}
\end{aligned}
$$

