
On the Need for Time Series Data Mining Benchmarks: A
Survey and Empirical Demonstration

 Eamonn Keogh

 Shruti Kasetty

Computer Science & Engineering Department
University of California - Riverside

Riverside, CA 92521

{eamonn,skasetty}@cs.ucr.edu

ABSTRACT
In the last decade there has been an explosion of interest in
mining time series data. Literally hundreds of papers have
introduced new algorithms to index, classify, cluster and segment
time series. In this work we make the following claim. Much of
this work has very little utility because the contribution made
(speed in the case of indexing, accuracy in the case of
classification and clustering, model accuracy in the case of
segmentation) offer an amount of “improvement” that would have
been completely dwarfed by the variance that would have been
observed by testing on many real world datasets, or the variance
that would have been observed by changing minor (unstated)
implementation details.

To illustrate our point, we have undertaken the most exhaustive
set of time series experiments ever attempted, re-implementing
the contribution of more than two dozen papers, and testing them
on 50 real world, highly diverse datasets. Our empirical results
strongly support our assertion, and suggest the need for a set of
time series benchmarks and more careful empirical evaluation in
the data mining community.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications Data
Mining.

Keywords
Time Series, Data Mining, Experimental Evaluation.

1. INTRODUCTION
In the last decade there has been an explosion of interest in
mining time series data. Literally hundreds of papers have
introduced new algorithms to index, classify, cluster and segment
time series. In this work we make the following claim. Much of
the work in the literature suffers from two types of experimental

flaws, implementation bias and data bias (defined in detail
below). Because of these flaws, much of the work has very little
generalizability to real world problems.

In particular, we claim that many of the contributions made
(speed in the case of indexing, accuracy in the case of
classification and clustering, model accuracy in the case of
segmentation) offer an amount of “improvement” that would have
been completely dwarfed by the variance that would have been
observed by testing on many real world datasets, or the variance
that would have been observed by changing minor (unstated)
implementation details.

In order to support our claim we have conducted the most
exhaustive set of time series experiments ever attempted, re-
implementing the contribution of more than 25 papers and testing
them on 50 real word datasets. Our results strongly support our
contention.

We are anxious that this work should not be taken as been critical
of the data mining community. We note that several papers by the
current first author are among the worst offenders in terms of
weak experimental evaluation. While preparing the survey we
read more than 340 data mining papers and we were struck by the
originality and diversity of approaches that researchers have used
to attack very difficult problems. Our goal is simply to
demonstrate that empirical evaluations in the past have often been
inadequate, and we hope this work will encourage more extensive
experimental evaluations in the future.

For concreteness we begin by defining the various tasks that
occupy the attention of most time series data mining research.

• Indexing (Query by Content): Given a query time series Q,
and some similarity/dissimilarity measure D(Q,C), find the
nearest matching time series in database DB.

• Clustering: Find natural groupings of the time series in
database DB under some similarity/dissimilarity measure
D(Q,C).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD ’02, Ju1y, 23-26 2002, Edmonton, Alberta, Canada.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

• Classification: Given an unlabeled time series Q, assign it to
one of two or more predefined classes.

• Segmentation: Given a time series Q containing n
datapoints, construct a model Q , from K piecewise segments
(K << n) such that Q closely approximates Q.

Note that segmentation has two major uses. It may be performed
in order to determine when the underlying model that created the
time series has changed [19, 20], or segmentation may simply be
performed to created a high level representation of the time series
that supports indexing, clustering and classification [20, 30, 31,
37, 39, 42, 44, 46, 48, 52, 57].

As mentioned above, our experiments were conducted on 50 real
world, highly diverse datasets. Space limitations prevent us from
describing all 50 datasets in detail, so we simply note the
following. The data represents the many areas in which time
series data miners have investigated, including finance, medicine,
biometrics, chemistry, astronomy, robotics, networking and
industry. We also note that all data and code used in this paper is
available for free by emailing the first author.

The rest of this paper is organized as follows. In Section 2 we
survey the literature on time series data mining, and summarize
some statistics about the empirical evaluations. In Section 3, we
consider the indexing problem, and demonstrate with extensive
experiments that many of the published results do not generalized
to real world problems. Section 4 considers the problem of
evaluating time series classification and clustering algorithms. In
Section 5 we show that similar problems occur for evaluation of
segmentation algorithms. Finally in Section 6 we summarize our
findings and offer concrete suggestions to improve the quality of
evaluation of time series data mining algorithms.

2. SURVEY
In order to assess the quality of empirical evaluation in the time
series data mining community we begin by surveying the
literature. Although we reviewed more than 340 papers, we only
included the subset of 56 papers actually referenced in this work
when assessing statistics about the number of datasets etc. The
subset was chosen based on the following (somewhat subjective)
criteria.

• Was the paper ever referenced? Self-citations were not
counted. The rule was relaxed for paper published in the last
year because of publishing delays. We used ResearchIndex
(http://citeseer.nj.nec.com/cs) to make this determination.

• Was the paper published in a conference or journal likely to
be read by a data miner? For example, several interesting
time series data mining papers have appeared in medical and
signal processing conferences, but are unlikely to come to
the attention of the data mining community.

The survey is very comprehensive, but was not intended to be
exhaustive. Such a goal would in any case be subjective (should a
paper which introduces a new clustering algorithm, and mentions
that it could be used for time series be included?). In general the
papers come from high quality conferences and journals,
including (SIG)KDD (11), ICDE (10), VLDB (5),
SIGMOD/PODS (5), and CIKM (6).

Having obtained the 56 papers, we extracted various statistics
(discussed below) from them about their empirical evaluation. In
most cases this was easy, but occasionally a paper was a little
ambiguous in explaining some feature of its empirical evaluation.
In such cases we made an attempt to contact the author for
clarification, and failing that, used our best judgment.

In presenting the results of the survey, we echo the caution of
Prechelt, that “while high numbers resulting from such counting
cannot prove that the evaluation has high quality, low numbers
(suggest) that the quality is low” [47].

2.1 Size of Test Datasets
We recorded the size the test dataset for each paper. Where two or
more datasets are used, we considered only the size of the largest.

The results are quite surprising; the median size of the test
database was only 10,000 objects. Approximately 89% of the test
databases could comfortably fit on a 1.44 Mb floppy disk.

2.2 Number of Rival Methods
Another surprising finding of the survey is the relative paucity of
rival methods to which the contribution of the paper is compared.
The median number is 1 (The average is 0.91), but this number
includes very unrealistic strawman. For example many papers
(including one by the current first author [31]) compare times for
an indexing method to sequential scan where both are preformed
in main memory. However, it is well understood sequential scan
enjoys a tenfold speed up when performed on disk because any
indexing technique must perform costly random access, whereas
sequential scan can take advantage of an optimized linear traverse
of the disk [32].

The limited number of rival methods is particularly troubling for
papers that introduce a novel similarity measure. Although 29 of
the papers surveyed introduce a novel similarity measure, only 12
of them compare the new measure to any strawman. The average
number of rival similarity measures considered is only 0.97.

2.3 Number of Different Test Datasets
Although the small sizes of the test databases and the relatively
scarcity of comparisons with rival methods is by itself
troublesome, the most interesting finding concerns the number of
datasets used in the experimental evaluation. On average, each
contribution is tested on 1.85 datasets (1.26 real and 0.59
synthetic). This numbers are astonishingly low when you consider
that new machine learning algorithms are typically evaluated on
at least a dozen datasets [12, 33].

In fact, we feel that the numbers above are optimistic. Of the 30
papers that use two or more datasets, a very significant fraction
(64%), use both stock market data and random walk data.
However, we strongly believe these really should be counted as
the same dataset. It is well known that random walk data can
perfectly model stock market data is terms of all statistical
properties, including variance, autocorrelation, stationarity etc
[17, 53].

Work by the late Julian L. Simon suggested that humans find it
impossible to differentiate between the two [53]. To confirm this
finding we asked 12 professors at UCRs Anderson Graduate
School of Management to look at Figure 1 and determine which
three sequences are random walk, and which three are real
S&P500 stocks. The confusion matrix is show in Table 1.

Figure 1. Six time series, three are random walk data, and
three are real S&P500 stocks. Experiments suggest that
humans cannot tell real and synthetic stock data apart (all
the sequences on the right are real)

Table 1. The confusion matrix for human experts in
attempting to differentiate between random walk data and
stock market data

Predicted

S&P Stock Random Walk
S&P Stock 20 16

Actual
Random Walk 16 20

The accuracy of the humans was 55.6%, which does not differ
significantly from random guessing.

Given the above, if we consider stock market and random walk
data to be the same, each paper in the survey is tested on average
on only 1.28 different datasets. This number might be reasonable
if the contribution had being claimed for only a single type of data
[19, 37], or it had been shown that the choice of dataset has little
influence on the outcome. However, the choice of dataset has a
huge effect on the performance of time series algorithms. We will
demonstrate this fact in the next 3 sections of this work.

3. INDEXING (QUERY BY CONTENT)
Similarity search in time series databases has emerged as an area
of active interest since the classic first paper by Agrawal et al. [1].
More than 68% of the indexing approaches surveyed here use the
original GEMINI framework of Faloutsos [17], but suggest a
different approach to the dimensionality reduction stage. The
proposed representations include the Discrete Fourier Transform
(DFT) [1, 11, 16, 28, 49, 50], several kinds of Wavelets (DWT)
[10, 27, 45, 51, 57, 60], Singular Value Decomposition [32, 35],
Adaptive Piecewise Constant Approximation [32], Inner Products
[18] and Piecewise Aggregate Approximation (PAA) [61]. The
majority of work has focused solely on performance issues,
however some authors have also considered other issues such as
supporting non Euclidean distance measures [32, 50, 61] and
allowing queries of arbitrary length [32, 40, 61].

3.1 Implementation Bias
Since most time series indexing techniques use the same indexing
framework, and achieve the claimed speedup solely with the

choice of representation, it is important to compare techniques in
a manner that is free of implementation bias.

Definition: Implementation bias is the conscious or
unconscious disparity in the quality of implementation of a
proposed approach, vs. the quality of implementation of the
completing approaches.

Implementing fairly complex indexing techniques allows many
opportunities for implementation bias. For example, suppose you
hope to demonstrate that DWT is superior to DFT. With shift-
normalized data [11, 28] the first DWT coefficient is zero so you
could take advantage of that fact by indexing the 2nd to N+1th
coefficients, rather than the 1st to Nth coefficients. However, you
might neglect doing a similar optimization for DFT, whose first
real coefficient is also zero for normalized data. Another
possibility is that you might use the simple O(n2) DFT algorithm
rather than spend the time to code the more complex O(nLogn)
radix 2 algorithm [32]. In both these cases DFT’s performance
would be artificially deflated relative to DWT.

One possible solution to the problem of implementation bias is
extremely conscientious implementations of all approaches,
combined with diligent explanations of the experimental process.
Another possibility, which we explain below, is to design
experiments that are free from the possibility of implementation
bias.

Since all the exact indexing techniques use the same basic
framework, the efficiency of indexing depends only on how well
the dimensionality-reduced approximation can model the
distances between the original objects. We can measure this by
calculating the tightness of the lower bounds for any given
representation.

Definition: The tightness of the lower bound (denoted T) for
any given representation is the ratio of the estimated distance
between two sequences under that representation, over the
true distance between the same two sequences.

Note that T is in the range [0,1]. A value of 1 would allow a
constant time search algorithm, and a value of 0 would force the
indexing structure to degrade to sequence scan. In fact, because
sequential scan can take advantage of a linear traverse of the disk,
whereas any indexing scheme must make wasteful random disk
accesses, it is well understood that T must be significantly greater
that 0 if we are to use the representation to beat sequential scan
32]. Since one can always create artificial data for any
representation that will give an arbitrary value of T, it should be
estimated for a particular dataset by random sampling. Note that
the value of T for any given dimensionality reduction technique
depends only on the data and is independent of any
implementation choices such as page size, buffer size, computer
language, hardware platform, seek time etc. A handful of papers
in the survey already make use of a similar measure to compare
the quality of representations [10, 32].

This idea of an implementation free evaluation of performance is
by no means new. In artificial intelligence, researchers often
compare search algorithms by reporting the number of nodes
expanded, rather than the CPU times [33]. The problem of
implementation bias is also well understood in other computer
science domains, including parallel processing [5].

3.2 Data Bias

Powerplant Infrasound Attas (Aerospace)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DFT
HAAR

As mentioned above, the tightness of the lower bound can be
estimated by random sampling of a dataset. However we have not
yet addressed the importance of which dataset(s) are sampled. The
indexing papers included in this survey tested their approach on a
median of 1 datasets. This would be reasonable if the utility of the
approach was only being claimed for a single type of data, for
example “More Efficient Indexing of ECG Time Series” or “A
New Approach to Indexing Stock Market Data”. However, none
of the papers make such a limited claim. The papers are implicitly
or explicitly claiming to be improvements over the state of the art
on any time series data. In fact, the choice of test data has a great
effect on the experimental results, and virtually all papers
surveyed suffer from data bias. Figure 2. Experiments on the Powerplant, Infrasound and

Attas datasets “demonstrate” that DFT outperforms
DWT-Haar for indexing time series

Definition: Data bias is the conscious or unconscious use of
a particular set of testing data to confirm a desired finding.

There does not appear to be a simple cure for data bias. One
possibility is to limit the scope of the claim for a new approach to
that which has actually been demonstrated, e.g “Faster indexing
of Stock Market Data”. Another possibility, which we favor, is to
test the algorithms on a large, heterogeneous set of time series.
Ideally this set should include data that covers the spectrum of
time series properties; stationarity/ non-stationarity, noisy/
smooth, cyclical/ non-cyclical, symmetric/ asymmetric, etc.

In contrast if we worked with the Network, ERPdata and Fetal
EEG datasets we could conclude that there is no real difference
between DFT and Haar, as suggested by Figure 3.

3.3 Empirical Demonstration of
Implementation and Data Bias
To demonstrate the need for an implementation-free measure of
the quality of indexing technique, and the absolute necessity of
testing new algorithms on several datasets, consider the following
contradictory claims made with regard the relative indexing
abilities of DFT and DWT (wavelets):

Network EPRdata Fetal EEG

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

DFT
HAAR

• “Several wavelets outperform the Haar wavelet (and DFT)” [45]. Figure 3. Experiments on the Network, EPRdata and
Fetal EEG datasets “demonstrate” that DFT and DWT-
Haar have the same performance for indexing time series • “DFT-based and DWT-based techniques yield comparable

results in similarity search” [60].
Finally had we had chosen the Chaotic, Earthquake and Wind
datasets we could use the graphs in Figure 4 to demonstrate
“convincingly” that Haar is superior to DFT.

• “Haar wavelets perform slightly better that DFT” [27].

Which, if any, of these statements are we to believe? Because of
the problems of implementation bias and the limited number of
test datasets we feel little credence can be given to any of the
claims. To demonstrate this we have performed a comprehensive
series of experiments that show that the variance due to
implementation bias and testing on different data can far outweigh
the improvements claimed in the literature.

We calculated the value of T for both DFT and DWT. To ensure
that we obtained good estimates we averaged over 100,000
randomly chosen subsequences from each dataset. For fairness we
used the same 100,000 subsequences for each approach. To
ensure randomness in our sampling technique we used true
random numbers that were created by a quantum mechanical
process [55].

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Chaotic Earthquake Wind (3)

DFT
HAAR

Figure 4. Experiments on the Chaotic, Earthquake and
Wind datasets “demonstrate” that DWT-Haar
outperforms DFT for indexing time series

3.3.1 Demonstration of data bias
The three papers listed above experimented on a maximum of 3
datasets. If we use that number of datasets we can demonstrate
essentially any finding we wish. For example, by working with
the Powerplant, Infrasound and Attas datasets we can find that
DFT outperforms the Haar wavelet, as shown in Figure 2.

Although we used the value of T to demonstrate the problem, we
also confirmed the findings on an implemented system, using an

R-tree running on AMD Athlon 1.4 GHZ processor, with 512 MB
of physical memory and 57.2 GB of secondary storage. The
results were essentially identical, so we omit the graphs for
brevity.

Number of Objects

Se
co

nd
s

0

1

2

3

4

5

10,000 50,000 100,000

Euclid
Opt1
Opt2

Note that we are not claiming any duplicity by the authors of the
excellent papers listed above. We are merely demonstrating that
the limited number of datasets used in the typical indexing paper
severely limits the claims one can make.

3.3.2 Demonstration of implementation bias
The vast majority of papers on indexing that do use a strawman
comparison use the simplest possible one, sequential scanning.
Here we will demonstrate the potential for implementation bias
with sequential scanning performed in main memory.

Figure 5. The affect of minor implementation details on
the performance of sequential scan, for increasing large
databases

The Euclidean distance function is shown in Eq. 1.

 () ()∑ −≡
=

n

i
ii cqCQD

1

2, (1) It is easy to find examples of data bias in the literature, it is much
more difficult to know the scale of the problem for
implementation bias. By its very nature, it is almost impossible to
know what fraction of a claimed improvement should be credited
to the proposed approach, and what fraction may be due to
implementation bias. However, there are a handful of examples
where this is clear. For example, one paper included in the survey
finds a significant performance gap between the indexing abilities
of Haar wavelets and Piecewise Aggregate Approximation (PAA)
[45]. However it was proved by two independent groups of
researchers that these two approaches have exactly the same
tightness of lower bounds when the number of dimensions is a
power of two (and very little difference when the number of
dimensions is not a power of two) [32, 61]. We empirically
confirmed this fact 4,000,000 times during the experiments in
Section 3.3.1. While there may be small differences in the CPU
time to deal with the two representations, the order in which the
original sequences are retrieved from disk by the index structure
should be the same for both approaches, and disk time completely
dominates CPU for time series indexing under Euclidean distance.
We strongly suspect the spurious result reported above was the
result of implementation bias, so we conducted an experiment to
demonstrate how a simple implementation detail could produce an
effect which is larger than the approximately 11% difference
claimed.

The basic sequential search algorithm is shown in Table 2.

Table 2. The Sequential Search Algorithm

Algorithm sequential_scan(data,query)
best_so_far = inf;
for every item in the database
 if euclidean_dist(datai,query) < best_so_far
 pointer_to_best_match = i;
 best_so_far = euclidean_dist(datai,query);
 end;
end;

One possibility implementation, which we call Naïve, is to
calculate the Euclidean distance as shown in Eq. 1 with a loop to
accumulate all the partial sums, followed by the taking of the
square root. A possibility for optimization, which we call Opt1, is
to neglect taking the square root. Since the square root function is
monotonic, the ranking of the nearest neighbors will be identical
under this scheme [61]. Finally we consider another optimization,
which we call Opt2, which is simply to keep comparing the
best_so_far variable to the partial sums at each iteration of the
loop. If the partial sum ever exceeds the value of best_so_far we
can admissibly abandon that calculation, since the partial distance
can never decrease. To test the effect of these minor
implementation details we performed 1-nearest neighbor searches
in a random walk dataset, with a query length of 512 for
increasingly larger datasets. The results are shown in Figure 5.

We began our experiment by performing a fair comparison of the
tightness of lower bounds for Haar and PAA on each of our 50
datasets, with a query length of 256 and 8 dimensions. Rather
than estimate T with 100,000 random samples as in Section 3.1.1,
we averaged over 100 samples as in the paper in question.

It is obvious that these very minor implementation details can
produce large differences. If we are comparing a novel algorithm
to sequential scan, and omit details of sequential scan
implementation, it would be very hard to gauge the merit of our
contribution. Note that for simplicity we only considered a main
memory search. If we consider a disk-based search, there are a
myriad of other implementation details that could effect the
performance of sequential scan by at least an order of magnitude.

We repeated the experiment once more; this time neglecting to
take advantage of the fact the first Haar coefficient is zero for
normalized data. In other words, we wastefully index a value that
is a constant zero. Once again we estimated T by averaging over
100 samples for each dataset.

For each dataset we calculated the ratio of the correct
implementation’s value of T to the poor implementation’s value
of T. The 50 results are plotted as a histogram in Figure 6.

0.95 1 1.05 1.1 1.15 1.2

2
4
6
8

10 We believe that one of the best (subjective) ways to evaluate a
proposed similarity measure is to use it to create a dendrogram of
several time series from the domain of interest [30].

Additional dendrograms can be created using other measures then
plotted side by side with the propose approach. Figure 7 shows an
example.

Cepstrum

Euclidean Dynamic Time Warping

Autocorrelation

1
2
3
4
5
7
6
8

1

2

3

4

5

7

6

8

1
7
2
3
4
5
6
8

1

5

7

2

3

4

6

8

Figure 6. The distribution of the ratios of the results of
correctly implemented experiments to experiments that
have a slight implementation bias

It is surprising to note that sometimes implementation bias that
should favor an approach can actually hurt it, as happened 4 times
out of the 50 experiments. However we must remember that the
values of T for each dataset were only estimated from 100
samples, and the finding is not statistically significant. What is
clear from the experiment however is that a simple minor
implementation detail can produce effects that are as large as the
claimed improvement of the proposed approach

4. CLASSIFICATION AND CLUSTERING
Classification and clustering problems have been the subject of
active research for decades [12, 33]. However the unique structure
of time series means that most classic machine learning
algorithms to not work well for time series. In particular the high
dimensionality, very high feature correlation, and the (typically)
large amounts noise that characterize time series data have been
viewed as an interesting research challenge. Most of the
contributions focus on providing a new similarity measure as a
subroutine to an existing classification or clustering algorithm, so
for simplicity we shall only consider the contribution of the
suggested similarity measure.

Figure 7. Dendograms can be used to visually assess the
usefulness of a similarity measure. Above a dataset of 8
objects is clustered using the single linkage method, with 4
different distance measures. Euclidean distance and
Dynamic Time Warping are decade old strawmen. The
other two approaches have recently been proposed in data
mining papers [57, 29]

How well do these similarity measures capture the true similarity
of time series? There are two ways to answer this question,
subjectively and objectively, we consider both below.

4.1 Subjective Evaluation of Similarity
Since a goal of data mining is often to find patterns that map onto
human intuition, one possible way to judge the utility of a
similarity measure is to show examples of time series that the
proposed measure found to be similar/dissimilar. Surprisingly,
many of the papers included in the survey, whose main
contribution was to introduce a new similarity measure, fail to
show even one example of a matching pair of time series [4, 8,
19, 22, 24, 26, 34, 36, 38, 42, 43, 48, 57]. Moreover, showing
some examples of matching time series is of little utility unless
some strawman comparison is used. Many papers ask us to
consider the quality of their proposed similarity measure without
a single comparison to another technique [2, 4, 8, 24, 31, 38, 39,
41, 42, 46, 57]. This in particularly surprising since the most
obvious strawman, Euclidean distance, is trivial to implement
(For example, in the Matlab programming language it requires
only 19 characters: sqrt(sum((q-c).^2))).

Dendrograms are particularly attractive since a clustering of M
objects summarizes O(M) measurements, however other
possibilities of visualizing the quality of a similarity measure
included projecting the time series into 2 dimensional space (via
MDS or SOMs for example [15]).

4.2 Objective Evaluation of Similarity
Given a database of labeled time series, objective measurements
of the quality of a proposed similarity measure can be readily
obtained by running simple classification experiments. Although
a few such databases do exist, very few advocates of a new
similarity measure have chosen to demonstrate their contribution
in this manner. The work by [21] is a notable exception. To repair
this omission, we have undertaken an experimental comparison of
many of the techniques included in the survey. We tested on two
publicly available datasets:

5. SEGMENTATION • Cylinder-Bell-Funnel: This synthetic dataset has been in the
literature for 8 years, and has been cited at least a dozen
times [21]. It is a 3-class problem; we create 128 examples of
each class for these experiments.

A large fraction of the papers in the survey either introduce a
segmentation algorithm as their main contribution, or utilize a
segmentation algorithm as a subroutine. Although the segments
created could be polynomials of an arbitrary degree, the most
common representation of the segments are linear functions.
Intuitively a Piecewise Linear Representation (PLR) refers to the
approximation of a time series Q, of length n, with K straight
lines. Figure 8 contains an example.

• Control-Chart: This synthetic dataset has been freely
available for the UCI Data Archive since June 1998 [6]. It is
a 6-class problem, with 100 examples of each class.

Note that for both problems, informal experiments suggest
humans can achieve an error rate of zero. For simplicity we use
the 1-Nearest Neighbor algorithm, evaluated using “leaving-one-
out”. We compare the proposed methods to the simplest
strawman, Euclidean distance. This measure is well-known [1, 10,
11, 13, 14, 16, 17, 18, 27, 32, 35, 36, 40, 45, 49, 50, 60, 61, 62],
parameterless, trivial to implement and predates data mining by
several decades.

We originally intended to implement every proposed similarity
measure in our survey, but several of the papers do not include a
detailed enough description to allow reimplementation [39, 48].
We contented ourselves with reimplementing 11 measures. Some
of the measures require the user to set some parameters. In these
cases we wrapped the classification algorithm in a loop for each
parameter, searched over all possible parameters and reported
only the best result.

Figure 8. An example of a time series with its piecewise
linear representation

Because K is typically much smaller that n, this representation
makes the storage, transmission and computation of the data more
efficient. Specifically, in the context of data mining, piecewise
linear representation has been used to:

Table 3 summarized the results.

Table 3. The error rates for various similarity measures

Approach Cylinder-Bell-
Funnel Control-Chart

Euclidean Distance 0.003 0.013
Aligned Subsequence [42] 0.451 0.623
Piecewise Normalization [26] 0.130 0.321
Autocorrelation Functions [57] 0.380 0.116
Cepstrum [29] 0.570 0.458
String (Suffix Tree) [24] 0.206 0.578
Important Points [46] 0.387 0.478
Edit Distance [8] 0.603 0.622
String Signature [4] 0.444 0.695
Cosine Wavelets [25] 0.130 0.371
Hölder [54] 0.331 0.593
Piecewise Probabilistic [31] 0.202 0.321

• Support novel distance measures for time series, including
“fuzzy queries” [52], weighted queries [30], multiresolution
queries [39, 48], dynamic time warping [42, 46],
autocorrelation queries [57] and relevance feedback [30].

• Support concurrent mining of text and time series [37].

• Support novel clustering and classification algorithms [30].

• Support change point detection [20, 23].

Surprisingly, in spite of the ubiquity of this representation, with
the exception of [52], there has been little attempt to understand
and compare the algorithms that produce it.

Although appearing under different names and with slightly
different implementation details, most time series segmentation
algorithms can be grouped into one of the following three
categories.

The results are quite surprising. None of the proposed techniques
can beat the simple strawman. Their error rates are an order of
magnitude worse that Euclidean distance. Several of the
techniques have the error rates close to the default rate (i.e. the
same error you would get randomly guessing). Although the
inability to perform well on these two objective tests does not
necessarily mean the similarity measures in question are without
any merit (there may exist datasets on which they have reasonable
accuracy), one has to wonder about the contribution of a new
similarity measure which fails to demonstrate its utility on any
objective or subjective test1.

• Sliding-Windows (SW): A segment is grown until it
exceeds some error bound. The process repeats with the next
data point not included in the newly approximated segment.

• Top-Down (TD): The time series is recursively partitioned
until some stopping criteria is met.

• Bottom-Up (BU): Starting from the finest possible
approximation, segments are merged until some stopping
criteria is met.

We can measure the quality of a segmentation algorithm in
several ways, the most obvious of which is to measure the
reconstruction error for a fixed number of segments. The
reconstruction error is simply the Euclidean distance between the
original data and the segmented representation.

1 Once again we wish to note that the current first author

introduced one of the poorly performing measures.

5.1 Data Bias in Segmentation
Given that we have 3 algorithms to produce a segmented version
of a time series, it is natural to ask which is best. The papers in the
survey that use a segmentation algorithm test on a median of 1
dataset. However, if we use only one dataset we can demonstrate
any finding we wish! There are 3 different algorithms, therefore
3! = 6 possible rankings. We tested the algorithms on our 50 fifty
datasets, asking each algorithm to reduce a 1,024 datapoint time
series to 64 segments. Amazingly, we found every possible
ranking of the 3 algorithms as shown in Table 4.

Table 4. The 3 algorithms under consideration, ranked by
reconstruction error (shown in brackets), on 6 datasets

Dataset Best
Algorithm

Second-Best
Algorithm

Third-Best
Algorithm

Soiltemp TD (522.6) SW (538.0) BU (538.1)
Darwin TD (575.2) BU (821.0) SW (833.9)
pHdata SW (3.590) TD (4.013) BU (4.037)
Winding SW (6.883) BU (113.0) TD (117.6)
Balloon BU (168.1) TD (224.5) SW (234.1)
Network BU (11.02) SW (13.62) TD (891.4)

Note that the fact that we could easily find datasets to
demonstrate any ranking we wish does not preclude us from
making a meaningful evaluation of the algorithms. In fact the
Bottom-Up algorithm is significantly better than the other two
approaches2. Our point, once again, is simply that little credence
can be given to experimental results obtained from testing on a
single dataset.

6. CONCLUSIONS AND RECOMMENDATIONS
In this work we have conducted a comprehensive survey of recent
work on time series data mining. We have shown that because of
several kinds of experimental flaws, in particular data bias and
implementation bias, many of the results claimed in the literature
have very little generalizability to real world problems. We have
demonstrated our claim with the most comprehensive set of time
series experiments ever undertaken.

Once again we would like to note that we view this work as a
“call to arms” to the data mining community, and not a criticism
of the many wonderful and original papers cited here. The
intended spirit of this paper is similar to the ironically titled work
by Bailey, “Twelve ways to fool the masses when giving
performance results on parallel computers” [5]. The author later
noted that few, if any researchers set out to deliberately mislead
the academic community, but unless greater effort is made to
meaningfully compare rival approaches, the entire field is in
danger of being viewed with suspicion. This current work is an
echo of that sentiment for the time series data mining community.

We conclude this paper with concrete suggestions for researchers
working on time series data mining.

2 Bottom-Up outperformed Top-Down on 47 of 69 datasets, and it

outperformed Sliding Windows on 58 of 69 datasets.

• Algorithms should be tested on a wide range of datasets,
unless the utility of the approach is only been claimed for a
particular type of data. If possible, one subset of the datasets
should be used to fine tune the approach, then a different
subset of the datasets should be used to do that the actual
testing. This methodology is widely used in the machine
learning community to help prevent implementation and data
bias [12].

• Where possible, experiments should be designed to be free of
the possibility of implementation bias. Note that this does
not preclude the addition of extensive implementation
testing.

• Novel similarity measures should be compared to simple
strawmen, such as Euclidean distance or Dynamic Time
Warping. Some subjective visualization, or objective
experiments should justify their introduction.

• Where possible, all data and code used in the experiments
should be made freely available to allow independent
duplication of findings [6].

7. ACKNOWLEDGMENTS
The authors would like to thank Michael Pazzani, Pedro
Domingos, Dimitrios Gunopulos and the anonymous reviewers
for their valuable suggestions and comments. We also thank the
many donors of test data.

8. REFERENCES
All papers except [5, 6, 12, 33, 47, 53], are included in the survey.

[1] Agrawal, R., Faloutsos, C. & Swami, A. (1993). Efficient
similarity search in sequence databases. In proceedings of the 4th
Int'l Conference on Foundations of Data Organization and
Algorithms. Chicago, IL, Oct 13-15. pp 69-84.

[2] Agrawal, R., Lin, K. I., Sawhney, H. S. & Shim, K. (1995). Fast
similarity search in the presence of noise, scaling, and translation
in time-series databases. In proceedings of the 21st Int'l
Conference on Very Large Databases. Zurich, Switzerland,
Sept. pp 490-50.

[3] Agrawal, R., Psaila, G., Wimmers, E. L. & Zait, M. (1995).
Querying shapes of histories. In proceedings of the 21st Int'l
Conference on Very Large Databases. Zurich, Switzerland, Sept
11-15. pp 502-514.

[4] André-Jönsson, H. & Badal. D. (1997). Using signature files for
querying time-series data. In proceedings of Principles of Data
Mining and Knowledge Discovery, 1st European Symposium.
Trondheim, Norway, Jun 24-27. pp 211-220.

[5] Bailey, D. (1991). Twelve ways to fool the masses when giving
performance results on parallel computers. Supercomputing
Review, Aug. 1991, pp. 54-55.

[6] Bay, S. (1999). UCI Repository of Kdd databases
[http://kdd.ics.uci.edu/]. Irvine, CA: University of California,
Department of Information and Computer Science

[7] Berndt, D. J. & Clifford, J. (1996). Finding patterns in time
series: a dynamic programming approach. Advances in
Knowledge Discovery and Data Mining. AAAI/MIT Press,
Menlo Park, CA. pp 229-248.

[8] Bozkaya, T., Yazdani, N. & Ozsoyoglu, Z. M. (1997). Matching
and indexing sequences of different lengths. In proceedings of
the 6th Int'l Conference on Information and Knowledge
Management. Las Vegas, NV, Nov 10-14. pp 128-135.

[9] Caraça-Valente, J. P. & Lopez-Chavarrias, I. (2000).
Discovering similar patterns in time series. In proceedings of the
6th ACM SIGKDD Int'l Conference on Knowledge Discovery and
Data mining. Boston, MA, Aug 20-23. pp 497-505.

[10] Chan, K. & Fu, A. W. (1999). Efficient time series matching by
wavelets. In proceedings of the 15th IEEE Int'l Conference on
Data Engineering. Sydney, Australia, Mar 23-26. pp 126-133.

[11] Chu, K. & Wong, M. (1999). Fast time-series searching with
scaling and shifting. In proceedings of the 18th ACM Symposium
on Principles of Database Systems. Philadelphia, PA, May 31-
Jun 2. pp 237-248.

[12] Cohen, W. (1993). Efficient pruning methods for separate-and-
conquer rule learning systems. In proceedings of the 13th
International Joint Conference on Artificial Intelligence,
Chambery, France. pp 88-994.

[13] Das, G., Gunopulos, D. & Mannila, H. (1997). Finding similar
time series. In proceedings of Principles of Data Mining and
Knowledge Discovery, 1st European Symposium. Trondheim,
Norway, Jun 24-27. pp 88-100.

[14] Das, G., Lin, K., Mannila, H., Renganathan, G. & Smyth, P.
(1998). Rule discovery from time series. In proceedings of the
4th Int'l Conference on Knowledge Discovery and Data Mining.
New York, NY, Aug 27-31. pp 16-22.

[15] Debregeas, A. & Hebrail, G. (1998). Interactive interpretation of
kohonen maps applied to curves. In proceedings of the 4th Int'l
Conference of Knowledge Discovery and Data Mining. New
York, NY, Aug 27-31. pp 179-183.

[16] Faloutsos, C., Jagadish, H., Mendelzon, A. & Milo, T. (1997). A
signature technique for similarity-based queries. In proceedings
of the Int'l Conference on Compression and Complexity of
Sequences. Positano-Salerno, Italy, Jun 11-13.

[17] Faloutsos, C., Ranganathan, M. & Manolopoulos, Y. (1994).
Fast subsequence matching in time-series databases. In
proceedings of the ACM SIGMOD Int'l Conference on
Management of Data. Minneapolis, MN, May 25-27. pp 419-
429.

[18] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D. & El Abbadi, A.
(2001). Approximate nearest neighbor searching in multimedia
databases. In proceedings of the 17th IEEE Int'l Conference on
Data Engineering. Heidelberg, Germany, Apr 2-6. pp 503-511.

[19] Gavrilov, M., Anguelov, D., Indyk, P. & Motwani, R. (2000).
Mining the stock market: which measure is best? In proceedings
of the 6th ACM Int'l Conference on Knowledge Discovery and
Data Mining. Boston, MA, Aug 20-23. pp 487-496.

[20] Ge, X. & Smyth, P. (2000). Deformable markov model
templates for time-series pattern matching. In proceedings of the
6th ACM SIGKDD Int'l Conference on Knowledge Discovery and
Data Mining. Boston, MA, Aug 20-23. pp 81-90.

[21] Geurts, P. (2001). Pattern extraction for time series
classification. In proceedings of Principles of Data Mining and
Knowledge Discovery, 5th European Conference. Freiburg,
Germany, Sept 3-5. pp 115-127.

[22] Goldin, D. & Kanellakis, P. (1995) On similarity queries for
time-series data: constraint specification and implementation. In
proceedings of the 1st Int'l Conference on the Principles and
Practice of Constraint Programming. Cassis, France, Sept 19-
22. pp 137-153.

[23] Guralnik, V. & Srivastava, J. (1999). Event detection from time
series data. In proceedings of the 5th ACM SIGKDD Int'l
Conference on Knowledge Discovery and Data Mining. San
Diego, CA, Aug 15-18. pp 33-42.

[24] Huang, Y. & Yu, P. S. (1999). Adaptive query processing for
time-series data. In proceedings of the 5th Int'l Conference on
Knowledge Discovery and Data Mining. San Diego, CA, Aug
15-18. pp 282-286.

[25] Huhtala, Y., Kärkkäinen, J. & Toivonen, H. (1999). Mining for
similarities in aligned time series using wavelets. Data Mining
and Knowledge Discovery: Theory, Tools, and Technology,
SPIE Proceedings Series, Vol. 3695. Orlando, FL, Apr. pp 150-
160.

[26] Indyk, P., Koudas, N. & Muthukrishnan,S. (2000). Identifying
representative trends in massive time series data sets using
sketches. In proceedings of the 26th Int'l Conference on Very
Large Data Bases. Cairo, Egypt, Sept 10-14. pp 363-372.

[27] Kahveci, T. & Singh, A. (2001). Variable length queries for time
series data. In proceedings of the 17th Int'l Conference on Data
Engineering. Heidelberg, Germany, Apr 2-6. pp 273-282.

[28] Kahveci, T., Singh, A. & Gurel, A. (2002). An efficient index
structure for shift and scale invariant search of multi-attribute
time sequences. In proceedings of the 18th Int'l Conference on
Data Engineering. San Jose, CA, Feb 26-Mar 1. to appear.

[29] Kalpakis, K., Gada, D. & Puttagunta, V. (2001). Distance
measures for effective clustering of ARIMA time-series. In
proceedings of the IEEE Int'l Conference on Data Mining. San
Jose, CA, Nov 29-Dec 2. pp 273-280.

[30] Keogh, E. & Pazzani, M. (1998). An enhanced representation of
time series which allows fast and accurate classification,
clustering and relevance feedback. In proceedings of the 4th Int'l
Conference on Knowledge Discovery and Data Mining. New
York, NY, Aug 27-31. pp 239-241.

[31] Keogh, E. & Smyth, P. (1997). A probabilistic approach to fast
pattern matching in time series databases. In proceedings of the
3rd Int'l Conference on Knowledge Discovery and Data Mining.
Newport Beach, CA, Aug 14-17. pp 24-20.

[32] Keogh, E., Chakrabarti, K., Pazzani, M. & Mehrotra, S. (2001).
Locally adaptive dimensionality reduction for indexing large
time series databases. In proceedings of ACM SIGMOD
Conference on Management of Data. Santa Barbara, CA, May
21-24. pp 151-162.

[33] Kibler, D., & Langley, P. (1988). Machine learning as an
experimental science. In Proceedings of the 3rd European
Working Session on Learning. pp. 81-92

[34] Kim, E., Lam, J. M. & Han, J. (2000). AIM: approximate
intelligent matching for time series data. In proceedings of Data
Warehousing and Knowledge Discovery, 2nd Int'l Conference.
London, UK, Sep 4-6. pp 347-357.

[35] Korn, F., Jagadish, H. & Faloutsos, C. (1997). Efficiently
supporting ad hoc queries in large datasets of time sequences. In

proceedings of the ACM SIGMOD Int'l Conference on
Management of Data. Tucson, AZ, May 13-15. pp 289-300.

[36] Lam, S. K. & Wong, M. H. (1998). A fast projection algorithm
for sequence data searching. Data & Knowledge Engineering,
Vol. 28(3). pp 321-339.

[37] Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D. &
Allan, J. (2000). Mining of concurrent text and time series. In
proceedings of the 6th ACM SIGKDD Int'l Conference on
Knowledge Discovery and Data Mining Workshop on Text
Mining. Boston, MA, Aug 20-23. pp 37-44.

[38] Lee, S., Chun, S., Kim, D., Lee, J. & Chung, C. (2000).
Similarity search for multidimensional data sequences. In
proceedings of the 16th Int'l Conference on Data Engineering.
San Diego, CA, Feb 28-Mar 3. pp 599-608.

[39] Li, C., Yu, P. S. & Castelli, V. (1998). MALM: a framework for
mining sequence database at multiple abstraction levels. In
proceedings of the 7th ACM CIKM Int'l Conference on
Information and Knowledge Management. Bethesda, MD, Nov
3-7. pp 267-272.

[40] Loh, W., Kim, S. & Whang, K. (2000). Index interpolation: an
approach to subsequence matching supporting normalization
transform in time-series databases. In proceedings of the 9th
ACM CIKM Int'l Conference on Information and Knowledge
Management. McLean, VA, Nov 6-11. pp 480-487.

[41] Park, S., Chu, W. W., Yoon, J. & Hsu, C. (2000). Efficient
searches for similar subsequences of different lengths in
sequence databases. In proceedings of the 16th Int'l Conference
on Data Engineering. San Diego, CA, Feb 28-Mar 3. pp 23-32.

[42] Park, S., Kim, S. & Chu, W. W. (2001). Segment-based
approach for subsequence searches in sequence databases. In
proceedings of the 16th ACM Symposium on Applied Computing.
Las Vegas, NV, Mar 11-14. pp 248-252.

[43] Park, S., Lee, D. & Chu, W. W. (1999). Fast retrieval of similar
subsequences in long sequence databases. In proceedings of the
3rd IEEE Knowledge and Data Engineering Exchange
Workshop. Chicago, IL, Nov 7.

[44] Polly, W. P. M. & Wong, M. H. (2001). Efficient and robust
feature extraction and pattern matching of time series by a lattice
structure. In proceedings of the 10th ACM CIKM Int'l Conference
on Information and Knowledge Management. Atlanta, GA, Nov
5-10. pp 271-278.

[45] Popivanov, I. & Miller, R. J. (2002). Similarity search over time
series data using wavelets. In proceedings of the 18th Int'l
Conference on Data Engineering. San Jose, CA, Feb 26-Mar 1.
pp 212-221.

[46] Pratt, K. B. & Fink, E. (2002). Search for patterns in compressed
time series. Int'l Journal of Image and Graphics. to appear.

[47] Prechelt. L. (1995). A quantitative study of neural network
learning algorithm evaluation practices. In proceedings of the
4th Int’l Conference on Artificial Neural Networks. pp. 223-227.

[48] Qu, Y., Wang, C. & Wang, X. S. (1998). Supporting fast search
in time series for movement patterns in multiples scales. In
proceedings of the 7th ACM CIKM Int'l Conference on
Information and Knowledge Management. Bethesda, MD, Nov
3-7. pp 251-258.

[49] Rafiei, D. & Mendelzon, A. O. (1998). Efficient retrieval of
similar time sequences using DFT. In proceedings of the 5th Int'l
Conference on Foundations of Data Organization and
Algorithms. Kobe, Japan, Nov 12-13.

[50] Refiei, D. (1999). On similarity-based queries for time series
data. In proceedings of the 15th IEEE Int'l Conference on Data
Engineering. Sydney, Australia, Mar 23-26. pp 410-417.

[51] Shahabi, C., Tian, X. & Zhao, W. (2000). TSA-tree: a wavelet
based approach to improve the efficiency of multi-level surprise
and trend queries. In proceedings of the 12th Int'l Conference on
Scientific and Statistical Database Management. Berlin,
Germany, Jul 26-28. pp 55-68.

[52] Shatkay, H. & Zdonik, S. (1996). Approximate queries and
representations for large data sequences. In proceedings of the
12th IEEE Int'l Conference on Data Engineering. New Orleans,
LA, Feb 26-Mar 1. pp 536-545.

[53] Simon, J. L. (1994). What some puzzling problems teach about
the theory of simulation and the use of resampling. The
American Statistician, Vol. 48(4). Nov. pp 1-4.

[54] Struzik, Z. & Siebes, A. (1999). The Haar wavelet transform in
the time series similarity paradigm. In proceedings of Principles
of Data Mining and Knowledge Discovery, 3rd European
Conference. Prague, Czech Republic, Sept 15-18. pp 12-22.

[55] Walker, J. (2001). HotBits: Genuine random numbers generated
by radioactive decay. www.fourmilab.ch/hotbits/

[56] Wang, C. & Wang, X. S. (2000). Multilevel filtering for high
dimensional nearest neighbor search. In proceedings of ACM
SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery. Dallas, TX, May 14. pp 37-43.

[57] Wang, C. & Wang, X. S. (2000). Supporting content-based
searches on time series via approximation. In proceedings of the
12th Int'l Conference on Scientific and Statistical Database
Management. Berlin, Germany, Jul 26-28. pp 69-81.

[58] Wang, C. & Wang, X. S. (2000). Supporting subseries nearest
neighbor search via approximation. In proceedings of the 9th
ACM CIKM Int'l Conference on Information and Knowledge
Management. McLean, VA, Nov 6-11. pp 314-321.

[59] Wu, L., Faloutsos, C., Sycara, K. & Payne, T. R. (2000).
FALCON: feedback adaptive loop for content-based retrieval. In
proceedings of the 26th Int'l Conference on Very Large Data
Bases. Cairo, Egypt, Sept 10-14. pp 297-306.

[60] Wu, Y., Agrawal, D. & El Abbadi, A. (2000). A comparison of
DFT and DWT based similarity search in time-series databases.
In proceedings of the 9th ACM CIKM Int'l Conference on
Information and Knowledge Management. McLean, VA, Nov 6-
11. pp 488-495.

[61] Yi, B. & Faloutsos, C. (2000). Fast time sequence indexing for
arbitrary lp norms. In proceedings of the 26th Int'l Conference on
Very Large Databases. Cairo, Egypt, Sept 10-14. pp 385-394.

[62] Yi, B., Jagadish, H. & Faloutsos, C. (1998). Efficient retrieval of
similar time sequences under time warping. In proceedings of
the 14th Int'l Conference on Data Engineering. Orlando, FL, Feb
23-27. pp 201-20.

	INTRODUCTION
	SURVEY
	Size of Test Datasets
	Number of Rival Methods
	Number of Different Test Datasets

	INDEXING (QUERY BY CONTENT)
	Implementation Bias
	Data Bias
	Empirical Demonstration of Implementation and Data Bias
	Demonstration of data bias
	Demonstration of implementation bias

	CLASSIFICATION AND CLUSTERING
	Subjective Evaluation of Similarity
	Objective Evaluation of Similarity

	SEGMENTATION
	Data Bias in Segmentation

	CONCLUSIONS AND RECOMMENDATIONS
	ACKNOWLEDGMENTS
	REFERENCES

