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ABSTRACT   
In the last decade there has been an explosion of interest in 
mining time series data. Literally hundreds of papers have 
introduced new algorithms to index, classify, cluster and segment 
time series. In this work we make the following claim. Much of 
this work has very little utility because the contribution made 
(speed in the case of indexing, accuracy in the case of 
classification and clustering, model accuracy in the case of 
segmentation) offer an amount of “improvement” that would have 
been completely dwarfed by the variance that would have been 
observed by testing on many real world datasets, or the variance 
that would have been observed by changing minor (unstated) 
implementation details.    

To illustrate our point, we have undertaken the most exhaustive 
set of time series experiments ever attempted, re-implementing 
the contribution of more than two dozen papers, and testing them 
on 50 real world, highly diverse datasets. Our empirical results 
strongly support our assertion, and suggest the need for a set of 
time series benchmarks and more careful empirical evaluation in 
the data mining community.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications Data 
Mining. 

Keywords 
Time Series, Data Mining, Experimental Evaluation. 

1. INTRODUCTION 
In the last decade there has been an explosion of interest in 
mining time series data. Literally hundreds of papers have 
introduced new algorithms to index, classify, cluster and segment 
time series. In this work we make the following claim. Much of 
the work in the literature suffers from two types of experimental 

flaws, implementation bias and data bias (defined in detail 
below). Because of these flaws, much of the work has very little 
generalizability to real world problems.  

In particular, we claim that many of the contributions made 
(speed in the case of indexing, accuracy in the case of 
classification and clustering, model accuracy in the case of 
segmentation) offer an amount of “improvement” that would have 
been completely dwarfed by the variance that would have been 
observed by testing on many real world datasets, or the variance 
that would have been observed by changing minor (unstated) 
implementation details. 

In order to support our claim we have conducted the most 
exhaustive set of time series experiments ever attempted, re-
implementing the contribution of more than 25 papers and testing 
them on 50 real word datasets. Our results strongly support our 
contention.   

We are anxious that this work should not be taken as been critical 
of the data mining community. We note that several papers by the 
current first author are among the worst offenders in terms of 
weak experimental evaluation. While preparing the survey we 
read more than 340 data mining papers and we were struck by the 
originality and diversity of approaches that researchers have used 
to attack very difficult problems. Our goal is simply to 
demonstrate that empirical evaluations in the past have often been 
inadequate, and we hope this work will encourage more extensive 
experimental evaluations in the future.  

For concreteness we begin by defining the various tasks that 
occupy the attention of most time series data mining research. 

• Indexing (Query by Content): Given a query time series Q, 
and some similarity/dissimilarity measure D(Q,C), find the 
nearest  matching time series in database DB. 

• Clustering: Find natural groupings of the time series in 
database DB under some similarity/dissimilarity measure 
D(Q,C).  
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• Classification: Given an unlabeled time series Q, assign it to 
one of two or more predefined classes. 

• Segmentation:  Given a time series Q containing n 
datapoints, construct a model Q , from K piecewise segments 
(K << n) such that Q  closely approximates Q. 

 



Note that segmentation has two major uses. It may be performed 
in order to determine when the underlying model that created the 
time series has changed [19, 20], or segmentation may simply be 
performed to created a high level representation of the time series 
that supports indexing, clustering and classification [20, 30, 31, 
37, 39, 42, 44, 46, 48, 52, 57]. 

As mentioned above, our experiments were conducted on 50 real 
world, highly diverse datasets. Space limitations prevent us from 
describing all 50 datasets in detail, so we simply note the 
following. The data represents the many areas in which time 
series data miners have investigated, including finance, medicine, 
biometrics, chemistry, astronomy, robotics, networking and 
industry. We also note that all data and code used in this paper is 
available for free by emailing the first author. 

The rest of this paper is organized as follows. In Section 2 we 
survey the literature on time series data mining, and summarize 
some statistics about the empirical evaluations. In Section 3, we 
consider the indexing problem, and demonstrate with extensive 
experiments that many of the published results do not generalized 
to real world problems. Section 4 considers the problem of 
evaluating time series classification and clustering algorithms. In 
Section 5 we show that similar problems occur for evaluation of 
segmentation algorithms. Finally in Section 6 we summarize our 
findings and offer concrete suggestions to improve the quality of 
evaluation of time series data mining algorithms.   

2. SURVEY  
In order to assess the quality of empirical evaluation in the time 
series data mining community we begin by surveying the 
literature. Although we reviewed more than 340 papers, we only 
included the subset of 56 papers actually referenced in this work 
when assessing statistics about the number of datasets etc. The 
subset was chosen based on the following (somewhat subjective) 
criteria. 

• Was the paper ever referenced? Self-citations were not 
counted. The rule was relaxed for paper published in the last 
year because of publishing delays. We used ResearchIndex 
(http://citeseer.nj.nec.com/cs) to make this determination.  

• Was the paper published in a conference or journal likely to 
be read by a data miner? For example, several interesting 
time series data mining papers have appeared in medical and 
signal processing conferences, but are unlikely to come to 
the attention of the data mining community. 

The survey is very comprehensive, but was not intended to be 
exhaustive. Such a goal would in any case be subjective (should a 
paper which introduces a new clustering algorithm, and mentions 
that it could be used for time series be included?). In general the 
papers come from high quality conferences and journals, 
including (SIG)KDD (11), ICDE (10), VLDB (5), 
SIGMOD/PODS (5), and CIKM (6). 

Having obtained the 56 papers, we extracted various statistics 
(discussed below) from them about their empirical evaluation. In 
most cases this was easy, but occasionally a paper was a little 
ambiguous in explaining some feature of its empirical evaluation. 
In such cases we made an attempt to contact the author for 
clarification, and failing that, used our best judgment.  

In presenting the results of the survey, we echo the caution of 
Prechelt, that “while high numbers resulting from such counting 
cannot prove that the evaluation has high quality, low numbers 
(suggest) that the quality is low” [47]. 

2.1 Size of Test Datasets 
We recorded the size the test dataset for each paper. Where two or 
more datasets are used, we considered only the size of the largest.  

The results are quite surprising; the median size of the test 
database was only 10,000 objects. Approximately 89% of the test 
databases could comfortably fit on a 1.44 Mb floppy disk. 

2.2 Number of Rival Methods  
Another surprising finding of the survey is the relative paucity of 
rival methods to which the contribution of the paper is compared. 
The median number is 1 (The average is 0.91), but this number 
includes very unrealistic strawman. For example many papers 
(including one by the current first author [31]) compare times for 
an indexing method to sequential scan where both are preformed 
in main memory. However, it is well understood sequential scan 
enjoys a tenfold speed up when performed on disk because any 
indexing technique must perform costly random access, whereas 
sequential scan can take advantage of an optimized linear traverse 
of the disk [32]. 

The limited number of rival methods is particularly troubling for 
papers that introduce a novel similarity measure. Although 29 of 
the papers surveyed introduce a novel similarity measure, only 12 
of them compare the new measure to any strawman. The average 
number of rival similarity measures considered is only 0.97.             

2.3 Number of Different Test Datasets  
Although the small sizes of the test databases and the relatively 
scarcity of comparisons with rival methods is by itself 
troublesome, the most interesting finding concerns the number of 
datasets used in the experimental evaluation. On average, each 
contribution is tested on 1.85 datasets (1.26 real and 0.59 
synthetic). This numbers are astonishingly low when you consider 
that new machine learning algorithms are typically evaluated on 
at least a dozen datasets [12, 33]. 

In fact, we feel that the numbers above are optimistic. Of the 30 
papers that use two or more datasets, a very significant fraction 
(64%), use both stock market data and random walk data. 
However, we strongly believe these really should be counted as 
the same dataset. It is well known that random walk data can 
perfectly model stock market data is terms of all statistical 
properties, including variance, autocorrelation, stationarity etc 
[17, 53].  

Work by the late Julian L. Simon suggested that humans find it 
impossible to differentiate between the two [53]. To confirm this 
finding we asked 12 professors at UCRs Anderson Graduate 
School of Management to look at Figure 1 and determine which 
three sequences are random walk, and which three are real 
S&P500 stocks. The confusion matrix is show in Table 1. 



 

Figure 1. Six time series, three are random walk data, and 
three are real S&P500 stocks. Experiments suggest that 
humans cannot tell real and synthetic stock data apart (all 
the sequences on the right are real)  

 

 

Table 1. The confusion matrix for human experts in 
attempting to differentiate between random walk data and 
stock market data 

Predicted 
 

S&P Stock Random Walk 
S&P Stock 20 16 

Actual 
Random Walk 16 20 

 

The accuracy of the humans was 55.6%, which does not differ 
significantly from random guessing. 

Given the above, if we consider stock market and random walk 
data to be the same, each paper in the survey is tested on average 
on only 1.28 different datasets. This number might be reasonable 
if the contribution had being claimed for only a single type of data 
[19, 37], or it had been shown that the choice of dataset has little 
influence on the outcome. However, the choice of dataset has a 
huge effect on the performance of time series algorithms. We will 
demonstrate this fact in the next 3 sections of this work.  

3. INDEXING (QUERY BY CONTENT) 
Similarity search in time series databases has emerged as an area 
of active interest since the classic first paper by Agrawal et al. [1]. 
More than 68% of the indexing approaches surveyed here use the 
original GEMINI framework of Faloutsos [17], but suggest a 
different approach to the dimensionality reduction stage. The 
proposed representations include the Discrete Fourier Transform 
(DFT) [1, 11, 16, 28, 49, 50], several kinds of Wavelets (DWT) 
[10, 27, 45, 51, 57, 60], Singular Value Decomposition [32, 35], 
Adaptive Piecewise Constant Approximation [32], Inner Products 
[18] and Piecewise Aggregate Approximation (PAA) [61]. The 
majority of work has focused solely on performance issues, 
however some authors have also considered other issues such as 
supporting non Euclidean distance measures [32, 50, 61] and 
allowing queries of arbitrary length [32, 40, 61].    

3.1 Implementation Bias   
Since most time series indexing techniques use the same indexing 
framework, and achieve the claimed speedup solely with the 

choice of representation, it is important to compare techniques in 
a manner that is free of implementation bias.  

Definition:  Implementation bias is the conscious or 
unconscious disparity in the quality of implementation of a 
proposed approach, vs. the quality of implementation of the 
completing approaches. 

Implementing fairly complex indexing techniques allows many 
opportunities for implementation bias. For example, suppose you 
hope to demonstrate that DWT is superior to DFT. With shift-
normalized data [11, 28] the first DWT coefficient is zero so you 
could take advantage of that fact by indexing the 2nd to N+1th 
coefficients, rather than the 1st to Nth coefficients. However, you 
might neglect doing a similar optimization for DFT, whose first 
real coefficient is also zero for normalized data. Another 
possibility is that you might use the simple O(n2) DFT algorithm 
rather than spend the time to code the more complex O(nLogn) 
radix 2 algorithm [32]. In both these cases DFT’s performance 
would be artificially deflated relative to DWT. 

One possible solution to the problem of implementation bias is 
extremely conscientious implementations of all approaches, 
combined with diligent explanations of the experimental process.  
Another possibility, which we explain below, is to design 
experiments that are free from the possibility of implementation 
bias.  

Since all the exact indexing techniques use the same basic 
framework, the efficiency of indexing depends only on how well 
the dimensionality-reduced approximation can model the 
distances between the original objects. We can measure this by 
calculating the tightness of the lower bounds for any given 
representation. 

Definition: The tightness of the lower bound (denoted T ) for 
any given representation is the ratio of the estimated distance 
between two sequences under that representation, over the 
true distance between the same two sequences.   

Note that T is in the range [0,1]. A value of 1 would allow a 
constant time search algorithm, and a value of 0 would force the 
indexing structure to degrade to sequence scan. In fact, because 
sequential scan can take advantage of a linear traverse of the disk, 
whereas any indexing scheme must make wasteful random disk 
accesses, it is well understood that T must be significantly greater 
that 0 if we are to use the representation to beat sequential scan 
32]. Since one can always create artificial data for any 
representation that will give an arbitrary value of T, it should be 
estimated for a particular dataset by random sampling. Note that 
the value of T for any given dimensionality reduction technique 
depends only on the data and is independent of any 
implementation choices such as page size, buffer size, computer 
language, hardware platform, seek time etc. A handful of papers 
in the survey already make use of a similar measure to compare 
the quality of representations [10, 32]. 

This idea of an implementation free evaluation of performance is 
by no means new. In artificial intelligence, researchers often 
compare search algorithms by reporting the number of nodes 
expanded, rather than the CPU times [33]. The problem of 
implementation bias is also well understood in other computer 
science domains, including parallel processing [5].      



3.2 Data Bias    
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As mentioned above, the tightness of the lower bound can be 
estimated by random sampling of a dataset. However we have not 
yet addressed the importance of which dataset(s) are sampled. The 
indexing papers included in this survey tested their approach on a 
median of 1 datasets. This would be reasonable if the utility of the 
approach was only being claimed for a single type of data, for 
example “More Efficient Indexing of ECG Time Series” or “A 
New Approach to Indexing Stock Market Data”. However, none 
of the papers make such a limited claim. The papers are implicitly 
or explicitly claiming to be improvements over the state of the art 
on any time series data. In fact, the choice of test data has a great 
effect on the experimental results, and virtually all papers 
surveyed suffer from data bias. Figure 2. Experiments on the Powerplant, Infrasound and 

Attas datasets “demonstrate” that DFT outperforms 
DWT-Haar for indexing time series 

Definition:  Data bias is the conscious or unconscious use of 
a particular set of testing data to confirm a desired finding. 

There does not appear to be a simple cure for data bias. One 
possibility is to limit the scope of the claim for a new approach to 
that which has actually been demonstrated, e.g “Faster indexing 
of Stock Market Data”. Another possibility, which we favor, is to 
test the algorithms on a large, heterogeneous set of time series. 
Ideally this set should include data that covers the spectrum of 
time series properties; stationarity/ non-stationarity, noisy/ 
smooth, cyclical/ non-cyclical, symmetric/ asymmetric, etc. 

In contrast if we worked with the Network, ERPdata and Fetal 
EEG datasets we could conclude that there is no real difference 
between DFT and Haar, as suggested by Figure 3. 

3.3 Empirical Demonstration of 
Implementation and Data Bias   
To demonstrate the need for an implementation-free measure of 
the quality of indexing technique, and the absolute necessity of 
testing new algorithms on several datasets, consider the following 
contradictory claims made with regard the relative indexing 
abilities of DFT and DWT (wavelets):  

Network EPRdata Fetal EEG
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• “Several wavelets outperform the Haar wavelet (and DFT)” [45].  Figure 3. Experiments on the Network, EPRdata and 
Fetal EEG datasets “demonstrate” that DFT and DWT-
Haar have the same performance for indexing time series • “DFT-based and DWT-based techniques yield comparable 

results in similarity search” [60].  
Finally had we had chosen the Chaotic, Earthquake and Wind 
datasets we could use the graphs in Figure 4 to demonstrate 
“convincingly” that Haar is superior to DFT. 

• “Haar wavelets perform slightly better that DFT” [27].  

Which, if any, of these statements are we to believe?  Because of 
the problems of implementation bias and the limited number of 
test datasets we feel little credence can be given to any of the 
claims. To demonstrate this we have performed a comprehensive 
series of experiments that show that the variance due to 
implementation bias and testing on different data can far outweigh 
the improvements claimed in the literature.  

We calculated the value of T for both DFT and DWT. To ensure 
that we obtained good estimates we averaged over 100,000 
randomly chosen subsequences from each dataset. For fairness we 
used the same 100,000 subsequences for each approach. To 
ensure randomness in our sampling technique we used true 
random numbers that were created by a quantum mechanical 
process [55].   
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Figure 4. Experiments on the Chaotic, Earthquake and 
Wind datasets “demonstrate” that DWT-Haar 
outperforms DFT for indexing time series 

3.3.1 Demonstration of data bias 
The three papers listed above experimented on a maximum of 3 
datasets. If we use that number of datasets we can demonstrate 
essentially any finding we wish. For example, by working with 
the Powerplant, Infrasound and Attas datasets we can find that 
DFT outperforms the Haar wavelet, as shown in Figure 2. 

Although we used the value of T to demonstrate the problem, we 
also confirmed the findings on an implemented system, using an 



R-tree running on AMD Athlon 1.4 GHZ processor, with 512 MB 
of physical memory and 57.2 GB of secondary storage. The 
results were essentially identical, so we omit the graphs for 
brevity.  
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Note that we are not claiming any duplicity by the authors of the 
excellent papers listed above. We are merely demonstrating that 
the limited number of datasets used in the typical indexing paper 
severely limits the claims one can make.   

3.3.2 Demonstration of implementation bias  
The vast majority of papers on indexing that do use a strawman 
comparison use the simplest possible one, sequential scanning. 
Here we will demonstrate the potential for implementation bias 
with sequential scanning performed in main memory. 

 

Figure 5. The affect of minor implementation details on 
the performance of sequential scan, for increasing large 
databases 

The Euclidean distance function is shown in Eq. 1. 
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2,    (1) It is easy to find examples of data bias in the literature, it is much 
more difficult to know the scale of the problem for 
implementation bias. By its very nature, it is almost impossible to 
know what fraction of a claimed improvement should be credited 
to the proposed approach, and what fraction may be due to 
implementation bias. However, there are a handful of examples 
where this is clear. For example, one paper included in the survey 
finds a significant performance gap between the indexing abilities 
of Haar wavelets and Piecewise Aggregate Approximation (PAA) 
[45]. However it was proved by two independent groups of 
researchers that these two approaches have exactly the same 
tightness of lower bounds when the number of dimensions is a 
power of two (and very little difference when the number of 
dimensions is not a power of two) [32, 61]. We empirically 
confirmed this fact 4,000,000 times during the experiments in 
Section 3.3.1. While there may be small differences in the CPU 
time to deal with the two representations, the order in which the 
original sequences are retrieved from disk by the index structure 
should be the same for both approaches, and disk time completely 
dominates CPU for time series indexing under Euclidean distance. 
We strongly suspect the spurious result reported above was the 
result of implementation bias, so we conducted an experiment to 
demonstrate how a simple implementation detail could produce an 
effect which is larger than the approximately 11% difference 
claimed.   

The basic sequential search algorithm is shown in Table 2. 

Table 2. The Sequential Search Algorithm 

Algorithm sequential_scan(data,query) 
best_so_far = inf; 
for every item in the database 
  if euclidean_dist(datai,query) < best_so_far 
     pointer_to_best_match = i; 
     best_so_far = euclidean_dist(datai,query); 
  end; 
end; 

One possibility implementation, which we call Naïve, is to 
calculate the Euclidean distance as shown in Eq. 1 with a loop to 
accumulate all the partial sums, followed by the taking of the 
square root. A possibility for optimization, which we call Opt1, is 
to neglect taking the square root. Since the square root function is 
monotonic, the ranking of the nearest neighbors will be identical 
under this scheme [61]. Finally we consider another optimization, 
which we call Opt2, which is simply to keep comparing the 
best_so_far variable to the partial sums at each iteration of the 
loop. If the partial sum ever exceeds the value of best_so_far we 
can admissibly abandon that calculation, since the partial distance 
can never decrease. To test the effect of these minor 
implementation details we performed 1-nearest neighbor searches 
in a random walk dataset, with a query length of 512 for 
increasingly larger datasets. The results are shown in Figure 5. 

We began our experiment by performing a fair comparison of the 
tightness of lower bounds for Haar and PAA on each of our 50 
datasets, with a query length of 256 and 8 dimensions. Rather 
than estimate T with 100,000 random samples as in Section 3.1.1, 
we averaged over 100 samples as in the paper in question. 

It is obvious that these very minor implementation details can 
produce large differences. If we are comparing a novel algorithm 
to sequential scan, and omit details of sequential scan 
implementation, it would be very hard to gauge the merit of our 
contribution. Note that for simplicity we only considered a main 
memory search. If we consider a disk-based search, there are a 
myriad of other implementation details that could effect the 
performance of sequential scan by at least an order of magnitude. 

We repeated the experiment once more; this time neglecting to 
take advantage of the fact the first Haar coefficient is zero for 
normalized data. In other words, we wastefully index a value that 
is a constant zero. Once again we estimated T by averaging over 
100 samples for each dataset. 

For each dataset we calculated the ratio of the correct 
implementation’s value of T to the poor implementation’s value 
of T. The 50 results are plotted as a histogram in Figure 6. 
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10 We believe that one of the best (subjective) ways to evaluate a 
proposed similarity measure is to use it to create a dendrogram of 
several time series from the domain of interest [30].  

Additional dendrograms can be created using other measures then 
plotted side by side with the propose approach. Figure 7 shows an 
example. 
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Figure 6. The distribution of the ratios of the results of 
correctly implemented experiments to experiments that 
have a slight implementation bias 

It is surprising to note that sometimes implementation bias that 
should favor an approach can actually hurt it, as happened 4 times 
out of the 50 experiments. However we must remember that the 
values of T for each dataset were only estimated from 100 
samples, and the finding is not statistically significant. What is 
clear from the experiment however is that a simple minor 
implementation detail can produce effects that are as large as the 
claimed improvement of the proposed approach 

4. CLASSIFICATION AND CLUSTERING 
Classification and clustering problems have been the subject of 
active research for decades [12, 33]. However the unique structure 
of time series means that most classic machine learning 
algorithms to not work well for time series. In particular the high 
dimensionality, very high feature correlation, and the (typically) 
large amounts noise that characterize time series data have been 
viewed as an interesting research challenge. Most of the 
contributions focus on providing a new similarity measure as a 
subroutine to an existing classification or clustering algorithm, so 
for simplicity we shall only consider the contribution of the 
suggested similarity measure. 

 

Figure 7. Dendograms can be used to visually assess the 
usefulness of a similarity measure. Above a dataset of 8 
objects is clustered using the single linkage method, with 4 
different distance measures. Euclidean distance and 
Dynamic Time Warping are decade old strawmen. The 
other two approaches have recently been proposed in data 
mining papers [57, 29] 

How well do these similarity measures capture the true similarity 
of time series? There are two ways to answer this question, 
subjectively and objectively, we consider both below.  

4.1 Subjective Evaluation of Similarity   
Since a goal of data mining is often to find patterns that map onto 
human intuition, one possible way to judge the utility of a 
similarity measure is to show examples of time series that the 
proposed measure found to be similar/dissimilar. Surprisingly, 
many of the papers included in the survey, whose main 
contribution was to introduce a new similarity measure, fail to 
show even one example of a matching pair of time series [4, 8, 
19, 22, 24, 26, 34, 36, 38, 42, 43, 48, 57]. Moreover, showing 
some examples of matching time series is of little utility unless 
some strawman comparison is used. Many papers ask us to 
consider the quality of their proposed similarity measure without 
a single comparison to another technique [2, 4, 8, 24, 31, 38, 39, 
41, 42, 46, 57]. This in particularly surprising since the most 
obvious strawman, Euclidean distance, is trivial to implement 
(For example, in the Matlab programming language it requires 
only 19 characters:    sqrt(sum((q-c).^2))   ). 

Dendrograms are particularly attractive since a clustering of M 
objects summarizes O(M) measurements, however other 
possibilities of visualizing the quality of a similarity measure 
included projecting the time series into 2 dimensional space  (via 
MDS or SOMs for example [15]).  

4.2 Objective Evaluation of Similarity   
Given a database of labeled time series, objective measurements 
of the quality of a proposed similarity measure can be readily 
obtained by running simple classification experiments. Although 
a few such databases do exist, very few advocates of a new 
similarity measure have chosen to demonstrate their contribution 
in this manner. The work by [21] is a notable exception. To repair 
this omission, we have undertaken an experimental comparison of 
many of the techniques included in the survey. We tested on two 
publicly available datasets:  



5. SEGMENTATION  • Cylinder-Bell-Funnel: This synthetic dataset has been in the 
literature for 8 years, and has been cited at least a dozen 
times [21]. It is a 3-class problem; we create 128 examples of 
each class for these experiments. 

A large fraction of the papers in the survey either introduce a 
segmentation algorithm as their main contribution, or utilize a 
segmentation algorithm as a subroutine. Although the segments 
created could be polynomials of an arbitrary degree, the most 
common representation of the segments are linear functions. 
Intuitively a Piecewise Linear Representation (PLR) refers to the 
approximation of a time series Q, of length n, with K straight 
lines. Figure 8 contains an example. 

• Control-Chart: This synthetic dataset has been freely 
available for the UCI Data Archive since June 1998 [6]. It is 
a 6-class problem, with 100 examples of each class.  

Note that for both problems, informal experiments suggest 
humans can achieve an error rate of zero. For simplicity we use 
the 1-Nearest Neighbor algorithm, evaluated using “leaving-one-
out”. We compare the proposed methods to the simplest 
strawman, Euclidean distance. This measure is well-known [1, 10, 
11, 13, 14, 16, 17, 18, 27, 32, 35, 36, 40, 45, 49, 50, 60, 61, 62], 
parameterless, trivial to implement and predates data mining by 
several decades.  

 

We originally intended to implement every proposed similarity 
measure in our survey, but several of the papers do not include a 
detailed enough description to allow reimplementation [39, 48]. 
We contented ourselves with reimplementing 11 measures. Some 
of the measures require the user to set some parameters. In these 
cases we wrapped the classification algorithm in a loop for each 
parameter, searched over all possible parameters and reported 
only the best result.   

Figure 8. An example of a time series with its piecewise 
linear representation  

Because K is typically much smaller that n, this representation 
makes the storage, transmission and computation of the data more 
efficient. Specifically, in the context of data mining, piecewise 
linear representation has been used to: 

Table 3 summarized the results. 

Table 3. The error rates for various similarity measures 

Approach Cylinder-Bell-
Funnel Control-Chart 

Euclidean Distance 0.003 0.013 
Aligned Subsequence [42] 0.451 0.623 
Piecewise Normalization [26] 0.130 0.321 
Autocorrelation Functions [57] 0.380 0.116 
Cepstrum [29] 0.570 0.458 
String (Suffix Tree) [24] 0.206 0.578 
Important Points [46] 0.387 0.478 
Edit Distance [8] 0.603 0.622 
String Signature [4] 0.444 0.695 
Cosine Wavelets [25] 0.130 0.371 
Hölder [54] 0.331 0.593 
Piecewise Probabilistic  [31] 0.202 0.321 

• Support novel distance measures for time series, including 
“fuzzy queries” [52], weighted queries [30], multiresolution 
queries [39, 48], dynamic time warping [42, 46], 
autocorrelation queries [57] and relevance feedback [30]. 

• Support concurrent mining of text and time series [37]. 

• Support novel clustering and classification algorithms [30]. 

• Support change point detection [20, 23]. 

Surprisingly, in spite of the ubiquity of this representation, with 
the exception of [52], there has been little attempt to understand 
and compare the algorithms that produce it. 

Although appearing under different names and with slightly 
different implementation details, most time series segmentation 
algorithms can be grouped into one of the following three 
categories. 

The results are quite surprising. None of the proposed techniques 
can beat the simple strawman. Their error rates are an order of 
magnitude worse that Euclidean distance. Several of the 
techniques have the error rates close to the default rate (i.e. the 
same error you would get randomly guessing). Although the 
inability to perform well on these two objective tests does not 
necessarily mean the similarity measures in question are without 
any merit (there may exist datasets on which they have reasonable 
accuracy), one has to wonder about the contribution of a new 
similarity measure which fails to demonstrate its utility on any 
objective or subjective test1.  

• Sliding-Windows (SW): A segment is grown until it 
exceeds some error bound. The process repeats with the next 
data point not included in the newly approximated segment. 

• Top-Down (TD): The time series is recursively partitioned 
until some stopping criteria is met. 

• Bottom-Up (BU): Starting from the finest possible 
approximation, segments are merged until some stopping 
criteria is met.   

We can measure the quality of a segmentation algorithm in 
several ways, the most obvious of which is to measure the 
reconstruction error for a fixed number of segments. The 
reconstruction error is simply the Euclidean distance between the 
original data and the segmented representation. 

                                                                 
1 Once again we wish to note that the current first author 

introduced one of the poorly performing measures. 



5.1 Data Bias in Segmentation 
Given that we have 3 algorithms to produce a segmented version 
of a time series, it is natural to ask which is best. The papers in the 
survey that use a segmentation algorithm test on a median of 1 
dataset. However, if we use only one dataset we can demonstrate 
any finding we wish! There are 3 different algorithms, therefore 
3! = 6 possible rankings. We tested the algorithms on our 50 fifty 
datasets, asking each algorithm to reduce a 1,024 datapoint time 
series to 64 segments. Amazingly, we found every possible 
ranking of the 3 algorithms as shown in Table 4. 

Table 4. The 3 algorithms under consideration, ranked by 
reconstruction error (shown in brackets), on 6 datasets 

Dataset Best 
Algorithm 

Second-Best 
Algorithm 

Third-Best 
Algorithm 

Soiltemp TD (522.6) SW (538.0) BU (538.1) 
Darwin TD (575.2) BU (821.0) SW (833.9) 
pHdata SW (3.590) TD (4.013) BU (4.037) 
Winding SW (6.883) BU (113.0) TD (117.6) 
Balloon BU (168.1) TD (224.5) SW (234.1) 
Network BU  (11.02) SW (13.62) TD (891.4) 

 

Note that the fact that we could easily find datasets to 
demonstrate any ranking we wish does not preclude us from 
making a meaningful evaluation of the algorithms. In fact the 
Bottom-Up algorithm is significantly better than the other two 
approaches2. Our point, once again, is simply that little credence 
can be given to experimental results obtained from testing on a 
single dataset. 

6. CONCLUSIONS AND RECOMMENDATIONS 
In this work we have conducted a comprehensive survey of recent 
work on time series data mining. We have shown that because of 
several kinds of experimental flaws, in particular data bias and 
implementation bias, many of the results claimed in the literature 
have very little generalizability to real world problems. We have 
demonstrated our claim with the most comprehensive set of time 
series experiments ever undertaken. 

Once again we would like to note that we view this work as a 
“call to arms” to the data mining community, and not a criticism 
of the many wonderful and original papers cited here. The 
intended spirit of this paper is similar to the ironically titled work 
by Bailey, “Twelve ways to fool the masses when giving 
performance results on parallel computers” [5]. The author later 
noted that few, if any researchers set out to deliberately mislead 
the academic community, but unless greater effort is made to 
meaningfully compare rival approaches, the entire field is in 
danger of being viewed with suspicion. This current work is an 
echo of that sentiment for the time series data mining community.  

We conclude this paper with concrete suggestions for researchers 
working on time series data mining. 

                                                                 
2 Bottom-Up outperformed Top-Down on 47 of 69 datasets, and it 

outperformed Sliding Windows on 58 of 69 datasets. 

• Algorithms should be tested on a wide range of datasets, 
unless the utility of the approach is only been claimed for a 
particular type of data. If possible, one subset of the datasets 
should be used to fine tune the approach, then a different 
subset of the datasets should be used to do that the actual 
testing. This methodology is widely used in the machine 
learning community to help prevent implementation and data 
bias  [12].  

• Where possible, experiments should be designed to be free of 
the possibility of implementation bias. Note that this does 
not preclude the addition of extensive implementation 
testing.  

• Novel similarity measures should be compared to simple 
strawmen, such as Euclidean distance or Dynamic Time 
Warping. Some subjective visualization, or objective 
experiments should justify their introduction. 

• Where possible, all data and code used in the experiments 
should be made freely available to allow independent 
duplication of findings [6].   
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