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Abstract—Time series motifs are approximately repeated 

patterns in real-valued temporal data. They are used for 

exploratory data mining methods including clustering, 

classification, segmentation, and rule discovery. Their current 

definition is limited to finding literal or near-exact matches and 

is unable to discover higher level semantic structure. Consider a 

time series generated by an accelerometer on a smartwatch. 

This data offers the possibility of finding motifs in human 

behavior. One such example is the motif generated by a 

handshake. Under current motif definitions, a single-pump 

handshake would not match a three-pump handshake, even 

though they are culturally and semantically equivalent events. 

In this work we generalize the definition of motifs to one which 

allows us to capture higher level semantic structure. We refer to 

these as time series semantic motifs. Surprisingly this increased 

expressiveness does not come at a great cost. Our algorithm 

Semantic-Motif-Finder takes approximately the same time as 

current state-of-the-art motif discovery algorithms. 

Furthermore, we demonstrate the utility of our ideas on diverse 

datasets. 

Keywords—time series, motif discovery, semantic data, higher-

level motif 

I. INTRODUCTION  

Time series motifs are approximately repeated patterns in 

real-valued data [2][24] which are useful for exploratory data 
mining. In recent years there has been significant progress  in 

the scalability of motif discovery using Euclidean distance 

[27][28].  

If a time series pattern is conserved there may exist some 

high-level mechanism that causes that pattern to be conserved 
[27]. Euclidean distance is somewhat forgiving of noise, so by 

analogy with Hamming distance (HD) in strings, if oscar 
and oskar appeared in a random string, we could discover 

this conserved name, in spite of minor spelling variants . 

However, consider the following two variations of the 
name of the Irish poet, oscar w wilde and oscar 

wills wilde. Let us embed them into an unpunctuated 

string. Could we discover them using Hamming distance? 

xmargaritazvmargaritexyxoscarwwildeabcoscarwillswildedef 

For any motif length of 1 to 8, substrings of “margarit” 

provide a distance of zero. For lengths of 9 to 15, superstrings 

of “margarite” provide the minimum distance. Using 
Hamming distance with “don’t cares” is not a solution to this 

problem, nor is using any variant of string edit distance. 

In contrast, suppose there is a conserved semantic pattern 

consisting of two parts, each of length five, separated by 
between zero and five spaces. If we measure similarity  

between two occurrences of this pattern HD(prefix,prefix) + 

HD(suffix,suffix), then HD(‘oscar’,‘oscar’) + 

HD(‘wilde’,‘wilde’) minimizes this function with a score 

of zero.  

We claim that this problem has an analogue in real-valued 

time series that creates such time series semantic motifs in 

datasets,  and these cannot be found with current time series 
motif discovery tools [2][3][24][27]. While we show many 

such examples in Section VI, we also preview a few examples  

below: 

• Entomologists use an electrical penetration graph 
(EPG) apparatus to extract telemetry that reflects 

insect behaviors. Fig. 1 shows an example of a 

semantic behavior known in the Asian citrus psyllid 

(Diaphorina citri), a pest of citrus. 

 
Fig. 1.top) An idealized version of Asian citrus psyllid phloem-ingestion 

behavior. It consists of a highly conserved prefix and suffix, but with zero to 
two seconds of much more variable behavior in-between. bottom) Two 

realizations of this semantic motif in data obtained by [25]. 

• In basketball, a free throw is typically comprised of 

one or more bounces, followed by a throw after a short 
(yet variable) period of time. Both “bounce” and 

“throw” also frequently occur independently, but it is 

their sequential occurrence, in the right order, within a 
short period of time that suggests a higher-level 

semantic motif of free-throw. 

• Many quotidian human behaviors can be modeled as 
pairs of sequential events . At a short time-scale, the 

handshake alluded to earlier is an example.  Fig. 2 
shows the much longer semantic motif of doing-

laundry, which we discovered in an electrical power 

demand dataset. 

 

Fig. 2. top) An idealized version of the “doing laundry” behavior. Consists 
of a highly conserved prefix (washing machine) and suffix (dryer), but with 
tens of minutes of more variable behavior in-between. bottom) Two 

realizations of this semantic motif in data obtained by [17]. 
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These are examples of known ordered occurrences of 
events, which can be modeled by semantic motifs. However, 

we are interested in the discovery of these unknown event 
sequences. Once known, they can be discovered elsewhere 

using a handful of existing search techniques . 

The rest of this paper is organized as follows. In the next 

section, we introduce all necessary definitions and notation. In 

Section III, we formally introduce time series semantic motifs. 
We review related work in Section IV, before discussing our 

algorithm for Semantic Motif discovery in Section V. In 
Section VI, we perform an empirical evaluation. Finally, we 

summarize our results and outline future work in Section VII. 

II. DEFINITIONS AND NOTATION 

We begin by describing the necessary definitions and 

notation. The data type of interest is time series: 

Definition 1 (time series): A time series 𝑇 of length 𝑛 is a 

sequence of real-valued numbers 𝑡𝑖: 𝑇 = 𝑡1, 𝑡2 , … , 𝑡𝑛. 

We are primarily interested in the behavior of local 

regions. A local region of time series is called a subsequence: 

Definition 2 (subsequence): A subsequence 𝑇𝑖 ,𝑚  of a 

time series 𝑇 is a continuous ordered subset of the values from 

𝑇  of length 𝑚  starting from position 𝑖 . 𝑇𝑖 ,𝑚 =
𝑡𝑖 , 𝑡𝑖+1 , … , 𝑡𝑖+𝑚−1, where 1 ≤ 𝑖 ≤ 𝑛− 𝑚 + 1. 

Almost all algorithms in the literature use the following 

definition of time series motifs: 

Definition 3 (motif): A time series motif is the most 

similar subsequence pair of a time series. Formally, Ta,m and 

Tb,m is the motif pair of length m iff dist(Ta,m, Tb,m) ≤

 dist(Ti,m, Tj,m) ∀ i, j ∈ [1, 2, … , n − m + 1]  where a ≠ b 

and i ≠ j , and dist  is a function that computes the z-
normalized Euclidean distance between the input 

subsequences. 

We can store the distance between a subsequence of a time 
series with all the other subsequences from the same time 

series in an ordered array called distance profile [16]. 

Definition 4 (distance profile): A distance profile 𝐷 ∈
ℝ𝑛−𝑚+1 of a time series 𝑇 and a given query  𝑇𝑖 ,𝑚 is a vector 

which stores 𝑑𝑖𝑠𝑡(𝑇𝑖 ,𝑚, 𝑇𝑗,𝑚) ∀ 𝑗 ∈ [1, 2, … , 𝑛 − 𝑚 + 1]. 

III. SEMANTIC MOTIF DEFINITION 

Our task reduces to finding ordered pair of subsequences 
within a long time series. As hinted at in Fig. 1 and Fig. 2, 

each pattern consists of three parts: prefix, don't-care and 
suffix. The prefixes are mutually similar, as are the suffixes. 

The shapes of the don't-care regions are arbitrary and are 

ignored. Moreover, we allow the lengths of the don't-care 
regions to be different. Each can have any value in the range 

0 to 𝑟 , where 𝑟  is a user specified constraint. Formally, a 

pattern meeting all these requirements is a time series  

semantic motif: 

Definition 5 (semantic motif):  

𝑇𝑎,𝑚  and 𝑇𝑏,𝑚  is the semantic motif pair iff 

(𝑎, 𝑏)~𝑎𝑟𝑔𝑚𝑖𝑛𝑖 ,𝑗{𝑑𝑖𝑠𝑡(𝑇𝑖 ,𝑚, 𝑇𝑗,𝑚) + 𝑑𝑖𝑠𝑡(𝑇𝑘,𝑚 , 𝑇ℓ,𝑚)}  

where 

1 ≤ 𝑖 ≤ 𝑛− 2(𝑟 + 𝑚) +1 

𝑖 + 𝑟 ≤ 𝑘 ≤ 𝑛 − (𝑟 +2𝑚) + 1 

𝑘 +𝑚 ≤ 𝑗 ≤ 𝑛 − (𝑟 + 𝑚) + 1 

𝑗 +𝑚 + 𝑟 ≤ ℓ ≤ 𝑛 − 𝑚 +1 

∀ 𝑖, 𝑗, 𝑘, ℓ ∈ [1,2,… , 𝑛 −𝑚 + 1] 

Where 𝑚 is the length of the semantic motif, 𝑖 ≠ 𝑗, 𝑘 ≠ ℓ 

and 𝑑𝑖𝑠𝑡  is a function that computes the z-normalized 

Euclidean distance between the input subsequences. 𝑟 is the 

maximum length of don't-care region and 𝑛 is the length of 

time series. The first term i.e. 𝑑𝑖𝑠𝑡(𝑇𝑖 ,𝑚, 𝑇𝑗,𝑚)is the distance 

between prefixes and the second term i.e. 𝑑𝑖𝑠𝑡(𝑇𝑘,𝑚 , 𝑇ℓ,𝑚) is 

the distance between suffixes with respect to the ordered triple 

(prefix, don’t-care, suffix). We will explain this definition in 

more details in Section V. 

We can use the semantic motif pair distance for each 

semantic motif pair to form a semantic matrix profile: 

Definition 6 (semantic matrix profile): A semantic 

matrix profile is a meta time series 𝑆𝑀𝑃  that stores the 

distance between each semantic motif and its nearest 

neighbor. 

By Definition 5, the location of the (mutually) lowest pair 

of points corresponds to the top-1 semantic motif. 

Consider the following example, which demonstrates one 
possible use of semantic motifs. There is a known feeding 

behavior in certain insects that can be described as prefix 
, and a suffix , with a don’t-care region in-between [25]. 

We asked an entomologist to provide a handful of data 

snippets from an insect, some of which contain this feeding 

behavior. Fig. 3 shows two attempts at clustering this data. 

 
Fig. 3. Two clusterings of insect data that include samples of a behavior 

called “non-ingestion-C”. left) The clustering produced by Euclidean 
distance does not correctly group the behaviors, but the semantic motif 

distance (right) does. 

We often care about the ordering of events. This is 

reflected in the requirement that the index of a suffix be 
greater than its corresponding prefix. For example, 

“..Oscar loved..” and , “..loved Oscar..” are 

semantically different (in the first Oscar is the subject, in the 
second Oscar is the object). There may be a handful of cases 

in which order does not matter, for example “..shiny 

red..” and “..red shiny..”. However this 

generalization is trivial if needed. 

We want to avoid very long don't-care regions, as this 
helps mitigate the discovery of spurious motifs. For example, 

consider  a person who routinely has medical checkups in 

early January and June. That same person may adjust their 
clock twice a year for daylight savings time. Clearly it would 

be bizarre to view ClockAdjust <don’t care> Exam 
as a semantic motif, as the two events happen months apart. 

However, suppose our individual follows the advice of the 
U.S. Fire administration, and uses the clock adjusting as 



prompt to change the batteries in her smoke detectors. Then 
ClockAdjust <don’t care> ChangeBattery is a 

meaningful semantic motif we would hope to discover.  

In order to avoid arbitrarily long semantic motifs, we 

choose a threshold 𝑟 to be the maximum length of the don't-

care regions for each subsequence. The best choice of 𝑟  is 

domain dependent, but we envision it being at most a small 

multiple of the length of the prefix/suffix.  

IV. RELATED WORK  

In recent years there has been an explosion of interest in 

time series motifs [20][12][1][9][10][13]. While there has 
been significant progress in scalability of motif discovery, 

there has been much less progress in expanding the 
expressiveness of the definition of ‘motif’. There have been 

proposals to replace the Euclidean distance with Dynamic 

Time Warping [23], length-invariant Euclidean distance [8], 
or other Lp norms. However, none of these generalizations 

offer the pattern of expressiveness we propose.  

A. Dismissing Apparent Solutions 

It is important to dismiss apparent solutions to this 

problem before introducing our technique: 

Dynamic Time Warping (DTW), while useful in many 
time series data mining tasks, is not a solution to the task at 

hand. DTW  is able to compensate for small local 
misalignments [23]. Consider Fig. 1, DTW cannot map four 

peaks to six peaks. It must attempt to “explain” all data, while 

semantic motifs allow us to ignore some data. 

There are many techniques to search for known patterns 

with the ability to support some “don’t-care” regions . These 
include weighted Euclidean distance, (real-valued versions of) 

longest common subsequence and variants of Markov models. 
These ideas have utility for one-to-all similarity search. 

However, we are searching for unknown patterns, a much 
harder all-to-all case. However, we are interested in 

unsupervised pattern matching in the form of an all-to-all case. 

It is not clear that the aforementioned approaches could be 
adapted to create meaningful results for these tasks. For 

example, weighted Euclidean distance allows the use of don’t-
care regions, but the length of each don’t-care region must be 

specified ahead of time. In contrast, semantic motifs  only 

require an upper bound for the length of the don't-care region. 

Finally, even if we could adapt any of the existing 

approaches, it is not clear how we could make them scalable. 
Each takes at least 𝑂(𝑚) time to process one comparison, and 

motif discovery requires 𝑂(𝑛2) comparisons to be computed 

or admissibly pruned, giving us a time complexity of 

𝑂(𝑚𝑛2). In contrast, our approach is just 𝑂(𝑛2). When m is 

in the thousands, this difference is three orders of magnitude. 

There are “fast” methods to find classic motifs using 
discretization of data into “words” of length w, hashing of the 

discretized words, and a post-processing of the hash buckets 

to refine the motifs [5]. All such methods in the literature are 
approximate and require careful tuning of several parameters. 

Yeh et al [27] empirically shows that the discretization 
overhead adds a huge constant factor to the execution time, 

                                                                 
1 We are using the American convention that the floor at street level is the 

first floor, the one above is the second floor etc. 

and in practice these approximate methods may not be  much 

faster than exact methods. 

We will show in the next section (and in our experimental 
section) that the “classic” approach to motif discovery [28] is 

unable to discover repeated structure that semantic motifs can 
find. We do not believe that this is achievable through simple 

modification  to existing motif discovery algorithms .  

V. FINDING SEMANTIC MOTIFS 

In this section we introduce an exact algorithm Semantic-
Motif-Finder, which allows us to find all semantic motifs in a 

time series of length 𝑛 in 𝑂(𝑛2) operations. 

A. Semantic-Motif-Finder Algorithm 

Our goal is to calculate the semantic motif pair (Definition  

5). We solve this problem by computing the semantic matrix 
profile described in Definition 6. We then find the semantic 

motif pair by locating the two lowest values in the semantic 

matrix profile.  

The inputs to the algorithm Semantic-Motif-Finder, are a 

time series 𝑇, a prefix/suffix length 𝑠 and a maximum don't-

care length 𝑟. The outputs are a semantic matrix profile SMP 
and semantic matrix index SMI. The semantic motif pair is 

located at the minimum value of the SMP, and the SMI shows 

the location of the pair. 

Let us apply our ideas to the example of examining a 

working day in the life of a graduate student through 
accelerometer data recorded by her phone. She reaches the 

elevator on her way to her office on the fourth floor, where she 
typically starts working around 9:00 am. Upon reaching her 

office, she realizes that she forgot to buy coffee. She skips the 
busy elevator and descends two flight of stairs to reach the 

coffee house which is located on the second floor1 . After 

buying coffee, she returns to her office via the elevator and 
continues her work. Both elevator trips are annotated in Fig. 

4. 

 
Fig. 4. The hip-mounted X-axis acceleration of a graduate student standing, 
using elevator, sitting, walking down stairs, using elevator and sitting again. 

The data is real but edited for visual brevity [18]. 

The pink highlighted regions in Fig. 4.top contain a 
semantic motif corresponding to the ascending-in-elevator 

behavior. As shown in Fig. 5, this semantic motif contains a 
“bump” caused by the acceleration of the rising elevator, i.e. 

prefix. It also contains a relatively flat region, the length of 

which is proportional to the number of floors the elevator 
ascends, i.e. the don't-care region. Finally, the motif has a 

“valley” caused by deceleration when the elevator stops, i.e. 

suffix. 

The don't-care region for the first subsequence shows the 
elevator ascending four floors. In the second subsequence, the 

elevator only ascends two floors. The prefixes and suffixes are 

mutually similar, while the don't-care regions differ, with one 

being six seconds longer. 

~5 minutes

Elevator Sitting WD Elevator SittingS



 
Fig. 5. A semantic motif pair related to the ascending elevator in the time 

series shown in Fig. 4. 

The starting location of the semantic motif is the same as 

the starting position of its prefix. The suffix starting position 

could be anywhere as follows: 

        psp + s < suffix starting position < s + r + psp 

where psp is the prefix starting position, 𝑟 is the maximu m 

length of the don't-care region and 𝑠 is the length of prefix 

region.  

We want to compute the distance between semantic motifs 

beginning at indices  𝑎 and 𝑏 with prefix and suffix of length 

𝑠. We compute the distance as follows: 

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 − 𝑚𝑜𝑡𝑖𝑓𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎,𝑏) =: 
𝑑𝑖𝑠𝑡(𝑝𝑟𝑒𝑓𝑖𝑥(𝑎) , 𝑝𝑟𝑒𝑓𝑖𝑥(𝑏))+ 𝑑𝑖𝑠𝑡(𝑠𝑢𝑓𝑓𝑖𝑥(𝑎) ,𝑠𝑢𝑓𝑓𝑖𝑥(𝑏))         (1) 

Recall that 𝑑𝑖𝑠𝑡  is a function, which computes the z-

normalized Euclidean distance between two input 

subsequences. 

The first part of Equation 1 can be written as : 

𝑑𝑖𝑠𝑡(𝑝𝑟𝑒𝑓𝑖𝑥(𝑎), 𝑝𝑟𝑒𝑓𝑖𝑥(𝑏))  = 𝑑𝑖𝑠𝑡(T[a:a + s],T[b: b + s]) 

The second part of Equation 1 is more challenging due to 
various possible starting positions for the suffix as hinted in 

Fig. 6. 

 
Fig. 6. The semantic motif pair corresponding to the elevator acceleration for 

the time series shown in Fig. 4. The red/blue regions are the prefixes/suffixes 
with length s. Suffix a/suffix b can start in any position after the prefix region 
and before the maximum length of don’t-care region. (The gray panels show 

the legal possible staring locations of the suffix.) 

For the suffix component of Equation 1, i.e. 
𝑑𝑖𝑠𝑡(𝑠𝑢𝑓𝑓𝑖𝑥(𝑎), 𝑠𝑢𝑓𝑓𝑖𝑥(𝑏))  we compute a set-of-suffix-

distances as follows. 

set-of-suffix-distances  = 

{𝑑𝑖𝑠𝑡(T[a + s + 1: a + 2s], T[b + s:b + 2s]) 
𝑑𝑖𝑠𝑡(T[a+ s+ 2: a+ 2s+ 1],T[b + s+ 1: b + 2s + 1]), … 

𝑑𝑖𝑠𝑡(T[a+ s+ r: a +2s + r],T[b + s + r: b + 2s+ r])} 

∀ 𝑎, 𝑏 ∈ 𝑇 𝑎𝑛𝑑 𝑏 ≠ 𝑎 

From the set-of-suffix-distances, we choose the value 

which minimizes Equation 1. Here the set-of-suffix-distances 

contains 𝑟2 members. Further, computing the value for each 

member of the set-of-suffix-distances takes 𝑂(𝑠) operations. 
The time complexity to compute the semantic motif distance 

between 𝑎 and 𝑏 is then 𝑂(𝑠𝑟2). In addition, to find the best 

semantic motif pair, we must perform the above calculation 

for every choice of 𝑎 and 𝑏 in the time series, which means 

that the overall time complexity is 𝑂(𝑛2𝑟2𝑠). 

This naïve way to compute the semantic motif pair is 
untenable. However, we introduce an algorithm that can 

drastically reduce this untenable time complexity. 

Now we are in a position to explain our algorithm, which 

is outlined in TABLE I. In lines 2 to 4, we calculate the 
distance profile (Definition 4) for each position in the time 

series. We call this matrix 𝐷. The distance between 

subsequence 𝑇𝑖 ,𝑠 and the time series is 𝐷𝑖 , which is located at 

the 𝑖𝑡ℎ  row of the matrix 𝐷  as shown in Fig. 7. 

Assume that we want to find the semantic motif pair 
corresponding to position 𝑖. The distance between 𝑝𝑟𝑒𝑓𝑖𝑥 (𝑇𝑖 ) 
and the time series is just 𝐷𝑖 . The distance between 

𝑠𝑢𝑓𝑓𝑖𝑥(𝑇𝑖) and the time series is the column-wise-minimu m 

of sub-matrix 𝐷𝑖+𝑠+1, … , 𝐷𝑖+𝑠+𝑟  (i.e. blue region in Fig. 7) 

which we call 𝑀, in line 5. 

 

Fig. 7. The data in Fig. 4. The row of matrix D are the distance profile 

(Definition 4) which correspond to each position in the time series. 

Fig. 8 shows the distance profile 𝐷𝑖 , 𝑀𝑖 and the green 

highlighted region corresponds to the prefix and suffix of 

acceleration of the elevator at index 𝑖. 

 
Fig. 8. top) The distance between subsequence 𝑇𝑖,𝑠  and the time series. 

middle) the column-wise-minimum of sub-matrix 𝐷𝑖+𝑠+1 , … , 𝐷𝑖+𝑠+𝑟, called 

𝑀𝑖 . bottom ) The time series shown in Fig. 4. 

In order to handle variable length don't-care regions for 

each suffix, we create an “envelope” of size 𝑟 over 𝑀𝑖  that we 

call 𝑁𝑖, as shown in line 6 of TABLE I. 

The value of semantic matrix profile at position i, 𝑆𝑀𝑃𝑖  is 
the minimum value of the summation of 𝐷𝑖  and 𝑁𝑖 , line 7. We 

add the corresponding index of the minimum value to the 

semantic matrix index SMI. SMP at index 𝑖 shows the position 

of the closest semantic motif in the time series 𝑇  to the 
semantic motif at position 𝑖, and the value shows the distance 

of this pair. Finally, we return the semantic matrix index SMI 

and the semantic matrix profile SMP. 

The semantic motif pair can be found by locating the two 

lowest values in the SMP. Note, the definition of the semantic 
motif pair is symmetric with respect to the indices, which 

means if we find the semantic motif pair of index 𝑖  at 

position  𝑗 , then the semantic motif of index 𝑗  is located at 

position 𝑖. 

26 seconds 20 seconds

don’t-care don’t-care

prefix prefix

a b

Suffix a starting position range

Length of prefix s 

T[a+s+1:a+2s] T[a+s+r:a+2s+r]

…

T[b+s+1:b+2s] T[b+s+r:b+2s+r]…

Suffix b starting position range

Length of prefix s 

…

~5 minutes

𝐷 =

𝐷1

𝐷i

𝐷i+ +1

𝐷i+ +𝑟

𝐷 

=

 

 

 

 

 

 

 

 

~5 minutes

𝑀𝑖

𝐷𝑖

Index i



Fig. 9 shows the result for calculating summation of 𝐷𝑖  

and 𝑁𝑖 for the location 𝑖 in the time series (green meta time 

series). 

 
Fig. 9. top) The meta time series that is the summation of Di and Ni. The 

minimum of the meta time series is the location of semantic motif pair 
corresponding to index i. bottom) The time series. The blue block is the 

semantic motif pair of the red block. 

Note that the minimum of the green meta time series is 

𝑆𝑀𝑃𝑖 , showing the location of the semantic pair 

corresponding to the index 𝑖. 

TABLE I. SEMANTIC-MOTIF-FINDER ALGORITHM 

Algorithm: Semantic-Motif-Finder  

Input: time series T, suffix/prefix length s, maximum don't-

care length r  

Output: semantic matrix profile SMP, semantic matrix index 

SMI 

1 

2 

3 

4 

5 

6 

7 

8 

n ← length(T) 

for i ← 1 to n - s + 1 

   D[i,:] ← distance profile(T [i:i+s-1], T )   // Def 4 

end 

M ← column-wise-min(D [s+1:end-s+1,s+1:end-s+1]) // r col’s 

N ← row-wise-min(M)                              // r rows 

(SMP, SMI) ← min (D+N ) 

return SMP, SMI 

B. Semantic-Motif-Finder Algorithm Complexity 

The time complexity of our proposed Semantic-Motif-

Finder is 𝑂(𝑛2). Computing all the distances in the sliding 

window takes 𝑂(𝑛2) and we require an additional 𝑂(𝑛) for 

finding the minimum in the sliding window of size  𝑟. Hence 

the total time complexity is 𝑂(𝑛2). In practice we do not need 
to keep the whole matrix 𝐷 . In each iteration we need to keep 

the submatrix 𝐷𝑖 , … , 𝐷𝑖+𝑠+𝑟  which is sufficient to update 

𝑆𝑀𝑃𝑖 . As a result, the space complexity in our slightly more 

sophisticated implementation is just 𝑂(𝑛(𝑟 + 𝑠)). 

As a practical matter, memory is not a bottleneck for this 
or any other motif discovery algorithm [27]. We can easily 

handle time series data with lengths in the hundreds of 
millions in the main memory of an off-the-shelf desktop 

machine, without having to resort to disk access . 

C. Semantic-Motif-Finder Algorithm with Different Lengths 

We also implemented a more expressive version of the 
Semantic-Motif-Finder. In this version the user can choose 

different lengths for prefix and suffix as shown in TABLE II. 
However, this algorithm needs an extra parameter in 

comparison to the Semantic-Motif-Finder algorithm. For 

example, setting the (prefix, suffix) to (100, 200) is not the 
same as (200, 100). For completeness, we will show one 

experiment of using this algorithm in Section VI , however in 
most cases requiring the prefix and suffix to be the same 

length does not appear to be a significant limitation.  

TABLE II. SEMANTIC-MOTIF-FINDER WITH DIFFERENT 

SUFFIX AND PREFIX LENGTH 

Algorithm: Semantic-Motif-Finder with variable length 

Input: time series T, prefix length p, 

suffix length s, maximum don't-care length r  

Output: semantic matrix profile SMP, semantic matrix index 

SMI 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

n ← length(T) 

for i ← 1 to n - p + 1 

  Dp[i,:] ← distance profile(T [i:i+p-1], T ) // Def 4 

end 

for i ← 1 to n - s + 1 

  Ds[i,:] ← distance profile(T [i:i+s-1], T ) // Def 4 

end 

M ← column-wise-min(Ds [s+1:end-s+1,s+1:end-s+1])//r col’s  

N ← row-wise-min(M)                              // r rows 

(SMP, SMI) ← min (Dp+N ) 

return SMP, SMI 

 

D. The Expressiveness of Semantic Motifs 

When introducing a new primitive, it is natural to ask how 
its expressiveness relates to the current state-of-the-art. The 

ideal case is if the new representation subsumes an existing 
method that is well understood and widely adopted. For 

example, constrained Dynamic Time Warping subsumes 
Euclidean distance.  Can we make similar claims for semantic 

motifs? In particular, do semantic motifs subsume classic 

motifs when 𝑟 is set to zero? 

The answer is almost, and the difference is quite telling. In 

the classic case, all subsequences of length m are z-normalized  

[27][28]. But for semantic motifs, the prefix and suffix are 
independently z-normalized. Thus, these two cases are not 

quite equivalent, and may return different results . 

Note that we can force these two cases to be the same, by 

a small modification of our code (in line 3 of TABLE I) that 
forces the prefix and suffix to be normalized together (see 

Appendix A and then Fig. 23). However in most 
circumstances that is not a good idea. To see why, let us use a 

toy dataset. We define a “camelback” pattern as two 

consecutive parabolic sections, each of length 200. However, 
the heights of the parabolas can differ by up to 1/3. The 

example shown in Fig. 10.top show a camelback pattern 

embedded within a sequence of noisy sine waves. 

 
Fig. 10. top) A synthetic dataset contains two examples of the camelback 
pattern embedded in some noisy sine waves. Bottom: left to right) The top-1 

classic motif. The camelbacks normalized together, the camelbacks 

normalized in the semantic motif representation. 

To the eye, the camelback patterns seem like the obvious 

classic motif of length 400, but this is not the case. Fig. 
10.bottom.center, which shows both pairs of camelbacks with 

z-normalization, as Euclidian distance “sees” them. It is clear 
that they will produce a large Euclidean distance. In contrast, 

Fig. 10.bottom.right shows the same data and how they will 
appear to the semantic motif distance, as being almost 

identical. This toy example is contrived, but we will show 

several real examples that exhibit the same issue in Section 

VI. 

As another example, let us revisit the elevator data 
introduced in Section V. This example had the cellphone 
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perfectly vertical in the student’s back pocket. Suppose that 
on the second ascent, the student quickly removed the phone 

to check the time, and when she replaced it, it was askew in 
her pocket at 73 degrees. The different pattern caused by this 

motion during the ride is not an issue, and our “don’t care” 
region will take care of it. But the new phone angle would 

result in the second bump being only 2/3 the height of the first, 

making the elevator motif harder to find, if we did not do 

independent normalization of the prefix and suffix. 

E. On the Robustness of our Definition 

Before experimentally evaluating our ideas, we take the 

time to ward off a possible misunderstanding. The classic 
motif definition is quite robust to mismatches between user-

provided subsequence length, and the true motif length. For 
example, suppose there is a single motif in a dataset, and it is 

exactly ten minutes long.  Even if the user sets her desired 
subsequence length to anywhere between six to twelve 

minutes2, she is very likely to find the motif [27]. We inherit 

this robustness as our definition essentially combines two 
independent classic motif discovery’s (with a temporal 

constraint). For example, suppose that there is a conserved 
two-part behavior that is manifested as a four-second-long 

pattern, followed by a seven-second-long pattern. We are 
likely to be able to find this if we set our single prefix/suffix 

length to be anywhere in the range of three to eight seconds. 
Critically, we do not need both parts of the two-part behavior 

to be of the same length. This robustness is tested by our 

choice of datasets. For example, we could not contrive to 
make both parts of a two-part bird song, or seal behavior equal 

length. 

Likewise, we reiterate that the don’t-care parameter is an 

upper bound to a range, it does not need to be precisely set . 

VI. EXPERMIMENTAL EVALUATION 

To ensure that our experiments are easy to reproduce, we 
have created a website that contains all data/code/raw 

spreadsheets for all the experiments [19]. Our commitment to 
reproducibility extends to all the examples shown in the 

previous sections. 

Before showing formal experimental evaluations of the 
scalability and robustness of Semantic-Motif-Finder 

algorithm, we will show some examples of semantic motifs in 

diverse domains to demonstrate the generality of our ideas . 

A. Marine Mammals 

We consider a seal behavior dataset [15] that contains 

motion recordings of seventy-two seals, belonging to four 
species. As Fig. 11 shows, this dataset contains data from a 

wearable accelerometer mounted on the seal’s back. 

 
Fig. 11. A short snippet of seal behavior hints at the complex structure of the 

data. 

We choose seals because, as Fig. 11 hints, the data is very 
complex and challenging, and because pinnipeds are known 

                                                                 
2 Note this robustness is asymmetric, the user provided length can 

be a little longer, or a lot shorter than the true conserved length.  

to be very intelligent, and thus good candidates for having 

higher level complex semantic behaviors . 

We had previously noted that classic motif discovery often 
finds highly conserved motifs in the range of about two to 

sixteen seconds in these datasets, but at lengths beyond that, 
the motifs returned seem “random”. Given the expressiveness 

of semantic motifs, we increased our ambition and searched 

for motifs  with prefix/suffix length of 16 seconds and the 
don't-care region of length 16 seconds. That is to say, motifs 

that are expressed somewhere over the 32 to 48 seconds range.  
Fig. 12 shows the top motif discovered in a seven-minute 

snippet of Australian Fur Seal (Arctocephalus pusillus) or 
AFS. Note classic motif discovery algorithms may fail here. 

The variable length of the spurious don’t care regions differ 
by four seconds, which places the two highly featured atomic 

events out of phase, defeating the Euclidean distance. 

The semantic motif shown in Fig. 12.top is clearly highly 
conserved, but what is it? A recent observational study of AFS 

describes one behavior in great detail: “hunting involves 
actively pursuing prey, before accelerating the whole body to 

seize prey in the teeth… ...once captured in the jaws, prey 
items were manipulated and re-oriented using further mouth 

movements or chews so that they could be swallowed head 

first” [11]. This description fits the observed behavior, and our 
dataset is accompanied by observer’s notes , which confirm 

our discovery [15]. 

 
Fig. 12. top) A seven-minute snippet of AFS behavior. middle) Three phases 
of the hunting behavior. bottom) The top semantic motifs in this dataset 

corresponds to two instances of fish capture/consumption. 

We discovered many other semantic motifs in these 
datasets, the vast majority of which cannot be discovered by 

classic motif discovery. Fig. 13 shows just two more examples  
that illustrate the two invariances that semantic motif 

discovery offers over classic motif discovery. 

 
Fig. 13. top) A fifteen-minute snippet of AFS behavior. The top two semantic 
motifs illustrate the two reasons classic motif discovery often fails. left) The 
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don’t-care region is the same length in both instances, but not conserved 
between instances. right) The don’t-care region is longer in one instance, 

putting the conserved prefixes and suffixes out of phase with each other. 

B. Semantic Motifs in Bird Calls 

Bird calls have long been used as a testbed for motif 

discovery, using an MFCC representation [7]. Birds are 
rewarded for conserving their calls, as “more typical versions 

of song types function better in male–female communication” 
[14]. However, researchers have only successfully applied 

motif discovery to very simple bird calls . For example, the 
calls of Chickadees are often transcribed into guidebooks as 

simply “fee-bee” and “chick-a-dee”. 

Researchers studying song complexity note that songs can 
be more intricate. For example, song sparrows have calls that 

“begin with three clear notes and then a complicated and 
variable series of single notes, … (ending with) trills” (our 

emphasis) [26]. We show that classic motif discovery has 
great difficulty discovering such songs, whereas semantic 

motifs do not. 

In Fig. 14 we show two snippets of the song of a White-
browed Scrub Robin (Cercotrichas leucophrys) recorded in 

Zimbabwe. This particular bird’s call lasts about 2.5 seconds, 
and consists of two descending notes (A), several short chirps 

(b), followed by a short rising and falling note (C). In just one 
minute we heard the following variants: AAbbbC, AAbbC, 

AAbbbbC. Such calls can be represented as semantic motifs 

if we consider A to be the prefix, C the suffix, and a variable 
number of b appearing between A and C as the don’t-care 

regions. 

 
Fig. 14. Six seconds of bird song. top) A spectrogram. middle) An energy 
profile (i.e. the volume). bottom) The 10

th
 MFC Coefficient reveals the 

similarity in time series space. 

If we attempt classic motif discovery with motifs of 2.5 

seconds, these variants are different enough that they are not 
discovered as motifs using classic definitions of motifs [5]. 

Fig. 15 shows the motif pair (red regions) for the classic motif 

discovery for the bird song time series. 

 
Fig. 15. A snippet of bird song. The red highlighted regions are the results 

when using the classic motif discovery. 

A careful audio review reveals that the motifs discovered 

do not correspond to the bird song. The motifs discovered 
correspond to the approximately U-shape pattern formed by a 

relatively quiet period in-between two louder sounds. 

If we search for semantic motifs with a prefix/suffix length 
of one second and a don't-care region of at most 0.5 seconds, 

then as shown in Fig. 16, we successfully discover the Robin’s 

call as the top motif. 

 
Fig. 16. top) The semantic motif discovery result for the time series shown 
in Fig. 15. bottom) The semantic motif pair, with one second of prefix/suffix 

and 0.5 seconds of the don't-care region. 

C. Semantic Motifs in Human Speech 

The example above shows that semantic motifs of the form 
prefix<don't-care>suffix exist in birdcalls, presumably 

because this structure is pleasant to the hens [26]. Should we 
expect such structures in human communication? In fact, this 

structure is symploce (or complexio), a rhetorical device 
known to make text/speech more pleasant and easier to 

remember.  For example, St. Patrick’s prayer makes extensive 

use of the device: “…Contra combustionem, Contra 
demersionem,…” [21]. While it is trivial to find such 

examples in ASCII text strings, in this section we will test the 
ability of our algorithm to find semantic motifs in low quality 

representations of speech. 

Consider the classic poem “The Raven” by Edgar Allen 

Poe. The familiar first verse of this poem is: 

Once upon a midnight dreary, while I pondered, weak and weary, 
Over many a quaint and curious volume of forgotten lore— 
While I nodded, nearly napping, suddenly there came a tapping, 

As of someone gently rapping, rapping at my chamber door. 
“’Tis some visitor,” I muttered, “tapping at my chamber door— 
Only this and nothing more.” 

 

Can we find examples of semantic motifs in this poem?  

We use the audio of this poem [22] to create a time series as 

shown in Fig. 17.top. 

There are many short motifs in this poem corresponding to 

“chamber door”, “at my”, “rapping”, etc. However, we hope 
to find higher-level structure corresponding to the poetic 

device of symploce. As shown in Fig. 17.top, it is not clear 

whether any structure exists in this data. 

Using our proposed Semantic-Motif-Finder algorithm, we 
can find meaningful semantic structures. Fig. 17.bottom. 

shows the semantic motif pair. 

As shown in Fig. 17 the semantic motif pairs are different 
in the don't-care regions, as one has two extra words (i.e. “it 

is”). 

 
Fig. 17. top) The time series corresponding to the 10

th
 coefficient of MFCC 

using the audio of “The Raven” poem [22] with the semantic motif pair, 
prefix (red) and suffix (blue) highlighted. bottom) A zoom-in of the semantic 

motif pair. 

The prefix and suffix are not as well preserved as in some 

of the other examples (c.f. Fig. 12 and Fig. 13), however we 
deliberately used a poor quality audio recording and an 
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unsuitable MFCC coefficient (relative to the speaker pitch) to 
demonstrate that Semantic-Motif-Finder algorithm works 

with challenging data.  

We also ran an experiment with the Semantic-Motif-

Finder algorithm with different suffix and prefix length 
discussed in Section V. We chose the pair (prefix length, 

suffix length) to be (2.4 seconds, 1.6 seconds). The result is 

shown in Fig. 18. Note that for this experiment we need to 

specify prefix and suffix length separately. 

 
Fig. 18. top) The time series shown in Fig. 16 with the semantic motif pair, 
prefix (red) and suffix (blue) highlighted. bottom) A zoom-in of the semantic 

motif pair. 

D. Effectiveness and Efficiency 

In this section we show that semantic motifs can discover 

repeated structure that would evade classic motif discovery 
[5], and every published variation of it that we are aware of 

[2][3][23][24][25][8]. 

To create an initial test set, we embed real patterns 

extracted from [4] into a smoothed random walk. The 
embedded data consists of motion capture data where a fork 

was used to feed a dummy. The original data contains x, y, z. 

Here we only use the x-component.  

The patterns themselves are atomic. For example, “spear 

a carrot” and “twist a noodle” both appear in the 

data. From a single class, we take two exemplars and 

concatenate them with two exemplars from a different class, 

to produce a higher-level semantic eating event. Fig. 19 shows 

an example. 

 
Fig. 19. An example of a dataset with two examples of the motif “eating 

carrots and noodles” embedded in otherwise unstructured data. 

Without the color highlighting, the embedded patterns are not obvious. 

Like many of the motifs discovered in this work, this motif 
has a higher-level semantic meaning, eating-carrot-

noodles, a popular dish in trendy Thai fusion restaurants . 

Note that the events here are only approximately the same 
length, they reflect the real behaviors of several humans 

dealing with different size morsels in different positions on a 

plate etc.  

In order to compare Semantic-Motif-Finder algorithm 
with the classic motif discovery algorithm, we performed the 

following experiment. We created a random walk with 

different lengths and embedded eating-carrot-noodles 
behavior as shown in Fig. 19. The objective of this experiment  

was to discover which algorithm is more successful in finding 

the embedded motifs in the time series . 

For the purpose of comparison, we define the success rate 
of each algorithm as the number of times it locates embedded 

motifs over the total number of trials. We allow classic motif 
discovery to consider three different subsequence lengths, 

with each choice of subsequence length reported as a single 

experiment. 

𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ {
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑜𝑡 𝑏𝑒ℎ𝑣𝑖𝑜𝑟

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑛𝑜𝑜𝑑𝑙𝑒 𝑏𝑒ℎ𝑣𝑖𝑜𝑟
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑜𝑡 +𝑛𝑜𝑜𝑑𝑙𝑒 𝑏𝑒ℎ𝑣𝑖𝑜𝑟

 

The success rates for the three experiments using classic 
motif discovery are denoted by MPcarrot, MPnoodle and 

MPnoodle+carrot respectively. We performed the same experiment 

using Semantic-Motif-Finder, with fixed don’t-care and 

prefix/suffix lengths, given by: 

Maximum don't-care length = 5% (length of carrot+ noodle behavior) 
prefix/suffix length = 95% (length of carrot+ noodle behavior)/2 

We refer to the success rate of our algorithm as SMP. We 

ran each experiment 100 times, giving the same data to all 
algorithms. We also calculated the default rate, Random 

Sampling, which is the ratio of the embedded motifs length to 
the full time series length. TABLE III summarizes the results, 

showing that our algorithm outperforms all variations of the 

classic motif discovery for all conditions . 

TABLE III. THE PERFORMANCE OF ALGORITHMS FOR 

CARROT-NOODLE DATASET. 

Data Length *
Random 

Sampling 

MPcarrot MPnoodle MPnoodle+carrot SMP 

8,192 20.7 66 80 88 94 

12,288 13.8 50 50 62 72 

16,384 10.4 30 49 56 57 

24,576 6.9 23 22 32 36 
* Calculated exactly, not computed experimentally. 

 

To guard against happening to choose a dataset that favors 
our algorithm, we model an arbitrary semantic event in which 

an umpire signals a “Leg Bye” (LB) but then immediately  
changes his mind and signals “Penalty Runs” (PR) [6]. We 

embedded instances of these two behaviors in the random 

walk time series. For the motif discovery we performed the 
experiment using the subsequence length of LB/PR and the 

length of combination of two classes, MPLB and MPLB+PR. For 
our algorithm, SMP, we simply chose the prefix, suffix and 

the don't-care region to be the same length. Each region was 
one third of the length of the combination of two classes. The 

result is shown in TABLE IV, showing once again that our 

algorithm outperforms all variations of the classic motif 

discovery for all conditions . 

TABLE IV. THE PERFORMANCE OF ALGORITHMS FOR 

CIRCKET DATASET. 

Data Length *
RandomSampling MPLB  MPLB+PR  SMP 

8,192 4.8 25 50 55 
12,288 3.2 16 20 40 
16,384 2.4 14 14 24 
24,576 1.6 5 13 18 

* Calculated exactly, not computed experimentally. 

It is important to note that we did not contrive these 

datasets to favor our algorithm. If we had added a small 
amount of random walk between the two atomic events (a 

more realistic model), our accuracy would remain essentially 

unchanged, whereas the classic approach would suffer greatly. 
Moreover, in [19] we show additional similar experiments in 

other domains, with equally impressive results . 
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Finally, we consider the efficiency of our algorithm. We 
created a time series like Fig. 17 with a length of 32,768 and 

measured the running time of our algorithm over different 
subsequence lengths for prefix/suffix. The length of the don't-

care regions was constant for different runs. We have noted 
elsewhere that there are no other algorithms that are as 

expressive as our algorithm, so we just compare our method 

with the fastest classical motif discovery algorithms, STOMP 
[27]. We measured the running time of STOMP over different 

subsequence lengths. The result is shown in Fig. 20. 

 
Fig. 20. The running time of Semantic-Motif-Finder and STOMP algorithm 
over different subsequence lengths. The length of don’t -care region is 
constant. Semantic-Motif-Finder is not significantly slower than STOMP, in 

spite of being much more expressive in the regularities it  can find. 

As expected, the performance of our algorithm does not 
change by varying the prefix/suffix length. Note that we are 

only four times slower than STOMP, which is a less 
expressive algorithm, and the state-of-the-art for classic motif 

discovery [27]. Some of that timing difference is intrinsic, but 
we believe that we can close the gap to less than a factor of 

two, with further optimizations of our implementation. 

In the second experiment we measure the running time of 
Semantic-Motif-Finder over different lengths of the don't-care 

region. We choose the length of the don't-care region to be in 
the range of 2.5%, 5%, …, 25% of the subsequence length, 

with a constant prefix/suffix length. Fig. 22 shows that 
Semantic-Motif-Finder algorithm's time complexity has 

minor changes as we vary the length of the don't-care regions. 

 
Fig. 21. The running time complexity of Semantic-Motif-Finder over 

different don’t-care regions length. The prefix/suffix length is constant. 

In the next experiment we show the effect of varying the 

prefix/suffix length. Recall the classic poem “The Raven” , 
used in the example in Section VI. We varied the prefix/suffix 

length from 100 to 500 in steps of size 10. We observe that for 
a very wide range of prefix/suffix lengths, we find the same 

semantic motif. Fig. 22 shows a binary vector for different 
choices of prefix/suffix length.  The binary vector is the 

representation of finding vs. not finding the motifs. For the 

range of length 130 to 350 we find the same semantic motif 
for this example, suggesting the robustness of our definition 

to user-choices.  

 
Fig. 22. The binary vector which shows finding the exact semantic motifs for 
the example in Section VI. The x axis is the prefix/suffix length and y axis 
equal to one indicates finding the same semantic motif as in Section VI 

whereas zero indicates finding different semantic motifs. 

VII. DISSCUSSION AND CONCLUSIONS 

We have introduced time series semantic motifs, a 

generalization of classic time series motifs. We have also 
shown that semantic motifs are much more expressive than 

classic motifs, and this allows us to search large complex 
datasets for repeated structure that would not be discoverable 

with any of existing techniques [2][3][5][8][24][13].   

To make the expressiveness of our definition more clear, 
in Fig. 23 we show the relationship between current motif 

definitions/algorithms. 

 
Fig. 23. The expressiveness of motif definitions shown as a nested hierarchy. 
See Appendix A to appreciate the claim that our work fully subsumes the 

Matrix Profile. 

We have shown that our increased expressiveness does not 
come at a great cost, the time and space overhead to support it 

is inconsequential. In future work we plan to investigate the 

implications of our work for algorithms that use motifs as 
inputs, including time series rule discovery and segmentation. 

Furthermore, working with domains experts and attempting to 
further understand their needs, we will explore additional 

generalizations of motif discovery.  
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Appendix A: Special Normalization Policy 

We noted in Section V that we could force a special case of 

semantic motifs to exactly subsume classic motifs. Given a 

classic motif of length m, semantic motifs will return identical 

results, if we set 𝑟 = 0, set |prefix| + |suffix| = 𝑚, and we 

make the following minor change to our code. Instead of z-

normalizing the prefix and the suffix independently, we z-

normalize them together. In MATLAB this is  simply done 

like:   

temp  = zscore([prefix suffix]); 

prefix = temp(1 : length(prefix/2)) ; 

suffix = temp(length(prefix/2) + 1 : end); 

However, as we noted in Section V, in most cases there are 

good reasons not to use this option. None of the experiments 

in this work used this approach.  

Appendix B: Discounting Simply Modifying the MP 

We shared a preview of our code with other researchers to 

stress test our algorithms and ideas, and to garner feedback. 

While the feedback was positive, a significant fraction of them 
asked something to the effect of: “Could you not just compute 

the classic Matrix Profile, and then do some post hoc analysis 
on it to find the sematic motifs?”. We were caught off guard 

by this question, as we assumed it was obvious that the answer 
is in the negative. If we could do this, it would be an attractive 

approach that we would have perused, as we could directly 

avail of the newest “off-the-shelf” Matrix Profile algorithms, 
including GPU versions etc. [28], with little effort. Below we 

will show why this idea is not possible. 

As before, let us first consider the discrete analogue of 

text. Imagine we have a sematic motif of a person’s name, 

with a misspelled version of it; Ada P. Ray and Aja Roy. 

Assume that these are embedded in a string… 

icdm19AdaPRayicml09AjaRoyecml10cikm99… 

Here the sematic motif is obvious to the human eye. 

However, using the classic definition of motif, the best-motif 
of length three is {cml,cml}, and the best-motif of length six 

is {icdm19,icml09} etc. In fact, for any motif length, and 

for any value of top-K motif, the embedded name is the last 
item to be considered by classic motif discovery definitions. 

Generalizing these observation to real-valued data, it is easy 
to construct datasets for which there are sematic motifs that 

achieve a zero distance under our Definition 5, but rank 
arbitrarily low under classic motif definitions produced by the 

classic Matrix Profile [27][28]. 

While the above example is clearly contrived, we find that 

this exact issue also shows up in virtually all our real-valued 

datasets (the results in TABLE III and TABLE IV hint at that). 
For example, as shown in Fig. 24, if we revisit seal example 

shown in Fig. 12, we find that none of the best motifs, of any 
length in the range 14 to 36 seconds, overlap with the high-

level successful-hunt behavior that sematic motifs 

could discover.  

 
Fig. 24. (Contrast with Fig. 12) No matter what subsequence length is 

used with the classic Matrix Profile algorithm; it does not discover 

motifs that include the successful hunting behavior discovered with 
the sematic motif definition.
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