
An enhanced representation of time series which allows fast and accurate

classification, clustering and relevance feedback

Eamonn J. Keogh and Michael J. Pazzani

Department of Information and Computer Science
University of California, Irvine, California 92697 USA

{pazzani,eamonn}@ics.uci.edu

Abstract
We introduce an extended representation of time series that
allows fast, accurate classification and clustering in addition
to the ability to explore time series data in a relevance
feedback framework. The representation consists of piece-
wise linear segments to represent shape and a weight vector
that contains the relative importance of each individual
linear segment. In the classification context, the weights are
learned automatically as part of the training cycle. In the
relevance feedback context, the weights are determined by
an interactive and iterative process in which users rate
various choices presented to them. Our representation
allows a user to define a variety of similarity measures that
can be tailored to specific domains. We demonstrate our
approach on space telemetry, medical and synthetic data.

1.0 Introduction

Time series account for much of the data stored in
business, medical, engineering and social science
databases. There are innumerable statistical tests one can
perform on time series, such as determining autocorrelation
coefficients, measuring linear trends, etc. Much of the
utility of collecting this data, however, comes from the
ability of humans to visualize the shape of the (suitably
plotted) data, and classify it. For example:

• Cardiologists view electrocardiograms to diagnose
arrhythmias.

• Chartists examine stock market data, searching for
certain shapes, which are thought to be indicative of
a stock’s future performance.

Unfortunately, the sheer volume of data collected means
that only a small faction of the data can ever be viewed.

 Attempts to utilize classic machine learning and
clustering algorithms on time series data have not met with
great success. This, we feel, is due to the typically high
dimensionality of time series data, combined with the
difficulty of defining a similarity measure appropriate for
the domain. For an example of both these difficulties,
consider the three time series in Figure 1. Each of them
contains 29,714 data points, yet together they account for
less than .0001 % of the database from which they were
extracted. In addition, consider the problem of clustering

these three examples. Most people would group A and C
together, with B as the outgroup, yet common distance
measures on the raw data (such as correlation, absolute
distance or squared error) group B and C together, with A
as the outgroup.

What is needed is a representation that allows efficient
computation on the data, and extracts higher order features.
Several such representations have been proposed, including
Fourier transformations (Faloutsos et al. 1994), relational
trees (Shaw & DeFigueiredo, 1990) and envelope
matching/R+ trees (Agrawal et al. 1995). The above
approaches have all met with some success, but all have
shortcomings, including sensitivity to noise, lack of
intuitiveness, and the need to fine tune many parameters.

 Piece-wise linear segmentation, which attempts to
model the data as sequences of straight lines, (as in Figure
2) has innumerable advantages as a representation. Pavlidis
and Horowitz (1974) point out that it provides a useful
form of data compression and noise filtering. Shatkay and
Zdonik (1996) describe a method for fuzzy queries on
linear (and higher order polynomial) segments. Keogh and
Smyth (1997) further demonstrate a framework for
probabilistic pattern matching using linear segments.

S
Q

T

R

P

A)

B)

C)

Figure 1: Examples of time series.

Figure 2: An example of a time series and its piece-wise
linear representation.

11
)(XLXRXLXR AAAAW ki

K

i ii −=−∗∑ =

Although pattern matching using piece-wise linear
segments has met with some success, we believe it has a
major shortcoming. When comparing two time series to see
if they are similar, all segments are considered to have
equal importance. In practice, however, one may wish to
assign different levels of importance to different parts of
the time series. As an example, consider the problem of
pattern matching with electrocardiograms. If a cardiologist
is attempting to diagnose a recent myocardial infarction
(MI) she will pay close attention to the S-T wave, and
downplay the importance of the rest of the
electrocardiogram. If we wish an algorithm to reproduce
the cardiologist’s ability, we need a representation that
allows us to weight different parts of a time series
differently.

In this paper, we propose such a representation. We use
piece-wise linear segments to represent the shape of a time
series, and a weight vector that contains the relative
importance of each individual linear segment. We will
show that this representation allows fast and accurate
clustering and classification. Additionally, we will show
that this representation allows us to apply relevance
feedback techniques from the information retrieval
literature to time series databases.

The rest of this paper is organized as follows. Section 2
introduces notation and two important operators. Section 3
demonstrates how these techniques are used for relevance
feedback, and section 4 describes a classification algorithm
which takes advantage of our representation to greatly
boost accuracy.

2.0 Representation of time series
There are numerous algorithms available for segmenting

time series, many of which where pioneered by Pavlidis
and Horowitz (1974). An open question is how to best
choose K, the ‘optimal’ number of segments used to
represent a particular time series. This problem involves a
trade-off between accuracy and compactness, and clearly
has no general solution. For this paper, we utilize the
segmentation algorithm proposed in Keogh (1997). This
method segments a time series, and automatically selects
the best value for K. We emphasize, however, that all the
algorithms presented in this paper will work regardless of
how the segmentation has obtained.

2.1 Notation
For clarity we will refer to ‘raw’, unprocessed temporal

data as time series, and a piece-wise representation of a
time series as a sequence. We will use the following
notation throughout this paper. A time series, sampled at k
points, is represented as an uppercase letter such as A. The
segmented version of A, containing K linear segments, is
denoted as a bold uppercase letter such as A, where A is a
5-tuple of vectors of length K.

A ≡ {A XL, AXR, AYL, AYR, AW}
The ith segment of sequence A is represented by the line

between (AXLi AYLi) and (AXRi AYRi), and AWi, which
represents the segments weight. Figure 3 illustrates this
notation.

After a time series is segmented to obtain a sequence, we
initialize all the weights to one. Thereafter, if any of the
weights are changed, the weights are renormalized such
that the sum of the products of each weight with the length
of its corresponding segment, equals the length of the
entire sequence, so that the following is always true:

This renormalization is important because it gives the
following property: the total weight associated with a
sequence of a given length is constant, regardless of how
many segments are used to represent it. Therefore, any
operation that changes a weight has the effect of
redistributing all the weights. For example, if the weight of
a single segment is decreased, all other segments will have
their weight slightly increased. So the weights reflect the
relative, not absolute, importance of the segments.

2.2 Comparing time series
An advantage in using the piece-wise linear segment

representation is that it allows one to define a variety of
distance measures to represent the distance between two
time series. This is important, because in various domains,
different properties may be required of a distance measure.
Figure 4 shows some of the various distortions one can
encounter in time series, and we briefly consider each
below.

The segmentation algorithm, which produces the
sequences, acts as a noise filter, so we do not need to
consider handling noise directly (Pavlidis and Horowitz
1974, Keogh 1997). Most domains require a distance
measure that is insensitive to offset translation. As an
example, consider two stocks, whose values fluctuate
around $100 and $20 respectively. It is possible that the
stock movements are very similar, but are separated by a
constant amount.

 Amplitude scaling, where two sequences are alike, but
one has been ‘stretched’ or ‘compressed’ in the y-axis, can
be dealt with easily. It simply requires normalizing the
sequences before applying the distance operator. Agrawal
et al. (1995) describe how to do this with raw time series.
Normalizing with sequences is similar, but can be
accomplished k/K times faster. Dealing with longitudinal

f(t)
(AXLi,AYLi)

t

(AXRi,AYRi)

 AWi

Figure 3: We represent times series by a sequence of straight
segments, together with a sequence of weights (shown as the
histogram) which contain the relative importance of each segment.

() |)()(|,
1 i

K

i iiiii YRYRYLYLWW BABABABAD −−−∗∗=∑ =

scaling (‘stretching’ or ‘compressing’ in the time-axis) is
possible, but much more difficult. We refer the interested
reader to Keogh 1997.

Linear drift occurs naturally in many domains. As an
example, consider two time series, which measure the
absolute sales of ice cream in two cities with similar
climates and populations. We would expect the two time
series to be very similar, but if one city’s population
remains constant while the other experiences steady
growth, we will see linear drift. It is possible to remove
linear trends (Box and Jenkins 1970), but it is
computationally expensive. However, using the segmented
representation, it is possible to define a distance measure
that is insensitive to linear drift (see below).

Finally, many datasets (including the Shuttle dataset
referred to in section 4.2) contain discontinuities. These are
typically sensor calibration artifacts, but may have other
causes. Again, one could attempt to find and remove them,
but our approach is to simply define a distance measure
that is (relatively) insensitive to them

It is possible to define distance measures for sequences
that are invariant to any subset of the above distortions. For

the experiments in this paper we used the simple distance
measure given below. This measure is designed to be
insensitive to offset translation, linear trends and
discontinuities.

It is convenient for notational purposes to assume that
the endpoints of the two sequences being compared are
aligned, as in Figure 5. In general, with real data, this is not
the case. So we will have to process the sequences first, by
breaking some segments at a point which corresponds to an
endpoint in the other sequence. This can be done in O(K).

Intuitively, this metric measures how close
corresponding segments from A and B are to being
parallel. Note that it has the following desirable properties:

D(A,B) = D(B,A)
D(A,B) ≥ 0
D(A,A) = 0
D(A,B) = 0 → A = B

Another important property is that it is efficient to
compute. In particular, comparing two sequences A and B
is approximately k/K faster than comparing the two
corresponding time series A and B. This is especially
important as one may need to calculate distance frequently.
For example, suppose one wishes to hierarchically cluster n
data items using a group average method. This requires
O(n3) comparisons. The time series represented by the
sequences shown in Figure 6 contain 29,714 data points,
but their sequence representations contain only an average
of 35 segments. This results in a speedup of 29,714 / 35 ≈
848.

2.3 Merging time series
In this section we define an operation on sequences

which we call ‘merge’. The merge operator allows us to
combine information from two sequences, and repeated

Figure 6: An example of hierarchically clustered time series.

Noise

Offset
Translation

Amplitude
Scaling

Longitudinal
Scaling

Linear
Drift

Discontinuities

Figure 4: Some of the difficulties encountered in defining a distance
measure for time series.

f(t)

AXRi

AYRi

BYRi

AXLi

BYLi

AYLi

t

 AWi

Figure 5: Comparing two time series is equivalent to summing the
absolute difference between the pair of dash lines, (weighted by
the appropriate weighting factor) for every segment.

application of the merge operator allows us to combine
information from multiple sequences. The basic idea is that
the merge operator takes two sequences as input, and
returns a single sequence whose shape is a compromise
between the two original sequences, and whose weight
vector reflects how much corresponding segments in each
sequence agree. As in the distance operator we assume that
the endpoints of the sequence are aligned.

When merging sequences one may wish for one of the
two input sequences to contribute more to the final
sequence than the other does. To accommodate this, we
associate a term called ‘influence’ with each of the input
sequences. The influence term associated with a sequence
S is a scalar, denoted as SI, and may be informally
considered a ‘mixing weight’. Where the influence term
comes from depends on the application and is discussed in
detail in sections 3.1 and 4.1 below.

To merge the two sequences A and B with influence
terms AI and BI respectively, we use the following
algorithm that creates the sequence C:

if (AI * BI < 0) then sign = -1

else sign = 1

end

mag = min(|AI|,|BI|) / max(|AI|,|BI|)

scale = max(max(AYL),(AYR)) -

min(min(AYL),(AYR))

for i = 1 to K

CXL
i
= AXL

i

CXR
i
= AXR

i

CYL
i
= ((AYL

i
* AI)+(BYL

i
* BI))/(AI+BI)

CYR
i
= ((AYR

i
* AI)+(BYR

i
* BI))/(AI+BI)

 run = AXR
i
- AXl

i

 rise = |(AYL
i
- BYL

i
)-(AYR

i
- BYR

i
)|

 diff = (rise / run) * scale

CW
i
= (AW

i
*BW

i
)*(1+(sign * mag)/(1 +

diff))
end

CW = normalize(CW)

Table 1: The merge algorithm.

Figure 7 shows two sequences that have been merged
with various values for the influence terms. Note that the
resultant sequence is more like the sequence with the
higher influence. Note also that the weights are more
differentiated the closer the two influence terms are to each
other. This is because neither sequence is dominating, and
the maximum amount of compromise is taking place. As
you would expect, the trivial operations C =
merge([A,AI],[B,0]) and C = merge([A,AI],[A,AI]) both
result in C = A.

2.4 Learning prototypes
Although the merge operator is designed to be a

component in the more sophisticated algorithms presented
below, it can, by itself, be considered a simple learning
algorithm that creates a prototypical sequence. Creating a
prototype solely from positive examples works in the

following manner. We have a model sequence A, which is
a typical example of a class of sequences. If we merge
sequence A with sequence B, another member of the same
class, the resultant sequence C can be considered a more
general model for the class. In particular the differences in
shape are minimized by averaging, and the weights for
similar segments are increased.

In contrast, creating a prototype from both positive and
negative examples uses a negative influence for the
negative examples. As before, suppose we have a sequence
A, which is an example of one class of sequences.
However, suppose B is an example of a different class. If
we merge A with B, using a negative influence term for B,
the resultant sequence C is a new prototype for A’s class
where the differences in shape between A and B are
exaggerated and the weights for similar segments are
decreased.

The above maps neatly to our intuitions. If we are
learning a prototype for a class of sequences from a set of
positive examples, we want the shape learned to be an
average of all the examples, and we want to increase the
weight of segments that are similar, because those
segments are good predictors of the class. If however, we
are trying to learn from a negative example, we want to
exaggerate the differences in shape between classes, and
decrease the weight of similar segments, because segments
that are similar across classes have no discriminatory
power.

Figure 7.3 shows an illustration of learning from a
negative example. The negative example is given a

Figure 7: Examples of the merge operator with various influence terms.

1) With two equal influence terms, the shape of the resultant sequence
C is “halfway” between A and B.

2) With B’s influence term much larger than A’s, the shape of the
resulting sequence C is much closer to B than A.

3) With a negative influence term for B the shape of the resulting
sequence C looks like A where the differences between A and B
have been exaggerated.

A

B

1) C = merge([A,1],[B,1])

2) C = merge([A,0.2],[B,1])

3) C = merge([A,1],[B,-0.4])

negative influence term. As before the magnitude of the
influence term reflects how much the corresponding
sequence affects the resultant sequence.

3.0 Relevance feedback

Relevance feedback is the reformulation of a search
query in response to feedback provided by the user for the
results of previous versions of the query. It has an
extensive history in the text domain, dating back to
Rocchio’s classic paper (1971). Recently, there have been
attempts to utilize relevance feedback techniques in other
domains, notably the MARS project (Rui et al. 1997).
However, to the best of the authors’ knowledge, no one has
attempted explore time series databases in a relevance
feedback framework, in spite of the fact that relevance
feedback has been shown to significantly improve the
querying process in text databases (Salton & Buckley, 90).
In this section we present a simple relevance feedback
algorithm which utilizes our representation and we
demonstrate it on a synthetic dataset.

Our relevance feedback algorithm works in the
following manner. An initial query sequence Q is used to
rank all sequences in the database (this query may be hand
drawn by the user). Only the best n sequences are shown
to the user. The user assigns influences to each of n
sequences. A positive influence is given to sequences that
the user approves of. Negative influences are given to
sequences that the user finds irrelevant.

The relative magnitude of influence terms reflects how
strongly the user feels about the sequences. So if a user
“likes” Si twice as much as Sj he can assign influences of
1,½ or 2,1 etc. The sequences are then merged to produce a
new query, and the process can be repeated as often as
desired.

Qnew = merge([Qold,QoldI],[S1,S1I],[S2,S2I],…,[Sn, SnI])

QnewI = QoldI + S1I + S2I + … + SnI

3.1 Experimental results
To test the above algorithm, we conducted the following

experiment. We constructed 500 “Type A”, and 500 “Type
B” time series, which are defined as follows:

• Type A: Sin(x3) normalized to be between zero and
one, plus Gaussian noise with σ = .1 -2 ≤ x ≤ 2

• Type B: Tan(Sin(x3)) normalized to be between zero
and one, plus Gaussian noise with σ = .1 -2 ≤ x ≤ 2

The time series, which were originally sampled at 800
points, were segmented. Figure 8 shows an example of
each type. Note that they are superficially very similar,
although Type B has a somewhat sharper peak and valley.
We built an initial query by averaging all 1,000 time series
and segmenting the result.

 Twenty-five experimental runs where made. Each run
consisted of the following steps. A coin toss decided
whether Type A or Type B was to be the “target” shape

(that is, the shape to be considered “relevant” for that
particular experiential run). The initial query was made,
and the quality of the ranked sequences was measured as
defined below. The best 15 sequences were shown to the
user, who then rated them by assigning influences that
reflected how closely he thought they resembled the target
shape. A new query was built and the search/rate process
was repeated twice more.

We evaluated the effectiveness of the approach by
measuring the average precision of the top 15 sequences,
and the precision at the 25, 50 and 75 percent recall points.
Precision (P) is defined as the proportion of the returned
sequences which are deemed relevant, and recall (R) is
defined as the proportion of relevant items which are
retrieved from the database. These results are shown in
Table 2.

In order to see if the ability to assign negative influence
terms is helpful, we did the following. For each
experimental run we also built queries which contained just
the feedback from the sequences judged relevant. These
results are shown in parentheses in Table 2.

Initial Query Second Query Third Query
P of top 15 .51 .91 (.68) .97 (.72)

P at 25% R .52 .91 (.69) .96 (.71)

P at 50% R .49 .89 (.66) .95 (.69)

P at 75% R .51 .87 (.63) .95 (.68)

Table 2: Results of relevance feedback experiments. The values
recorded in parentheses are for the queries built just from positive
feedback.

As one might expect, the initial query (which does not
have any user input) returns the sequences in essentially
random order. The second query produces remarkable
improvement, and the third query produces near perfect
ranking. The queries built from just positive feedback do
produce improvement, but are clearly inferior to the more
general method. This demonstrates the utility of learning
from both positive and negative instances.

Tan(Sin(x3))Sin(x3)

C)

B)

A)

Figure 8: Synthetic data created for relevance feedback experiment.
A) The original time series.
B) The original time series with noise added.
C) The segmented version of the time series.

4.0 Classification

Although others have done work in defining distance
measures for time series, this work has generally not been
presented in a machine learning framework, with the well-
defined task of building an algorithm which can, after
examining a training set of labeled examples, accurately
classify future unlabeled instances. In this section we
describe a novel classification algorithm which takes
advantage of our representation, and we evaluate it using
classic machine learning methodology, including cross
validation and comparison with alternative approaches.

 One difficulty in casting time series classification
problems in a machine learning context is that in machine
learning problems we are typically presented with two or
more mutually exclusive, well defined classes, such as
“sick”/“healthy”. In time series problems, however, it is
more common to have a single well-defined class, and non-
class instances that do not exhibit any particular structure.
As a good example, consider Figure 9. So instead of
attempting to decide if an instance is closer to class X or
class Y, the algorithm must decide if an instance is
sufficiently close to class X to be classified as such.
Naturally, deciding how close is sufficiently close is
something we wish the algorithm to induce from the
training set.

Given our representation, an obvious approach to
classification is to merge all positive instances in the
training set, and use the resultant sequence as a template to
which the instances to be classified are compared. This
may work in some circumstances, but in some domains it
may totally fail. The reason for the potential failure is that
there may be two or more distinct shapes that are typical of
the class. Figure 9 demonstrates that this problem exists in
the heart dataset.

A similar problem can occur in other time series
domains, there may be several distinct shapes that are
prototypical of a single class, and merging them into a
single prototype will result in a shape which does not
particularly resemble any individual member of the class.
To avoid this problem, an algorithm needs to be able to
detect the fact that there are multiple prototypes for a given

class, and classify an unlabeled instance to that class if it is
sufficiently similar to any prototype. In the next section we
describe such an algorithm, which we call CTC (Cluster,
Then Classify).

4.1 Classification algorithm
Table 3 shows an outline of our learning algorithm. The

input is S, the set of n sequences that constitute the training
data. The output is P, a set of sequences, and a positive
scalar ε.

 An unseen sequence U will be classified as a member of
a class if and only if, the distance between U and at least
one member of P is less than ε.

The algorithm clusters the positive examples using the
group average agglomerative method as follows. The
algorithm begins by finding the distance between each
negative instance in S, and its closest positive example.
The mean of all these distances, neg-dis1 is calculated. Next
the distance between each positive instance in S, and the
most similar positive example is calculated. The mean of
all these distances, pos-dis1 is calculated. The fraction q1 =
pos-dis1 / neg-dis1 can now be calculated.

At this point, the two closest positive examples are
replaced with the result of merging the two sequences, and
the process above is repeated to find the fraction q2 = pos-
dis2 / neg-dis2. The entire process is repeated until a single
sequence remains. Figure 10 shows a trace through this
part of the algorithm for a dataset that contains just 4
positive instances. The set of sequences returned is the set
for which qI is minimized. The ε returned is (pos-disi +
neg-disi) /2.

The algorithm as described is optimized for simplicity
and requires O(n3) comparisons. By storing the distances
calculated in the first iteration and only recalculating
distances where necessary, it is possible to achieve a
speedup of several constant factors.

i = 1

Let Pi be the set of all positive instances in S

Cluster all sequences in Pi

for i = 1 to n

 neg-disi = mean distance between all negative

 instances and their closest match in Pi

 pos-disi = mean distance between all positive

 instances and their closest match in Pi

 qi = pos-disi / neg-disi

 Let A and B be the closest pair of sequences in Pi
 C = merge([A,AI],[B,BI])

 CI = AI + BI

 Remove A and B from Pi

 Add C to Pi

end

 let best equal the i for which qi is minimized

 return Pbest , (pos-disbest + neg-disbest) / 2

Table 3: The CTC learning algorithm.

A)

C)

B)

Figure 9: Instances from the Heart dataset. Note that the negative instances,
shown in row A, do not exhibit any particular structure. However, the positive
instances, shown in rows B and C, seem to fall into two types, single peaked,
as in B, and double peaked as in C.

4.2 Experimental results
To test the algorithm presented above we ran

experiments on the following datasets.

• Shuttle: This dataset consists of the output of 109
sensors from the first eight-hours of Space Shuttle
mission STS-067. The sensors measure a variety of
phenomena. 18 of them are Inertia Movement
Sensors, measured in degrees (examples are shown
in Figures 1 and 10). The task is to distinguish these
from the other 91 sensors. The sensors are sampled
at different frequencies. This is not a problem for
our algorithm, but is a great difficulty for methods
which work with the raw data. So we created
“clean” 1,000 point versions of each sensor and
used those for our experiments.

• Heart: This dataset consists of RR intervals
obtained form Holter ECG tapes sampled at 128 Hz
(Zebrowski 1997). The data is in a long sequence
that contains 96 ventricular events. We extracted the
96 events, and 96 other sections, of equal length,
chosen at random. Figure 9 shows some examples
of both the ventricular events class and the non-
class data.

For comparison purposes we evaluated 4 algorithms on
the two datasets described above. CTC is the algorithm
described in section 4.1. CTCUW is the same algorithm
with the weight feature disabled (we simply hardcoded the
weights to equal one). NN is a simple nearest neighbor
algorithm that uses the raw data representation of the time
series. An unlabeled instance is assigned to the same class
as its closest match in the training set. We used absolute
error as a distance measure, having empirically determined
that it was superior to the other obvious candidates (i.e.
squared error, correlation) on these two datasets. NNS is
the same algorithm as NN except it uses the sequence
representation and the distance measure defined in section
2.2.

We ran 2 fold cross validation 100 times. All algorithms
were trained and tested on exactly the same folds. The
results are presented in table 4.

CTC CTCUW NN NNS Default

Shuttle 98.1 94.4 83.9 87.7 83.5
Heart 84.5 71.4 61.2 66.3 50.0

Table 4: Experiment results of classification experiments

On both datasets the CTC algorithm performs the best.
Its ability to outperform CTCUW seems to be a justification
of our weighted representation. On the Shuttle dataset NN
performs at the base rate. We surmise this is probably due
to its sensitivity to discontinuities, which are a trait of this
dataset. NNS ability to do significantly better supports this
hypothesis.

5.0 Related work

There has been no work on relevance feedback for time
series. However, in the text domain there is an active and
prolific research community. Salton and Buckley (1990)
provide an excellent overview and comparison of the
various approaches.

Agrawal et al. (1995) demonstrates a distance measure
for time series that works by dividing up the sequences into
windows. Corresponding windows from two time series are
compared, and the two time series are said to be similar if
enough of these windows are similar. The individual
windows are said to be similar if one lies within an
envelope of a specified width around another. Each
window has its data normalized to remove the effects of
amplitude scaling and offset translation.

In general, pattern matching on ‘raw data’ is not feasible
because of the sheer volume of data. In addition, raw data
may contain spikes, dropouts or other noise that could
confuse the matching process. A variety of higher-level
representations of times series have been proposed, most
notably the Discrete Fourier Transform. This approach

Figure 10: A trace through the CTC algorithm on a small dataset. The first set of prototypes P1, are too specific and do not generalize to the test set. The
final set P4 contains a single sequence that is too general, because it is trying to model two distinct shapes. The set P3 is the best compromise.

q1 = .63 q2 = .52 q3 = .21 q4 = .47

P1 P2 P3 P4

involves performing a Discrete Fourier Transform on the
original time series, discarding all but the K most
informative coefficients, and then mapping these
coefficients into K-dimensional space. The original work
by Agrawal, Faloutsos and Swami (1993) only allowed the
comparison of two time series of equal length, but was
extended by Faloutsos, Ranganathan and Manolopoulos
(1994) to include subsequence matching.

Others, including, Shatkay and Zdonik (1996) recognize
that a piece-wise linear (and higher order) order
representation, greatly reduces the required storage and
search space for a time series, but fail to suggest a robust
distance measure.

6.0 Conclusions

We introduced a new enhanced representation of time
series and empirically demonstrated its utility for
clustering, classification and relevance feedback. Future
directions for our research include a more extensive
evaluation of our algorithms, and incorporating query
expansion (Salton and Buckley 1990) into our relevance
feedback algorithm.

References

Agrawal, R., Faloutsos, C., & Swami, A.(1993). Efficient
similarity search in sequence databases. Proc. of the 4th

Conference on Foundations of Data Organization and
Algorithms, Chicago, October.

Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K.(1995).
Fast similarity search in the presence of noise, scaling, and
translation in times-series databases. In VLDB, September.

Box, G. P., & Jenkins, G.M (1970). Time series analysis,
forecasting and control. San Francisco, Ca. Holden-Day

Cheng, Y. C., & Lu, S. Y. (1982). Waveform correlation
using tree matching. IEEE Conf. PRIP.

Faloutsos, C., Ranganathan, M., & Manolopoulos, Y.
(1994). Fast subsequence matching in time-series
databases. SIGMOD - Proceedings of Annual Conference,
Minneapolis, May.

Hagit, S., & Zdonik, S. (1996). Approximate queries and
representations for large data sequences. Proc. 12th IEEE
International Conference on Data Engineering. pp 546-
553, New Orleans, Louisiana, February.

Keogh, E. (1997). Fast similarity search in the presence of
longitudinal scaling in time series databases. Proceedings
of the 9th International Conference on Tools with
Artificial Intelligence. pp 578-584. IEEE Press.

Keogh, E., Smyth, P. (1997). A probabilistic approach to
fast pattern matching in time series databases. Proceedings

of the 3rd International Conference of Knowledge
Discovery and Data Mining. pp 24-20, AAAI Press.

Pavlidis, T., Horowitz, S., (1974). Segmentation of plane
curves. IEEE Transactions on Computers, Vol. C-23, No 8,
August.

Salton, G., & Buckley, C. (1990). Improving retrieval
performance by relevance feedback. JASIS 41. pp. 288-
297.

Shaw, S. W. & DeFigueiredo, R. J. P. (1990). Structural
processing of waveforms as trees. IEEE Transactions on
Acoustics, Speech, and Signal Processing. Vol. 38 No 2
February.

Rocchio, J. J., Jr.(1971).Relevance feedback in information
retrieval: The Smart System - Experiments in Automatic
Document Processing, ed. Salton, G., Prentice-Hall Inc.,
pp. 337-354.

Rui,Y., Huang,T.S., Mehrotra, S. & Ortega, M. (1997).
Automatic matching tool selection using relevance
feedback in MARS. Proceedings of 2nd Int. Conf. On
Visual Information Systems.

Zebrowski, J,J. (1997).
http://www.mpipks-dresden.mpg.de/~ntptsa/Data/Zebrowski-D/

