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Abstract

The last decade has seen a huge interest in classification of
time series. Most of this work assumes that the data resides in
main memory and is processed offline. However, recent
advances in sensor technologies require resource-efficient
algorithms that can be implemented directly on the sensors as
real-time algorithms. We show how a recently introduced
framework for time series classification, time series bitmaps,
can be implemented as efficient classifiers which can be
updated in constant time and space in the face of very high
data arrival rates. We describe results from a case study of an
important entomological problem, and further demonstrate
the generality of our ideas with an example from robotics.

1. Introduction

The last decade has seen a huge interest in classification of
time series [12][8][14]. Most of this work assumes that the
data resides in main memory and is processed offline.
However recent advances in sensor technologies require
resource-efficient algorithms that can be implemented directly
on the sensors as real-time algorithms. In this work we show
how a recently introduced framework for time series
classification, time series bitmaps [14], can be implemented as
ultra efficient classifiers which can be updated in constant
time in the face of very high data arrival rates. Moreover,
motivated by the need to be robust to concept drift, and to spot
new behaviors with minimal lag, we show that our algorithm
can be amnesic and is therefore able to discard outdated data
as it ceases to be relevant.

In order to motivate our work and ground our algorithms
we begin by presenting a concrete application in entomology
which we will use as a running example in this work. However
in our experiments we will consider a broader set of domains
and show results from applications across various fields.

1.1 Monitoring Insects in Real-Time

In the arid to semi-arid regions of North America, the beet
leafhopper (Circulifer tenellus), shown in Figure 1, is the only
known vector (carrier) of curly top virus, which causes major
economic losses in a number of crops including sugarbeet,
tomato, and beans [7]. In order to mitigate these financial
losses, entomologists at the University of California, Riverside
are attempting to model and understand the behavior of this
insect [19].

Figure 1: left) The insect of interest. right) Because of the
circulatory nature of the insects feeding behavior, it can carry
disease from plant to plant

It is known that the insects feed by sucking sap from living
plants, much like the mosquito sucks blood from mammals
and birds. In order to understand the insect’s behaviors,
entomologists can glue a thin wire to the insect’s back,
complete the circuit through a host plant and then measure
fluctuations in voltage level to create an Electrical Penetration
Graph (EPG) as shown in Figure 2.

Figure 2: A schematic diagram showing the apparatus used to
record insect behavior

This method of recording the insect’s behavior appears to
be capturing useful information. That is to say, skilled
entomologists have been able to correlate various behaviors
they have observed by directly watching the insects, with
simultaneously recorded time series. However the abundance
of such data opens a plethora of questions, including:

Can we automatically detect when the beet leafhopper is in
a certain phase such as pathway or phloem ingestion?

Being able to detect these phases automatically would save
many hours of time spent by entomologists to analyze the
EPGs manually. This could open avenues for detecting new
behaviors that entomologists have not been able to model thus
far. To be truly real-time, the scheme must be algorithmically
time and space efficient in order to deal with the high data
rates sensed by the sensors. It should be able to detect patterns
in data as the data is sensed.

We propose to tackle this problem using Time Series
Bitmaps (TSB) [14]. In essence TSBs are a compact summary
or signature of a signal. While TSB’s have been shown to be
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useful for time series classification in the past [14][13], the
fundamental contribution of this work is to show that we can
maintain TSBs in constant time, allowing us to deal with very
high rate data.

We defer a discussion of TSBs until Section 3; however,
Figure 3 gives a visual intuition of them, and their utility.

Figure 3: Three traces of insect behavior clustered using time
series bitmaps. The square matrices are raw counts. The bitmaps
correspond to these raw counts scaled between 0 and 256 then
mapped to a colormap. Note that the y-axis values are relative, not
absolute, voltage values.

The raw signals have information extracted from them
regarding the frequencies of short “sub-patterns”. These raw
counts of sub-patterns are recorded in a square matrix, and the
Euclidean distance between these matrices can effectively
capture the similarity of the signals, which can then be used as
an input into classification, clustering and anomaly detection
algorithms [13][14]. While it is not necessary for classification
algorithms, we can optionally map the values in the matrices
to a colormap to allow human subjective interpretation of
similarity, and higher level interpretation of the data.

Time Series Bitmaps require only a small amount of
memory to store the values of the square matrix. Since these
square matrices are updated in real-time, the amount of
memory needed is a small constant. Furthermore, as we shall
show, the operations on these matrices are also done in
constant time.

2. Background and Related Work

To the best of our knowledge, the proposed method of
maintaining Time Series Bitmaps (TSBs) in constant time and
space per update is novel. Work has been done towards
deploying algorithms on sensors that use the Symbolic
Aggregate Approximation (SAX) representation [22][17], and

as we shall see, SAX is a subroutine in TSBs, however, neither
of the two works uses TSBs.

TSBs are aggregated representations of time series.
Another aggregation scheme is presented in [15], where data
maps are created that represent the sensory data as well as
temporal and spatial details associated with a given segment of
data. However, these data maps are not analyzed in real-time,
but deposited at sink nodes that are more powerful for pattern
analysis.

In [21], the authors introduce an anomaly detection
program using TSBs and SAX. However, the authors do not
update the TSBs in constant time, but recalculate them from
scratch for every TSB. In our work, we introduce a way to
maintain these TSBs in constant time without having to
recalculate them from scratch, saving time that makes our
algorithm truly real-time. Moreover, we tackle the problem of
classification, while [21] provides an algorithm for anomaly
detection.

Finally, there are dozens of papers on maintaining various
statistics on streaming, see [4] and the references therein.
However none of these works address the task maintaining a
class prediction in constant time per update.

3. Review of SAX/Bitmaps

For concreteness we begin with a review of the time series
bitmap representation. For ease of exposition, we begin with
an apparent digression: How can we summarize long DNA
strings in constant space?

Consider a DNA string, which is a sequence of symbols
drawn from the alphabet {A, C, G, T}. DNA strings can be
very long. For example the human mitochondrial DNA has
16,571 such symbols, beginning with
GATCACAGGTCTATCACCC… and ending with
… ACATCACGATG. Given the great length of DNA strings
a natural question is how can we summarize them in a
compact representation? One approach would be to map a
DNA sequence to a matrix of four cells based on the
frequencies of each of the four possible base pairs. This
produces a numeric summary; we can then further map the
observed frequencies to a linear colormap to produce a visual
summary as shown in Figure 4.

Figure 4: i) The four DNA base pairs arranged in a 2 by 2 grid. ii)
The observed frequencies of each letter can be indexed to a
colormap as shown in iii.

Note that in this case the arrangement of the four letters is
arbitrary, and that the choice of colormap is also arbitrary.
We begin by assigning each letter a unique key value, k:
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We can control the desired number of features by choosing l,
the length of the DNA words. Each word has an index for the
location of each symbol, for clarity we can show them
explicitly as subscripts. For example, the first word with l = 4
extracted from the human mitochondrial DNA is GOA1T2C3. So
in this example we would say k0 is G, k1 = A, k2 = T and kl =
C.

To map a word to a bitmap we can use the following
equation to find its row and column values:
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Figure 5 shows the mapping for l = 1, 2 and (part of) 3.

Figure 5: The mapping of DNA words of l = 1, 2 and 3. (The
colors of the text are just to allow visualization of the mapping).

If one examines the mapping in Figure 5, one can get a hint
as to why a bitmap for a given species might be self-similar
across different scales. For example note that for any value of
l, the top column consists only of permutations of A and C,
and that the two diagonals consist of permutations of A and T,
or G and C. Similar remarks apply for other rows and
columns.

In the rest of this paper, we use the alphabet {a,b,c,d} and
we choose to use bitmaps of size 4x4 or l = 2. Figure 6 below
was created using this alphabet, and a different colormap than
the DNA example. The icons shown here were generated from
a subsequence of a non-probing behavior waveform of the
beet leafhopper. Refer to section 4 for details on each beet
leafhopper behavior.

Figure 6: The icons created for a subsequence of a non-probing
behavior waveform for the beet leafhopper at every level from l =
1 to 3.

Having shown how we can convert DNA into a bitmap, in
the next section we show how we can convert real-valued time
series into pseudo DNA, to allow us to avail of bitmaps when
dealing with sensors.

3.1 Converting Time Series to Symbols

While there are at least 200 techniques in the literature for
converting real valued time series into discrete symbols [1],
the SAX technique of Lin et. al. is unique and ideally suited

for our purposes [16]. The SAX representation is created by
taking a real valued signal and dividing it into equal sized
sections. The mean value of each section is then calculated.
This produces a reduced dimensionality piecewise constant
approximation of the data. This representation is then
discretized in such a manner as to produce a word with
approximately equi-probable symbols. Figure 7 shows the first
64 data points of the phloem phase waveform in the bottom of
Figure 3 after converting it to a discrete string.

Figure 7: A real valued time series being discretized into the
SAX word accbaddccdbabbbb.

Note that because we can use SAX to convert time series
into a symbolic string with four characters, we can then
trivially avail of any algorithms defined for DNA, including
the bitmaps introduced in the last section.

SAX was first introduced in [16], and since then it has
been used to represent time series in many different domains
including automated detection and identification of various
species of birds through audio signals [9], and analysis of
human motion [2], telemedicine and motion capture analyses.

4. Our Algorithm in Context

We demonstrate our results on a case study for an
important entomological problem, and then further
demonstrate the generality of our ideas with an example from
robotics.

Our algorithm uses SAX (Symbolic Aggregate
Approximation), a symbolic representation for time series data
[10], to summarize sensor data to a representation that takes
up much less space, yet captures a signature of the local (in
time) behavior of the time series. We further compact the data
by aggregating the SAX representations of segments of data to
create a square matrix of fixed length or Time Series Bitmaps
(TSBs) [14][13].

We introduce novel ways to maintain these TSBs in
constant time. These optimizations make our algorithm run
significantly faster, use very little space, and produce more
accurate results, while being amnesic and using the most
recent and relevant data to detect patterns and anomalies in
real-time. With these improvements in time and space
requirements, this algorithm can be easily ported to low-power
devices and deployed in sensor networks in a variety of fields.

4.1 Entomology Case Study

As noted in Section 1.1, entomologists are studying the
behavior of beet leafhopper (Circulifer tenellus) by gluing a
thin wire to the insect’s back, completing the circuit through a
host plant and then measuring fluctuations in voltage level to
create an Electrical Penetration Graph (EPG). This method of
recording the insect’s behavior appears to be capturing useful
information. Skilled entomologists have been able to correlate
various behaviors they have observed by directly watching the
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insects, with simultaneously recorded time series. However,
the entomologists have been victims of their own success.
They now have many gigabytes of archival data, and more
interestingly from our perspective, they have a need for real-
time analyses.

For example, suppose an entomologist has a theory that the
presence of carbon dioxide can suppress a particular rarely
seen but important insect behavior. In order prove this theory,
the entomologist must wait until the behavior begins, then
increase the concentration of carbon dioxide and observe the
results. If we can successfully classify the behavior in question
automatically, we can conduct experiments with hundreds of
insects in parallel, if we cannot automate the classification of
the behavior, we are condemned to assigning one entomologist
to watch each insect –an untenable bottleneck. Before giving
details of our algorithm in Section 4.2, we will provide some
examples and illustrations of the types of behaviors of interest.

4.2 Characteristic Behaviors to Classify

The beet leafhopper’s behavior can be grouped into 3
phases of feeding behavior and 1 phase of non-probing or
resting behavior, making this a classification problem of 4
classes. There are several other behaviors of the beet
leafhopper which have not yet been identified, and we will
exclude these from our experiments.

Figure 8: Examples of the Different Waveforms

The original measurements were made in terms of voltage.
However, only the relative values matter, so no meaning
should be attached to the absolute values of the plot. Note that
we have made an effort to find particularly clean and
representative data for the figure. In general the data is very
complex and noisy.

4.2.1 Class 1 –Pathway. There is no ingestion in this phase
but it is believed that it occurs prior to other ingestion
behaviors. During the initial stages of feeding, pathway
waveforms are produced. There are several variations of
pathway phase waveforms, each of which have varied
characteristics. One variation of pathway is quite similar to
phloem ingestion and non-probing behavior in that it is
characterized by low amplitude fluctuations, which makes this
variation difficult to classify. In our work, we will consider all
the variations together as 1 general pathway phase behavior.
An example pathway phase waveform is shown in Figure 8.

4.2.1 Class 2 – Phloem Ingestion. In this phase, the beet
leafhopper is seen to be ingesting phloem sap. The waveforms
in this phase are known to have low amplitude fluctuation and
occur at low voltage levels. There are varied behaviors among
phloem ingestion phase waveforms; however, in this work we
only classify the general phloem ingestion phase which
encompasses all sub-behaviors. An example phloem ingestion
phase waveform is shown in Figure 8. Note that this particular
waveform has characteristic reoccurring “spikes”, but the
mean value can wander up and down in a very similar manner
to the wandering baseline effect in cardiology [3]. This drift
of the mean value has no biological meaning, neither in
cardiology nor here. However, as we shall see, this wandering
baseline effect can seriously degrade the performance of many
classic time series classification techniques.

4.2.3 Class 3 – Xylem/Mesophyll Ingestion. In this phase, the
beet leafhopper is seen to be ingesting xylem sap. Occasionally, it
is seen to be ingesting mesophyll sap. However, the waveforms of
the two are indistinguishable. For entomologists, this phase is
easiest to recognize since visually the waveform has very
characteristic and typical features. The voltage fluctuation has
high amplitude and a very regular repetition rate. An example
xylem / mesophyll ingestion waveform is shown in Figure 8.

Class 4 – Non-Probing / Resting. In this phase, the beet
leafhopper is resting on the surface of the leaf. Sometimes the
beet leafhopper may move around, and the insect’s walking
and grooming behaviors can cause large fluctuations in
voltage level. Usually, when the insect is resting, the
fluctuation levels are low and somewhat flat. An example non-
probing phase waveform is shown in Figure 8.

4.3 Classification in Real-Time

With the abundance of data available, it becomes
impractical and time consuming for a human to analyze and
classify each of these behaviors visually. If we can
automatically classify this behavior using an efficient
classification algorithm, it could save many hours of the
entomologists’time. The benefits multiply if the behaviors can
be captured in real-time as they occur, without having to
record many hours of data for offline processing later.

Our algorithm is able to handle this data despite it being
erratic and unpredictable, which is the case with most sensor
data. We outline and describe our algorithm below, and in
Section 5, we show results from experiments in which we
consider streaming data, and classify the behavior that is
occurring in real-time.

4.4 Maintaining TSBs in Constant Time

While SAX [10] forms the basis of our algorithm and we
use TSBs [14] to aggregate the raw data, the novel
contribution of our work is the way we maintain the TSBs in
constant time, enabling tremendous improvement in the input
rate we can handle, as well as opening up the possibility of
creating an efficient classifier that can be deployed in low-
power devices. These improvements allow us to process data
at a high rate, while still classifying and producing results in
real-time.

Class 1

Class 2

Class 3

Class 4



Because long streams of data kept in memory will become
outdated and meaningless after some time, and must be
discarded periodically, our algorithm is amnesic, maintaining a
certain constant amount of history of data at all times. This is
especially useful when there is a continuous stream of data in
which there are transitions from one class to another. Our
algorithm can capture these changes since the classifier is not
washed out by hours of outdated data that is not relevant to the
current state. Furthermore, by choosing an appropriate window
length it can capture these changes with minimal lag. The
pseudocode for maintaining TSBs in constant time and
classifying them is outlined in Table 1.

Table 1: Maintaining TSBs in Constant Time

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Function classifyTSBs(N,n,a,historySize)
historyBuffer[historySize][n]
curTimeSeries[N]
curTSB[a times a] = 0
input = getInput()
while curTimeSeries.size() < N and

input != EOF:
curTimeSeries.append(input)
input = getInput()

curSAXWord = sax(curTimeSeries,N,n,a)
incrementTSB(curTSB,curSAXWord)
historyBuffer.append(curSAXWord)
while historyBuffer.size() < historySize and

input != EOF:
curTimeSeries.pop()
curTimeSeries.append(input)
curSAXWord = sax(curTimeSeries,N,n,a)
incrementTSB(curTSB,curSAXWord)
historyBuffer.append(curSAXWord)
input = getInput()

classify(curTSB)
while input != EOF:

curTimeSeries.pop()
curTimeSeries.append(input)
curSAXWord = sax(curTimeSeries,N,n,a)
removedWord = historyBuffer.pop()
decrementTSB(curTSB,removeWord)
historyBuffer.append(curSAXWord)
incrementTSB(curTSB,curSAXWord)
classify(curTSB)
input = getInput()

The input parameters to this algorithm are the 3 SAX
parameters of N, n and a, along with the historySize
parameter. The algorithm begins by creating two circular
arrays that will hold the current data being processed and
stored (lines 1-2). The curTSB array of size a times a will
hold the Time Series Bitmap counts.

The curTimeSeries array (line 2) holds the current
sliding window of data that will be converted to a SAX word.
The SAX parameters that we use in the beef leafhopper
problem are N=32 and n=16. This corresponds to a sliding
window size of 32 data points that will be converted to a SAX
word of 16 characters. These parameters are fixed constants in
our algorithm but can be changed for other applications if
necessary, although fine-tuning parameters too much could
lead to a problem of overfitting the data [12]. The alphabet
size use is a=4 (lines 8, 14, 22) in order to produce a square
time series bitmap of size 4x4 stored here as an array of size
16 (line 3).

The historyBuffer (line 1) is a two dimensional array
that will hold the most recent SAX words in it. The number of
SAX words it holds is specified by historySize. We have

fixed this to be 200 in our implementation for the beet
leafhopper. We estimated this by visually inspecting graphs
and noticing that it is a large enough timeframe of data to
indicate the type of behavior being exhibited. If more points
are needed to classify, the historySize can be increased.
Conversely, if less points are needed or if memory is severely
scarce, the historySize can be decreased. We have
refrained from fine tuning this parameter to prevent overfitting
but our experiments suggest that we can obtain good results
over a relatively large range of values [12].

Initially, the two buffers need to be filled as long as there is
input. This is done in the first two while loops. Every time the
curTimeSeries buffer is filled, it needs to be converted to
a SAX word, and curTSB needs to be updated by
incrementing the appropriate positions. Once the
historyBuffer is filled, we can proceed with real-time
classification. The first TSB representing the initial
historyBuffer is classified (line 18). Then for each new
input, the TSB is computed and classified (line 27). The
classifier we use is one nearest neighbor with Euclidean
distance between the TSBs as the distance measure [14].

4.5 Optimizations in Time and Space

The optimizations we propose to save time and space arise
from the observation that a new TSB need not be created for
each new input. We can update the TSB by removing the
oldest SAX word in historyBuffer, decrementing the
appropriate fields in the TSB for the removed word, appending
the newest word to the historyBuffer, and updating the
TSB by incrementing its fields for the new word. Similarly,
curTimeSeries need not be refilled each time there is a
new input. The oldest value in curTimeSeries can be
removed and the new input can be added. Note that in the
implementation, curTimeSeries and historyBuffer
need to be circular arrays in order to perform updates in
constant time. Figure 9 illustrates lines 19-28.

Figure 9: Maintaining TSBs in Constant Time

Figure 9 shows the status of the historyBuffer before
and after a new input is processed. The new input mapped to
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the SAX word accabaddaaabbaca, takes the place of the
oldest SAX word in the circular array historyBuffer,
which in this case is the word abaacadccbabbbaa. This
change needs to be reflected in the array curTSB. Figure 9
shows the status of the curTSB after the change. The
appropriate values of the substring counts for the substrings in
the SAX word being removed need to be decremented. Then,
the values need to be incremented for the substrings of the
new SAX word added.

4.6 Training the Classifier

To classify a given segment of data into a particular class,
we need to create reference TSBs. After preprocessing the data
and performing the necessary conversions of format to plain
ASCII text, we proceed to convert the streams of data to
bitmaps using the same algorithm as in Table 1, and store
these bitmaps in a file.

We could use all the annotated data as training data,
however this has two problems. First, the sheer volume of data
would make both the time and space complexity of nearest
neighbor classification untenable. Second, the training data is
noisy and complex and it may have mislabeled sections. Our
solution is to do data editing, also known as prototype
selection, condensation, etc [18]. In essence, our idea is to
cluster the data and choose a small number of cluster centers
as prototypes for the dominant class in that cluster.

We begin by randomly sampling the data to reduce the
training set size while still maintaining the original distribution
of the data. Once we have randomly sampled, we can cluster
the data to find good representative models for each class to
use in the classification. Since the Time Series Bitmap is an
aggregation of time series subsequences, it is necessary that
the bitmaps be randomly selected to avoid the problems that
arise with clustering time series subsequences [11]. We
proceed to cluster the bitmaps by using KMeans. The best
centroids (i.e the ones that have the purest class labels) are
computed for each class and these centroids make up the final
training classifiers that are provided to the real-time algorithm
in Table 1. The pseudocode for finding the training TSBs for
each class X is presented in Table 2.

Table 2: Finding Training TSBs for Each Class

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Function findOptimalClusters(TSBsClassX)
TSBsClassX = minMaxNormalize(TSBsClassX)
distances[99]
centroidLists[99]
for k = 2 : 100

[clusters,sumd] = kmeans(TSBsClassX,k)
minDist = sum(sumd)
minClusters = clusters
for i = 2 : 5

[clusters,sumd] = kmeans(TSBsClassX,k)
if sum(sumd) < minDist

minDist = sum(sumd)
minClusters = clusters

distances.append(minDist)
centroidLists.append(clusters)

for i = 1 : 98
curDist = distances[i]
if (curDist – distances[i+1])

/ curDist < 0.01
return i,centroidLists[i]

return null,null

Before beginning the KMeans clustering, we first
normalize the data using min-max normalization, in which
every TSB is scaled to be between 0 and 255 (line 1). For this
part of the algorithm, it would suffice to scale between 0 and
1, but since the TSBs could potentially be mapped to a
colormap for visualization, it is more suitable to scale it
between 0 and 255. The results would be the same regardless
of which scaling is used as long as the data is min-max
normalized.

Cluster sizes from 2 to 100 are tested (lines 4-14), and each
test is run 5 times (lines 8-12). For each cluster size, the
resulting centroids from the best test run are recorded (lines
11-14). The best test run is the one in which the sum of the
distances from each instance to the nearest centroid is the
lowest. The next step is to find the best number of clusters.
Although the sum of the distance to the nearest centroid will
decrease monotonically as the number of clusters increases,
the distance change becomes negligible after some time. It is
more efficient to choose fewer number of clusters since it
reduces the size of the final training set created from the
centroids of these clusters. To find the best cluster size, we
compute the difference in distance sum between two
consecutive cluster sizes starting from cluster size 2, and
terminate the search when this difference is less than 1% (lines
17-18). The best cluster size and the corresponding centroids
for that cluster size are returned.

There may be rare cases when the algorithm does not find
such a cluster size, and in that case the return values would be
null. In such a case, the difference threshold of 1% can be
increased, and the algorithm can be run again.

5. Experimental Results

In this section we describe detailed results from the beet
leafhopper problem, and in order to hint at the generality of
our work, we briefly present results from experiments on a
robot dataset. To aid easy replication of our work, we have
placed all data at: http://acmserver.cs.ucr.edu/~skasetty/classifier.

5.1 Beet Leafhopper Behavior Dataset

The classification results of the beet leafhopper behavior
problem largely agree with expectations. Our algorithm
classifies classes known to be easy with high accuracy, and
does reasonably well on more difficult classes. The results are
presented in Table 3.

Table 3: Classification Accuracies
Beet Leafhopper Problem

Class Accuracy # of TSBs

Pathway 42.56% 610,538

Phloem 64.93% 1,241,560

Xylem/Mesophyll 71.94% 1,432,586

Non-Probing 95.03% 412,130

Overall 67.31% 3,696,814

Default (Overall) 38.75% 3,696,814

Note that we classified all 3,696,814 examples available,
without throwing out the difficult or noisy cases.



As described in Section 4, the pathway phase behavior has
several variations, and in our classification, we grouped all of
these sub-behaviors together as a single pathway phase
behavior. The waveforms of these sub-behaviors vary, so it is
expected that the classification accuracy may not be as high as
the other classes. Similarly, the phloem ingestion phase
behavior has several varieties, and we grouped these together
as well. However, the phloem phase behavior is classified
correctly 64.93% of the time, which is much higher than the
phloem phase accuracy of 42.56%. The xylem/mesophyll
ingestion phase is easiest for entomologists to detect, and as
expected, our classifier mirrors this, classifying accurately
71.94% of the data. The non-probing behavior is clearly
different from the other three behaviors, because the insect is
simply resting on the leaf, moving around or grooming during
this phase. As expected, it was easiest to detect this behavior,
with a classification accuracy of 95.03%.

We compared our algorithm with several competitors,
including the following using the min-max normalized time
series subsequences: Euclidean distance [11], the distance
between the energy of the two Fourier coefficients with the
maximum magnitude [6], the distance between the energy of
the first 10 Fourier coefficients [6], and the difference in
variance. We made every effort to find the best possible
settings for competitors that have parameters.

Due to the slow running times of the other algorithms, we
reduced the size of the test set by randomly selecting 1% of
the testing data from each class. Since the training data was
smaller (with 15,015 instances), we selected 10% of this data
randomly to create the new training set. The results of all the
classes together are presented in Table 4.

Table 4: Accuracy Comparison Beet Leafhopper Problem

Classifier Accuracy

Default Rate 38.75%

TSBs with KMeans 68.94%

Euclidean Distance 41.84%

distFFT with maxMag 41.59%

distFFT with firstCoeff 42.41%

Variance Distance 40.65%

It is clear that overall, across all classes, our algorithm
performs much better than the other algorithms we tested it
against. It beats the second best algorithm by more than 26%.
The distribution of the 4 classes in the test set is not equal.
After sampling 1% from each class, we have 6,105 instances
for pathway, 12,416 instances for phloem ingestion, 14,326
instances for xylem or mesophyll ingestion and 4,121
instances for non-probing. Therefore, the default classification
rate is 38.75%. Clearly, the other algorithms are only
marginally better than default. Our algorithm beats the default
rate by more than 30%.

We used this downsampled data on our algorithm to create
the confusion matrix in Figure 10. The diagonal shows the
accuracy of our classifier on each class. The pathway phase is
the only behavior our algorithm does not accurately classify

above the default rate. The rest of the classes classify well
above the default rate.

Test Class

Pathway Phloem
Xylem /

Mesophyll
Non-

Probing

Pathway 34.37% 12.22% 18.74% 2.84%

Phloem 23.54% 72.72% 6.76% 2.81%

Xylem /
Mesophyll

6.96% 4.55% 73.12% 0.07%

P
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s

Non-
Probing

35.14% 10.51% 1.39% 94.27%

Figure 10: Confusion matrix of test class versus predicted class

This confusion matrix illuminates several complexities and
characteristics of this dataset that make classifying it
particularly challenging. It is interesting to note that very rarely
is a class misclassified as the xylem / mesophyll ingestion
behavior. This is because the xylem / mesophyll ingestion
phase has a very distinct waveform characterized by constant
repetition and high voltage fluctuations as we described in
Section 4.

The pathway waveforms are particularly difficult to model,
and therefore, difficult to classify correctly due to the high
variations in the sub-behaviors of this class. They are
misclassified at a very high rate as non-probing or phloem
ingestion. This is because there is a particular variation of
pathway that has the low amplitude voltage fluctuation
characteristic of non-probing (during resting) and phloem
ingestion waveforms, and this variation of pathway is the most
frequent in our dataset.

It is natural that the non-probing or resting behavior
waveforms classify correctly at a very high percentage
(94.27% in this case) since the other behaviors are all related
to feeding. Although pathway waveforms are some times
misclassified as non-probing behavior, the converse is not
true. We attribute this to the low number of variations within
the non-probing behavior class. The algorithm only needs to
model two types of waveforms for this class. The waveforms
are somewhat flat with low voltage fluctuations when the
insect is resting, and high fluctuations are typical when the
insect is grooming. On the other hand, the pathway class has
four distinct sub-behaviors making it much more difficult to
model. Moreover, as mentioned above, the most confusing
variation of pathway waveforms is the most frequent variation
in our dataset.

The data used to generate the results in Figure 10 follow a
similar overall trend as the results in Table 3 generated from
running our algorithm on a test set 100 times as large and a
training set 10 times as large. The larger the dataset, the more
difficult it is to classify due to the unpredictable and erratic
behavior in sensor data. Here, we can see that our algorithm
scales well and maintains accuracy rates overall as the dataset
grows in size.

5.2 Robot Dataset

To illustrate the generality of our algorithm, we have run
additional experiments on different datasets using a similar



setup and procedure as for the beet leafhopper behavior
classification problem. The same parameters were used as
well.

The Sony AIBO is a small quadruped robot that comes
equipped with a tri-axial accelerometer. We obtained
accelerometer data for the AIBO moving on various surfaces:
on a field, on a lab carpet and on cement [20]. We applied our
algorithm to this dataset to see if it could detect which surface
the robot was moving on for a given waveform. Like the beet
leafhopper dataset, we passed the streams of data for each
surface to generate the TSBs, ran the training algorithm in
Table 2 on randomly sampled TSBs from the training data
streams, and classified the TSBs using the one nearest
neighbor algorithm with Euclidean distance between the TSBs
as the distance measure. Table 5 shows the results.

Table 5: Classification Results from Robot Dataset

Accuracy

Default Rate across 3 classes 38.42%

X-Axis Data across 3 classes 73.36%

Y-Axis Data across 3 classes 60.84%
Z-Axis Data across 3 classes 62.97%

Like the beet leafhopper dataset, the distribution of the
number of data points in each class of the robot accelerometer
dataset is also unequal. The default accuracy rate was
calculated to be 38.42%. For all three, the x-axis, y-axis and z-
axis acceleration data, our algorithm clearly beats the default
rate, with the x-axis data being most easy to classify.

7. Conclusion

In this work, we have introduced a novel way to update
Time Series Bitmaps in constant time. We have demonstrated
that an amnesic algorithm like the one we propose can
accurately detect complicated patterns in the erratic sensor
data from an important entomological problem. Our algorithm
is fast and accurate, and optimized for space. We have also
described the wide range of applications for our algorithm by
demonstrating its effectiveness in classifying robotic data.
Future work includes deployment on low-power sensors and
further applications in other domains.
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