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ABSTRACT

Similarity-based search over time-series databases has been
a hot research topic for a long history, which is widely used
in many applications, including multimedia retrieval, data
mining, web search and retrieval, and so on. However, due
to high dimensionality (i.e. length) of the time series, the
similarity search over directly indexed time series usually
encounters a serious problem, known as the “dimensional-
ity curse”. Thus, many dimensionality reduction techniques
are proposed to break such curse by reducing the dimen-
sionality of time series. Among all the proposed methods,
only Piecewise Linear Approximation (PLA) does not have
indexing mechanisms to support similarity queries, which
prevents it from efficiently searching over very large time-
series databases. Our initial studies on the effectiveness of
different reduction methods, however, show that PLA per-
forms no worse than others. Motivated by this, in this paper,
we re-investigate PLA for approximating and indexing time
series. Specifically, we propose a novel distance function in
the reduced PLA-space, and prove that this function indeed
results in a lower bound of the Euclidean distance between
the original time series, which can lead to no false dismissals

during the similarity search. As a second step, we develop
an effective approach to index these lower bounds to im-
prove the search efficiency. Our extensive experiments over
a wide spectrum of real and synthetic data sets have demon-
strated the efficiency and effectiveness of PLA together with
the newly proposed lower bound distance, in terms of both
pruning power and wall clock time, compared with two state-
of-the-art reduction methods, Adaptive Piecewise Constant

Approximation (APCA) and Chebyshev Polynomials (CP).

1. INTRODUCTION
The retrieval of similar time series has been studied ever

since early 1990s [1, 9, 2], and this area remains as a hot re-
search topic even today due to its wide usage in many new
applications, including network traffic analysis [8], sensor
network monitoring [31, 28], moving object tracking [7], and
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financial data analysis [30, 26]. For example, in a coal mine
application [28], sensors are deployed in the mine collect-
ing data such as temperature and density of oxygen, which
can be modeled as time series. Since emergency events (e.g.
low density of oxygen or fire alarm) usually correspond to
some specific patterns (also in the form of time series), the
event detection can be considered as the pattern search over
time series data, which highly demands fast retrieval to keep
the safety of miners. In this paper, we revisit the simi-

larity search problem that obtains time series in a time-
series database similar to a given query time series, espe-
cially in the case where the total number of time series in
the database is large and each time series is long (i.e. with
high dimensionality). In brief, given a time-series database
D and a query time series Q, a similarity query retrieves
those time series S ∈ D such that dist(Q, S) ≤ ε, where
dist(·, ·) is a distance function between two time series and
ε a similarity threshold.

Since the length of time series is usually very long (e.g.
≥ 1024), it becomes infeasible to directly index time series
using spatial indexes, such as R-tree [10]. This is because of
the serious “dimensionality curse” problem in high dimen-
sional space. Specifically, when the dimensionality becomes
very high, the query performance of the similarity search
using a multidimensional index can be even worse than that
of a linear scan. In order to solve this problem, Faloutous et
al. [9] presented a general framework, called GEMINI. In par-
ticular, GEMINI reduces the original time series into a lower
dimensional space (reduced space) using a dimensionality re-
duction technique, maintains data in the reduced space with
a multidimensional index (e.g. R-tree [10]), and ensures that
the efficiency of the similarity search can be achieved while
not introducing false dismissals (actual answers that are
however not in the final result). The proposed dimension-
ality reduction techniques include Singular Value Decompo-

sition (SVD) [13, 18], Discrete Fourier Transform (DFT)
[24], Discrete Wavelet Transform (DWT) [5, 23, 12, 27],
Piecewise Linear Approximation (PLA) [20, 17], Piecewise

Aggregate Approximation (PAA) [15, 29], Adaptive Piece-

wise Constant Approximation (APCA) [16] and Chebyshev

Polynomials (CP) [4].
We list seven popular dimensionality reduction techniques

in Table 1, in terms of the time complexity, space complex-
ity, and capability to be indexed in the reduced space, where
n is the length of each time series, N is the total number of
time series in the database, and (2m) is the reduced dimen-
sionality. In terms of the time complexity, CP is more costly
than PLA, DWT, PAA and APCA (Table 1); and PLA is
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Techniques Time Space Indexable

PLA O(n) O(n) No
DFT O(n · log(n)) O(n) Yes
DWT O(n) O(n) Yes
SVD O(N · n2) O(N · n) Yes
PAA O(n) O(n) Yes
APCA O(n) O(n) Yes
CP O((2m) · n) O(n) Yes

Table 1: A Comparison Among Dimensionality Re-
duction Techniques

Techniques MMD (2m = 8) MMD (2m = 16)

PLA 1.72 1.64
DFT 2.07 2.13
DWT 2.21 1.89
APCA 2.20 1.86
CP 1.84 1.76

Table 2: Minimum Maximum Deviation (MMD)

much lower than that of CP. However, in terms of the prun-

ing power (or the tightness of lower bound distances), the
existing experimental results show that APCA outperforms
DFT, DWT, and PAA [29]; and CP is better than APCA
[4].

It is interesting to note that PLA is the only one, out of
the seven, that does not have an indexable lower bound dis-
tance function. This non-indexability, for PLA, is mainly
due to the difficulties of designing a lower bound distance
function in the reduced PLA-space [17], but not due to PLA
itself. Therefore, currently, the only feasible way to perform
a similarity search based on PLA is the linear scan, which
incurs the scalability problem in very large databases. Note
that, there are reported studies to compare existing index-
able approaches [23, 16, 4], in terms of the pruning power,
but no study to compare PLA with other methods, due to
its non-indexability.

In this paper, we concentrate ourselves on investigating
the pruning power of PLA and designing an indexable lower
bound distance function for PLA. In the sequel, we briefly
justify our investigation by showing the advantages of PLA
in terms of the minimum maximum deviation (MMD) [4]
and reconstruction accuracy [22]. Figure 1 plots the opening
stock prices of a Fortune500 company, called ALCOA, during
the period from February 28th, 1978 to October 24th, 2003
(totally 6,480 days). We also draw the approximation curves
of this stock series in Figure 1 using three different methods
APCA, CP, and PLA, where the reduced dimensionality (de-
noted as 2m) is set to 8 and y-axis is normalized to [−2, 2.5].
Since it is hard to compare the three methods just by the
naked eye, we consider the measure MMD with results pre-
sented in Table 2, where m is the number of segments used
in PLA or APCA, and 2m is the reduced dimensionality (2
dimensions for each segment in PLA or APCA). PLA is su-
perior to DFT, DWT, APCA, and CP, in terms of MMD.
Table 3 illustrates the average reconstruction accuracies [22]
of PLA, DFT, DWT, APCA, and CP. In particular, we ap-
plied each of these dimensionality reduction methods to 24
benchmark data sets [30, 32, 6, 7], and reduced the dimen-
sionality of each time series from 256 to 16. We reconstruct
the original series from the reduced data, and calculate the
reconstruction accuracy. PLA achieves similar results to CP
while outperforming others. Based on studies of Table 2 and
Table 3, PLA shows high potential to be used as an effective

Figure 1: Opening Stock Prices (ALCOA)

dimensionality reduction tool, which motivates us to find an
indexable lower bound distance for PLA to answer similarity
queries.

Techniques PLA DFT DWT APCA CP

Accuracy 88.4% 38.1% 80.2% 86.4% 89%

Table 3: The Reconstruction Accuracy (24 Bench-
marks)

The main contributions of this paper are summarized be-
low.

• We propose a new indexable lower bound distance
function for PLA, denoted as distPLA(·, ·), which cal-
culates a lower bound of the Euclidean distance be-
tween any two time series in the reduced PLA-space.

• We give a theorem (Theorem 3.1), and prove, which is
not trivial, that our proposed distPLA(·, ·) is a lower
bound distance function, which guarantees that it does
not introduce any false dismissals during the similarity
search through a PLA index.

• We present a new minimum distance function between
a PLA query point and a minimum bounding rectangle

(MBR) containing a set of PLA data points in the R-
tree [10], which can be used as a basis to index PLA.

• We conduct extensive experimental studies, and com-
pare the efficiency and effectiveness of PLA with those
of two state-of-the-art dimensionality reduction tech-
niques, APCA and CP. Our experimental results con-
firm that PLA outperforms the other two, in terms of
the pruning power and wall clock time, over all the
tested data sets.

The rest of the paper is organized as follows. Section 2
reviews previous works on similarity search. Section 3 gives
our new lower bound distance function for PLA with a proof
of its correctness. Section 4 illustrates the computational is-
sue of the minimum distance between a PLA query point and
an MBR in a PLA index. Section 5 discusses how to support
the kNN search over a PLA index. Section 6 demonstrates
the experimental results, comparing PLA with APCA and
CP. Finally, we conclude and give some future research di-
rections in Section 7.
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2. SIMILARITY SEARCH
Many studies on similarity search over time-series databases

have been conducted in the past decade. The pioneering
work by Agrawal et al. [1] used Euclidean distance as the
similarity measure, Discrete Fourier Transform (DFT) as
the dimensionality reduction tool, and R-tree [10] as the un-
derlying search index. Faloutsos et al. [9] later extended this
work to allow the subsequence matching and proposed the
GEMINI framework for indexing time series. In particular,
GEMINI converts each time series into a lower dimensional
point by applying any dimensionality reduction technique,
and uses a lower bound of the actual Euclidean distance
between time series to perform the similarity search, which
can guarantee no-false-dismissals while filtering through the
index. The subsequent work focused on two major aspects:
new dimensionality reduction techniques (assuming that Eu-
clidean distance is the underlying measure) and new ap-
proaches to measure the similarity between two time series.

Existing dimensionality reduction techniques include SVD
[13, 18], DFT [24], DWT [5, 23, 12, 27], PLA [20, 17], PAA
[15, 29], APCA [16], and CP [4]. These methods first reduce
the dimensionality of each time series to a lower dimen-
sional space, and then apply a new metric distance func-
tion to measure the similarity between any two transformed
(reduced) data. Note that, in order to guarantee no-false-
dismissals during the similarity search, this metric distance
function must satisfy the lower bounding lemma [9], that is,
the distance between two transformed data in the reduced
space should be a lower bound of their actual Euclidean
distance in the original space.

Among all the reduction methods, SVD is accurate, how-
ever, costly, in terms of both computation and space costs,
since eigenvectors are required to be calculated and extra
space is needed for the storage of large matrices. Further-
more, APCA and CP are the two state-of-the-art reduction
approaches, proposed by Keogh et al. [16] and Cai and Ng
[4], respectively. In particular, APCA [16] divides the time
series into disjoint segments of different lengths and takes
the mean within each segment. Thus, each segment can be
represented by two reduced coefficients, the mean value and
the length of the segment. CP [4] obtains coefficients of
Chebyshev polynomials which are used as the reduced data.
From the previous study by Keogh et al. [16], APCA out-
performs DFT, DWT, and PAA, in terms of the pruning
power by orders of magnitude. Moreover, CP is claimed to
be better than APCA [16], however, incurs more computa-
tion cost than DWT, PAA and APCA.

To the best of our knowledge, previous work on the simi-
larity search by PLA without false dismissals is the L-index
[20], which however cannot be indexed and requires a linear
scan. Another work by Wu et al. [26] applied PLA to ap-
proximate time series, however, they defined their own dis-
tance function, specific to the financial application, rather
than the Euclidean distance which is the focus of this pa-
per. In fact, for different distance measures (functions),
such as Lp-norm [29], Dynamic Time Warping (DTW) [3],
Edit distance with Real Penalty (ERP) [6], and Edit dis-

tance with Real Sequence (EDR) [7], different lower bounds
are designed for the similarity search [6, 4, 7, 26, 25, 19, 21].
Recently, Lee et al. [19] defined a weighted distance mea-
sure using three kinds of distances, perpendicular, parallel,
and angle distances, between sub-trajectories. Moose and
Patel [21] proposed Swale as a similarity measure used in

the presence of noise, time shifts, and data scaling. Thus, it
is quite interesting to investigate the similarity search with
other distance measures and we would leave it as one of our
future work.

3. PLA: SIMILARITY SEARCH
In this work, we focus on dimensionality reduction tech-

niques that do not introduce false dismissals while filtering
through the index. Moreover, our target query is k nearest

neighbor query (kNN), which returns k time series in a time-
series database that have the smallest distances to a given
query time series. Inspired by our initial studies (shown in
Section 1), that PLA should behave as well as the state-of-
the-art techniques, such as APCA and CP, we re-investigate
PLA as a reduction method for an efficient similarity search
without false dismissals over time-series databases. Note
that, the proposal of PLA is not our contribution, whereas
the definition of an indexable lower bound distance function
on PLA and the method to index this lower bound distance
are our major focus of the work. Furthermore, in this paper,
we study the whole matching [1] with Euclidean distance
where time series in the database and query time series are
of the same length. However, our work can be easily ex-
tended to the subsequence matching [9] where query time
series are allowed to have different lengths or other useful
distance measures such as Lp-norms (1 ≤ p ≤ +∞) (by
relaxing the search radius [29]).

3.1 Piecewise Linear Approximation (PLA)
In time-series databases, each time series S consists of an

ordered sequence of values, formally, S = 〈s1, s2, . . . , sn〉,
where n is the length of time series S. In this paper, we con-
sider the Euclidean distance (i.e. L2-norm), which has been
widely used in many applications such as the (sub)sequence
matching [1, 9]. Specifically, given two time series S =
〈s1, . . . , sn〉 and Q = 〈q1, . . . , qn〉 of length n, the Euclidean
distance dist(S, Q) between S and Q is given by:

dist(S, Q) =

v

u

u

t

n
X

i=1

(si − qi)2. (1)

As an approximation technique, Piecewise Linear Approx-

imation (PLA) [20, 17] approximates a time series with line
segments. Given a sequence S = 〈s1, . . . , sn〉 of length n,
PLA can use one line segment, s′t = a · t + b (t ∈ [1, n]), to
approximate S, where a and b are two coefficients in a linear
function such that the reconstruction error, RecErr(S), of
S is minimized. Formally, RecErr(S) is defined by the Eu-
clidean distance between the approximated and actual time
series (Eq. (2)).

RecErr(S) =

v

u

u

t

n
X

t=1

(st − s′t)
2 =

v

u

u

t

n
X

t=1

(st − (a · t + b))2

(2)
where two parameters a and b satisfy the following two con-
ditions:

∂RecErr(S)

∂a
= 0 (3)

∂RecErr(S)

∂b
= 0 (4)
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Notations Descriptions

S a time series 〈s1, . . . , sn〉
N total number of time series
a and b two coefficients in the function of linear curve
n the length of time series
m the number of segments in PLA or APCA
l the length of each segment (= d n

m
e)

dist(·, ·) Euclidean distance between two time series
distPLA(·, ·) the distance between two reduced PLA series

Table 4: Meanings of Notations

Here, a and b can be obtained by solving both Eq. (3) and
Eq. (4). In particular, we have:

a =
12
Pn

t=1(t − n+1
2

)st

n(n + 1)(n − 1)
(5)

b =
6
Pn

t=1(t − 2n+1
3

)st

n(1 − n)
(6)

where st is the actual value at timestamp t in time series S.
The line segment s′t = a · t + b can well approximate time
series, S, since the two parameters, a and b, are selected so
as to achieve the minimum reconstruction error, RecErr(S).

However, although an approximation (reduction) method
with low reconstruction error can closely mimic a time series,
it does not necessarily imply an efficient similarity search
through the index with data reduced by this method. The
key factor that affects the query performance (in terms of the
pruning power) is the tightness of the lower bound distance
defined in the reduced space, compared to the real Euclidean
distance between two time series in the original space. For
example, the same dimensionality reduction technique with
different definitions of lower bound distance function would
result in quite different pruning powers, due to different
tightness of the lower bounds. In general, the tighter the
lower bound distance is, the higher the pruning power is.

In our work, we consider approximating time series with
multiple line segments (instead of one). Specifically, given
a time series S = 〈s1, . . . , sn〉, we divide S into m disjoint

segments of equal length l (i.e. n = m · l), separately ap-
proximate each segment with a (best fitted) line segment
(as mentioned before) and finally obtain two coefficients ai

and bi of the linear function from the i-th line segment (for
1 ≤ i ≤ m), based on Eq. (5) and Eq. (6). Therefore, the
PLA representation SPLA of a time series S is given as fol-
lows:

SPLA = 〈a1, b1; a2, b2; . . . ; am, bm〉 (7)

where the time complexity of computing SPLA is O(n).
We adopt the PLA representation that divides time se-

ries into segments of equal length, and leave the interesting
case where time series are partitioned into segments of dif-
ferent lengths as our future work. Table 4 summarizes the
commonly-used notations in this paper.

3.2 The PLA Lower Bound Distance
In this subsection, we propose a novel PLA lower bound

distance function, distPLA(·, ·), in the reduced PLA-space,
whose correctness will be proved in the next subsection. In
brief, after we reduce the raw time series into a lower di-
mensional PLA-space, we identify a lower bound distance
function in the reduced space, whose inputs are two reduced
data after the PLA reduction and output is a lower bound

of the real Euclidean distance between two time series in the
original space.

Our main idea behind is to use the distances between pairs
of PLA line segments as the output of the lower bound dis-
tance function. Figure 2 (a) illustrates an example of PLA
lower bound distance, which approximates the top (bottom)
time series by two PLA line segments E1 and E2 (F1 and
F2). The dotted lines between E1 and F1 (E2 and F2) in-
dicate the distances between them at different timestamps,
which are the ones we use to define the new lower bound
distance. In fact, when we use PLA to approximate seg-
ments of the time series, each segment can be represented
by a PLA line segment and “virtually” shifted to the origin
of the space along the temporal (horizontal) axis. This is
because changing the computation order of pairs of match-
ing points would not affect the final value of Euclidean dis-
tance. Figure 2 (b) illustrates the second pair of PLA line
segments E2 and F2 in Figure 2 (a), which is shifted to the
origin. The reason for our zooming in the second pair, E2

and F2, is to show that, every time we calculate the dis-
tance from a pair of PLA line segments, the starting index
always begins with “1” (refer to labels along the horizontal
axis). In other words, if the PLA line segments E2 and F2

are represented by aE,2 · j + bE,2 and aF,2 · j + bF,2, respec-
tively, then the distance between line segments E2 and F2 is
the summation of the squared distances for all the matching
points, where j starts from 1 to 16. That is, the resulting
distance is

P16
j=1((aE,2 − aF,2) · j + (bE,2 − bF,2))

2. Note

that, here j starts from 1, not 17 (the original timestamp
in the time series). Actually, this restarting index technique
is one of the critical parts that make our new lower bound
distance indexable. Another technique we use is that we
divide time series into segments of equal length and approx-
imate each segment with PLA. Note that, the previous L-
index [20] divides each time series into segments of different
lengths, which essentially makes the resulting lower bound
distance not indexable. In contrast, our approach is differ-
ent and can thus lead to an indexable lower bound distance.
Now we want to find a lower bound of the Euclidean dis-
tance between the two time series shown in Figure 2 (a).
In this paper, we use the summation of (squared) distances
between pairs of line segments (i.e. lengths of dotted lines)
as the lower bound.

Figure 2: Segmented PLA and Their Lower Bounds

Formally, we define our PLA lower bound distance func-
tion distPLA(S, Q) as follows:

Definition 3.1: Given two time series S = 〈s1, s2, . . . , sn〉
and Q = 〈q1, q2, . . . , qn〉, we divide each of them into m
segments of equal length l (= d n

m
e). Let SPLA = 〈a11, b11;

. . . ; a1m, b1m〉 and QPLA = 〈a21, b21; . . . ; a2m, b2m〉 be the
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two PLA representations of S and Q, respectively. The lower
bound distance function distPLA(S, Q) between SPLA and
QPLA is defined by:

distPLA(S, Q) =

v

u

u

t

m
X

i=1

l
X

j=1

(a3i · j + b3i)2, (8)

where a3i = a1i − a2i and b3i = b1i − b2i for 1 ≤ i ≤ m.

As in Eq. (8),
Pl

j=1(a3i · j + b3i)
2 is exactly the summed

(squared) distances between the i-th pair of line segments
from series S and Q. As in the previous example where
m = 2 and l = 16, the lower bound distance is given by
summing up the (squared) lower bound distances for both
segments.

By expanding Eq. (8) in Definition 3.1, we have:

dist2PLA(S, Q) (9)

=

m
X

i=1

„

l(l + 1)(2l + 1)

6
a2
3i + l(l + 1)a3ib3i + lb2

3i

«

.

Furthermore, from Eq. (5) and Eq. (6), a1i, b1i, a2i, and
b2i in Definition 3.1 can be calculated by the following for-
mulas:

a1i =
12
Pil

j=(i−1)l+1(j − (i − 1)l − l+1
2

)sj

l(l + 1)(l − 1)
, (10)

b1i =
6
Pil

j=(i−1)l+1(j − (i − 1)l − 2l+1
3

)sj

l(1 − l)
, (11)

a2i =
12
Pil

j=(i−1)l+1(j − (i − 1)l − l+1
2

)qj

l(l + 1)(l − 1)
, (12)

b2i =
6
Pil

j=(i−1)l+1(j − (i − 1)l − 2l+1
3

)qj

l(1 − l)
. (13)

In the next step, we would prove that our proposed dis-
tance function distPLA(S, Q) in Eq. (9) indeed results in a
lower bound of the real Euclidean distance between time se-
ries S and Q, whose details will be presented in the next
subsection.

3.3 Correctness
In order to guarantee no-false-dismissals during the simi-

larity search, the distance distPLA(S, Q) (defined in Defini-
tion 3.1) between any two PLA representations SPLA and
QPLA should satisfy the lower bounding lemma, that is:

Theorem 3.1: (Lower Bounding Lemma for PLA) Given
two time series S and Q, assume distPLA(S, Q) is the PLA
distance given in Definition 3.1, and dist(S, Q) is the Eu-
clidean distance between two time series S and Q. The
similarity search over the indexed PLA data can guarantee
no-false-dismissals, if it holds that:

dist2PLA(S, Q) ≤ dist2(S, Q). (14)

Proof Sketch: In the sequel, we give the proof of the lower

bounding lemma for PLA. Let xi = si−qi. From Eq. (1), we

have dist(S, Q) =
p
Pn

i=1 x2
i . After dividing the time series

into m segments, the (squared) Euclidean distance between
S and Q can be rewritten as:

dist2(S, Q) =

m
X

i=1

i·l
X

j=(i−1)·l+1

x2
j . (15)

According to Definition 3.1 and Eq. (10) - Eq. (13), the
(squared) lower bound distance function dist2PLA(S, Q) can
be rewritten as:

dist2PLA(S, Q)

=

m
X

i=1

(
l(l + 1)(2l + 1)

6
· (a1i − a2i)

2 + l · (l + 1)

·(a1i − a2i) · (b1i − b2i) + l · (b1i − b2i)
2)

=

m
X

i=1

0

@

12

l(l − 1)(l + 1)

0

@

il
X

j=(i−1)l+1

(j − (i − 1) · l) · xj

1

A

2

− 12

l(l − 1)

0

@

il
X

j=(i−1)l+1

(j − (i − 1) · l) · xj

1

A ·
il
X

j=(i−1)l+1

(xj)

+
2(2l + 1)

l(l − 1)
·

0

@

il
X

j=(i−1)l+1

(xj)

1

A

21

A . (16)

From the forms of Eq. (15) and Eq. (16), it is obvious that
the two (squared) distances dist2(S, Q) and dist2PLA(S, Q)
are the summarization of the (squared) distances from all
segments. Therefore, it is sufficient to give the proof on one
segment. In other words, we only need to prove that the
lower bound distance on the first segment in the reduced
PLA-space is smaller than or equal to the real Euclidean
distance on the same segment. In particular, we define the
(squared) Euclidean distance on the first segment as:

dist2(S(1), Q(1)) =

l
X

i=1

x2
i . (17)

The PLA distance on the first segment is given by:

dist2PLA(S(1), Q(1))

=
12

l(l − 1)(l + 1)

 

l
X

i=1

ixi

!2

− 12

l(l − 1)

 

l
X

i=1

ixi

! 

l
X

i=1

xi

!

+
2(2l + 1)

l(l − 1)

 

l
X

i=1

xi

!2

. (18)

Thus, we need to prove dist2PLA(S(1), Q(1)) ≤ dist2(S(1),

Q(1)). For simple illustration, we denote terms in Eq. (17)
and Eq. (18) using four variables fl, gl, cl, and dl, with
respect to l. That is,

fl =
12

l(l − 1)(l + 1)

 

l
X

i=1

ixi

!2

gl =
12

l(l − 1)

 

l
X

i=1

ixi

! 

l
X

i=1

xi

!

cl =
2(2l + 1)

l(l − 1)

 

l
X

i=1

xi

!2

dl =

l
X

i=1

x2
i . (19)

Therefore, it is sufficient to prove the following simplified
inequality:

fl + cl ≤ gl + dl. (20)
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Without loss of generality, let zl = gl+dl−(fl+cl). When
l = 2, z2 = 6(x1 +2x2)(x1 +x2)+(x2

1 +x2
2)−2(x1 +2x2)

2 −
5(x1 + x2)

2 = 0. It holds that:

zl = z2 +
Pl

i=3(zi − zi−1) (21)

When l ≥ 3, we denote wl as follows:

wl =
1

4
(l + 1)l(l − 1)(l − 2)(zl − zl−1), (22)

where

w3 = 2(g3 + d3 − f3 − c3 − g2 − d2 + f2 + c2)

= 4(x1 + 2x2 + 3x3)(x1 + x2 + x3) + 2(x2
1 + x2

2 + x2
3)

−(x1 + 2x2 + 3x3)
2 − 14

3
(x1 + x2 + x3)

2

+12(x1 + 2x2)(x1 + x2) + 2(x2
1 + x2

2 + x2
3)

−4(x1 + 2x2)
2 − 10(x1 + x2)

2

= (x1 − 2x2 + x3)
2. (23)

Similarly, we can obtain:

w4 = (2x1 − x2 − 4x3 + 3x4)
2,

w5 = (3x1 − 0x2 − 3x3 − 6x4 + 6x5)
2,

w6 = (4x1 + x2 − 2x3 − 5x4 − 8x5 + 10x6)
2,

. . .

From the equalities above, it is clear that coefficients of
xi (i ∈ [1, l]) for each wl follow certain rules. For ex-
ample, each time the coefficient of x1 is increased by 1
(i.e. 1, 2, 3, 4, 5, 6, . . .); that of x2 is also increased by 1 (i.e.
−2,−1, 0, 1, 2, 3, . . .); that of x3 is increased by 1 except for
the first one (i.e. 1,−4,−3,−2,−1, 0, . . .); that of x4 is in-
creased by 1 except for the first two (i.e. 0, 3,−6,−5,−4,−3,
. . .); that of x5 is increased by 1 except for the first three
(i.e. 0, 0, 6,−8,−7,−6, . . .). Therefore, we propose our hy-
pothesis in the following formula:

wl =

 

1

2
(l − 1)(l − 2)xl +

l−1
X

i=1

(l + 1 − 3i)xi

!2

(24)

Eq. (24) can be proved by the mathematical induction, which
is omitted here due to the space limit. The basic idea, how-
ever, is to compare the coefficients of terms xixj (i, j ∈ [1, l])
on the right hand side of Eq. (22) with those in Eq. (24). In
this way, we can show that every corresponding coefficients
of term xixj are equal to each other. As a result, we can
prove that wl ≥ 0 from Eq. (24). Furthermore, by Eq. (22),
we have zl ≥ zl−1 (l ≥ 3). Therefore, based on Eq. (21), we
can infer that zl ≥ 0 when l ≥ 3, which completes our proof
of Inequality (20).

Since Inequality (20) is equivalent to dist2(S(1), Q(1)) −
dist2PLA(S(1), Q(1)) ≥ 0, that is, lower bounding lemma holds
on the first PLA segment, we complete our proof of the lower

bounding lemma for PLA on the entire time series (since its
(squared) lower bound distance is the summation of those
on all segments), that is, dist2PLA(S, Q) ≤ dist2(S, Q). In
other words, by using the PLA lower bound distance func-
tion distPLA(S, Q), the similarity search over indexes can
guarantee no-false-dismissals. 2

4. INDEXING PLA
We have proved in Section 3 that the lower bound dis-

tance of PLA follows the lower bounding lemma, that is,

the distance between any two reduced PLA data is never
greater than that between the original time series. This
nice property of PLA can guarantee no-false-dismissals when
performing the similarity search in the reduced PLA-space,
which also confirms the feasibility of our indexing mecha-
nism with PLA (i.e. the GEMINI framework [9]). In the
sequel, we discuss indexing the reduced PLA data to speed
up the retrieval efficiency of the similarity search.

Recall that, PLA divides each time series S into m disjoint
segments of equal size l, and for each (e.g. i-th) segment, ap-
proximates it using a (best fitted) line segment with two co-
efficients ai and bi. Thus, each time series S is transformed
to totally 2m coefficients in the order of 〈a1, b1; a2, b2; ...;
am, bm〉, which can be treated as a 2m-dimensional point
in the reduced space. Next, we insert each resulting point
into a 2m-dimensional index structure, such as R-tree [10],
on which the similarity search can be efficiently processed.
Here, since the index construction is the same as the stan-
dard R-tree [10], each entry of nodes in the R-tree consists
of an MBR containing the reduced PLA data and a pointer
pointing to its corresponding subtree.

It is important to note that, different from the traditional
similarity search in the R-tree that uses the Euclidean dis-
tance as the lower bound distance function in the reduced
space [1, 9], the PLA index applies the lower bound distance
function given in Eq. (8).

Below, in this subsection, we discuss details of comput-
ing the minimum PLA lower bound distance mindistPLA(q,
e) from a reduced PLA query point q to an MBR node e
(bounding the reduced PLA data). Formally, given a query
point q and node MBR e in the PLA-space, the minimum
(squared) distance between q and e is given by mindist2PLA(q,
e) = min∀x∈e{dist2PLA(q, x)}, where dist2PLA(q, x) is the
(squared) PLA lower bound distance between q and p.

Assume that the 2m-dimensional PLA query point q has
coordinates in the order of 〈qa1

, qb1 ; qa2
, qb2 ; ...; qam

, qbm
〉,

and any point x in MBR ei 〈xa1
, xb1 ; xa2

, xb2 ; ...; xam
, xbm

〉.
According to Definition 3.1, the (squared) PLA lower bound
distance dist2PLA(q, x) between a query point q and any
point x in e is given by:

dist2PLA(q, x) =
m
X

i=1

(
l(l + 1)(2l + 1)

6
(qai

− xai
)2

+l(l + 1)(qai
− xai

)(qbi
− xbi

)

+l(qbi
− xbi

)2). (25)

Therefore, our goal is now to find the minimum value of
dist2PLA(q, x) for all points x ∈ e. Note that, both points
q and x contain 2m coordinates each, which independently
come from m disjoint segments. Thus, when computing the
minimum distance from query to MBR (with PLA lower
bound distance), without loss of generality, we consider each
segment individually and then sum up the result from each
segment to obtain the overall minimum distance. In partic-
ular, our subgoal is to find the minimum possible value of
dist2PLA(q(i), x(i)) for the i-th segment, with points x ∈ e,

where dist2PLA(q(i), x(i)) is given by:

dist2PLA(q(i), x(i)) =
l(l + 1)(2l + 1)

6
(qai

− xai
)2

+l(l + 1)(qai
− xai

)(qbi
− xbi

)

+l(qbi
− xbi

)2. (26)
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Figure 3: Case 1 (Line Segment A1A2 is Completely Contained in the Third Quadrant)
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Figure 4: Case 2 (Line Segment A1A2 is Partially Contained in the First and Third Quadrants)

For simplicity, we ignore the notation i on the RHS of
Eq. (26), which can be rewritten as:

dist2PLA(q(i), x(i)) =
l(l + 1)(2l + 1)

6
(qa − xa)2

+l(l + 1)(qa − xa)(qb − xb)

+l(qb − xb)
2

=

„√
l
l + 1

2
(xa − qa) −

√
l(−xb + qb)

«2

+

r

l3 − l

12
(xa − qa)2 (27)

where xa ∈ [amin, amax], xb ∈ [bmin, bmax], and interval
[amin, amax] ([bmin, bmax]) is the boundary of MBR e along
the (2i)-th ((2i + 1)-st) dimension.

Note that, Eq. (27) is a very complex formula which in-
volves two variables xa and xb within intervals [amin, amax]
and [bmin, bmax], respectively. Thus, it is not trivial to calcu-

late the minimum value of dist2PLA(q(i), x(i)) from Eq. (27).
In the sequel, we illustrate the key step to obtain this mini-
mum value.

Interestingly, our problem of obtaining the minimum pos-
sible value of dist2PLA(q(i), x(i)) can be reduced to finding
the minimum distance between two line segments in a 2-
dimensional space. In particular, we have:

dist2PLA(q(i), x(i)) = (uA − uB)2 + (vA − vB)2 (28)

where

uA =
√

l · l + 1

2
· (xa − qa), (29)

uB =
√

l · (−xb + qb), (30)

vA =

r

l3 − l

12
· (xa − qa), and (31)

vB = 0. (32)

Observe that, Eq. (28) is very similar to the Euclidean dis-
tance function between two points in a 2-dimensional space.

If we denote A(uA, vA) and B(uB , vB) as two points in a
2-dimensional space, namely u-v space, we can find out that
our target distance function dist2PLA(q(i), x(i)) is exactly
the squared Euclidean distance between these two points
A and B. Furthermore, due to the constraints of points A
and B by Eq. (29)-(32), we find that A can be any point

within a line segment v =

„

`

l+1
2

´

/
q

l3−1
12

«

· u, for u be-

tween
“√

l · l+1
2

· (amin − qa)
”

and
“√

l · l+1
2

· (amax − qa)
”

,

in the u-v space, and similarly B can be any point on a
line segment lying on the u-axis where v = 0 and u is be-

tween
“√

l · (−bmax + qb)
”

and
“√

l · (−bmin + qb)
”

. Thus,

the distance dist2PLA(q(i), x(i)) can in fact be computed from
the minimum distance of two line segments in the u-v space!
Based on this finding, we transform the original xa-xb space
into u-v space according to Eq. (29)-(32).

Figure 3(a) illustrates a visual example of these two line
segments A1A2 and B1B2 corresponding to points A and
B, respectively. For simplicity, in the sequel, we denote
A1(uA1, vA1) as the bottom-left vertex of line segment A1A2

and A2(uA2, vA2) as the top-right one. Similarly, B1(uB1, 0)
is the left vertex of line segment B1B2, whereas B2(uB2, 0) is

the right one. Note that, the minimum value of dist2PLA(q(i),

x(i)) in Eq. (28) is exactly the (squared) minimum distance
between two line segments A1A2 and B1B2 in the u-v space.

In order to obtain the minimum distance between line
segments A1A2 and B1B2, we study their relative positions,
which can be classified into three major cases by considering
the position of A1A2. Specifically, since line segment A1A2

can only fall into the first and/or third quadrants in the u-v
space, we give three cases as follows.

• Case 1: Line segment A1A2 is completely contained
in the third quadrant of the u-v space.

• Case 2: Line segment A1A2 is partially contained in
the first and third quadrants of the u-v space.

• Case 3: Line segment A1A2 is completely contained
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in the first quadrant of the u-v space.

Figure 3 illustrates Case 1, where line segment A1A2 is
completely contained in the third quadrant of the u-v space.
In particular, by considering the position relationship be-
tween B1B2 and A1A2, we can further divide Case 1 into
five subcases, Case 1.1–Case 1.5, as shown in Figures 3(a) -
3(e), respectively, where B1B2 moves along the u-axis from
right to left. Specifically, in Case 1.1 (Figure 3(a)), line seg-
ment B1B2 is to the right of point A2 (i.e. uB1 > uA2).
Obviously, in this case, the minimum possible distance be-
tween line segments A1A2 and B1B2 is |A2B1|, where |XY |
stands for the distance between two points X and Y in the
u-v space. For Case 1.2 in Figure 3(b), the pedal C is con-
tained in line segment B1B2 if we draw a perpendicular line
from point A2 to B1B2. Thus, the minimum possible dis-
tance between two line segments in this subcase is |A2C|.
In Case 1.3 (Figure 3(c)), the pedal is not contained in line
segment B1B2 (A1A2) if we draw a perpendicular line from
A2 (B2) to B1B2 (A1A2). The minimum distance between
these two line segments is obviously |A2B2|. In Case 1.4
(Figure 3(d)), when pedal C is contained in A1A2 by draw-
ing a perpendicular line from B2 to A1A2, the minimum
possible distance is |B2C|. Similarly, in Case 1.5 (Figure
3(e)), when line segment B1B2 further moves towards left
and this pedal C is not contained in B1B2 any more, the
minimum value becomes |A1B2|. The conditions of these
five subcases are listed in Table 5.

Furthermore, Figure 4 corresponds to Case 2, where line
segment A1A2 is partially contained in the first and third
quadrants of the u-v space. Note that, in this case, A1A2

contains origin O of the u-v space. Similar to Case 1, based
on the positions of B1B2 and A1A2, we can also divide Case
2 into five subcases (Figures 4(a) – 4(e)), in which B1B2

moves from right to left. In particular, in Case 2.1 (Fig-
ure 4(a)), line segment B1B2 is on the right of origin O and
moreover the pedal C is outside line segment A1A2 if we
draw a perpendicular line from point B1 to A1A2. In this
case, the minimum distance between line segments A1A2

and B1B2 is obviously |A2B1|. In Case 2.2 (Figure 4(b))
where B1B2 is to the right of origin O and this pedal C is
contained in line segment A1A2, the minimum possible dis-
tance between A1A2 and B1B2 is given by |B1C|. For Case
2.3 in Figure 4(c), when line segment B1B2 contains the
origin O, the minimum distance between A1A2 and B1B2 is
zero, since these two line segments intersect with each other.
Similarly, in Case 2.4 (Figure 4(d)), line segment B1B2 is
to the left of origin O and the pedal C is contained in line
segment A1A2 if we draw a perpendicular line from point
B2 to A1A2. In this case, the minimum possible distance is
|B2C|. Finally, in Case 2.5 (Figure 4(e)) where line segment
B1B2 moves further left and pedal C is out of line segment
A1A2, we have the minimum distance |A1B2|. The detailed
switching conditions of different subcases are summarized in
Table 5.

Since Case 3, where A1A2 is completely contained in the
first quadrant of the u-v space, is symmetric to Case 1 where
A1A2 is in the third quadrant, we would not discuss it in
detail.

In summary, we have tackled the problem of computing
the minimum distance mindistPLA(q, e) between a query
point q and an MBR e, under PLA lower bound distance.
In particular, we reduce the problem to another one of find-
ing the minimum distance between two line segments in a

2-dimensional space. The proposed method can efficiently
compute mindistPLA(q, e), since only a few switching con-
ditions are needed to check before calculating the distance.

5. KNN SEARCH
In this section, we discuss k nearest neighbor (kNN), pro-

cessing on top of our PLA index without introducing false
dismissals. PLA index can be easily extended to answer
other queries, for example, range query.

Figure 5 illustrates the general framework for the kNN
search over the PLA index. In particular, assume we have
constructed a 2m-dimensional R-tree [10] I on the reduced
time series by PLA. Given a query time series Q of length n,
a kNN query retrieves k time series in the database that are
the most similar to Q. Specifically, procedure kNNSearch

first transforms query time series Q to a 2m-dimensional
point q using the PLA dimensionality reduction technique
(line 1), and then performs a standard kNN search in a
best-first manner [11] with query point q over index I (lines
2-15).

Procedure kNNSearch (I, Q, k) {
Input: a 2m-dimensional index I, a time series query Q,

and parameter k
Output: k time series in I that are the most similar to Q
(1) obtain reduced representation q of Q and initialize kNN list;
(2) initialize an empty min-heap H accepting entries

in the form (e, key)
(3) insert (root(I),0) into H
(4) while H is not empty
(5) (e, key) = pop-heap(H)
(6) if key ≥ maxdist(Q, kNN list)&& (|kNN list| = k), break;
(7) if (e is a leaf node)
(8) for each point p ∈ e
(9) compute the real distance dist(Q, P )

// P is the original time series of p
(10) update list kNN list with time series P
(11) else // e is a non-leaf node
(12) for each entry ei ∈ e
(13) if mindistP LA(q, ei) < maxdist(Q, kNN list)

(14) insert (ei, mindistP LA(q, ei)) into H
(15) return kNN list

}

Figure 5: Pseudo Code of the kNN Search

Specifically, the procedure first initializes an empty min-
imum heap H with entries in the form (e, key) (line 2),
where e is the node of R-tree and key is the sorting key
in heap H. Then, it inserts the root of R-tree into heap
H (line 3). Each time we pop out an entry (e, key) with
the minimum key in H. If node e is a leaf node, then
for each point p in e, we compute the real Euclidean dis-
tance between the original time series P and Q (correspond-
ing to p and q, respectively). Furthermore, we update a
list, kNN list, with time series P if necessary (lines 7-10),
where kNN list contains (at most) k time series we have
encountered so far, which are the most similar to Q. If
node e is a non-leaf node (lines 12-14), for each entry ei

in e, we add it to heap H only if the minimum distance
mindistPLA(q, ei) from query q to entry ei is smaller than
the distance maxdist(Q, kNN list) from q to the farthest
time series in list kNN list. Procedure kNNSearch termi-
nates either the heap is empty or the minimum key in H is
greater than or equal to maxdist(Q, kNN list) (in case k
time series are obtained). Finally, we return k time series in
the list kNN list as the kNN result.
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Cases Switching Conditions mindist2PLA(q(i), e(i))

1.1 uA2 < 0, uB1 > uA2 |A2B1|2

1.2 uA2 < 0, uB1 ≤ uA2, uB2 > uA2 |A2C|2

1.3 uA2 < 0, uA1 ≤ uB2 ≤ uA2, uC ≥ uA2 |A2B2|2

1.4 uA2 < 0, uB2 ≤ uA2, uA1 < uC < uA2 |B2C|2

1.5 uA2 < 0, uB2 < uA1, uC ≤ uA1 |A1B2|2

2.1 uA1 ≤ 0, uA2 ≥ 0, uB1 > 0, uC ≥ uA2 |A2B1|2

2.2 uA1 ≤ 0, uA2 ≥ 0, uB1 > 0, uC < uA2 |B1C|2

2.3 uA1 ≤ 0, uA2 ≥ 0, uB1 ≤ 0, uB2 ≥ 0 0
2.4 uA1 ≤ 0, uA2 ≥ 0, uB2 < 0, uC > uA1 |B2C|2

2.5 uA1 ≤ 0, uA2 ≥ 0, uB2 < 0, uC ≤ uA1 |A1B2|2

Table 5: Switching Conditions for Different Cases

Note that, there are two distance functions in Figure 5.
One is maxdist(Q, kNN list), which can be easily computed
by the Euclidean distance between two time series. The
other one mindistPLA(q, ei) (underlined in line 13 of Fig-
ure 5) was traditionally defined as the minimum possible
Euclidean distance between a query point q and an MBR
node ei in the R-tree. However, in the context of our PLA di-
mensionality reduction method, this distance function must
be re-defined as the minimum PLA lower bound distance
between query q and any point in ei in the reduced PLA-
space. Therefore, in line 13 of Figure 5, we use the PLA
lower bound distance function mindistPLA(q, ei) discussed
in Section 4.

6. EXPERIMENTAL EVALUATION
In this section, we illustrate through extensive experi-

ments the effectiveness of PLA together with our newly pro-
posed lower bound distance function in the reduced PLA-
space, in terms of the pruning power. Furthermore, we
demonstrate the query performance of our PLA index over
a variety of data sets, compared with two state-of-the-art
reduction techniques, APCA and CP, in terms of the wall

clock time. In our experiments of evaluating the effective-
ness of PLA, we tested on 11 real data sets and 1 synthetic
data set, which are summarized in Table 6, as well as 24
benchmark data sets. In particular, the first six data sets in
the table, including Stocks, ERP , NHL, Slips, Kungfu
and Angle, have been used by Cai and Ng [4], whereas
the subsequent 5 data sets are selected from Keogh’s CD1

[14] and the last one, Generated, is randomly generated
3D trajectories [4]. Moreover, 24 benchmark data sets [30,
32, 6, 7] contain data from a wide spectrum of applications
and with different characteristics, where each data set has
200 time series of length 256. In order to test the effi-
ciency of query processing, we use large data sets, sstock
and randomwalk, each of which contains about 50K time
series of length 256. All our tested data sets are available at
[http://www.cse.ust.hk/∼leichen/datasets/vldb07/vldb07.zip].

Throughout our experiments, we target at kNN queries
and study the efficiency and effectiveness of our proposed
approach. Specifically, a kNN query retrieves k time series
in the database that have the smallest Euclidean distances
from a given query time series, where the query time series
is randomly selected from each data set. For the sake of fair
comparisons, we always use m segments (2 dimensions per
segment) for PLA and APCA, whereas 2m reduced dimen-

1In fact, not all the data sets in the CD are suitable for
testing the pruning power, since either some data sets are
very small or the length of time series is too short.

sionality for CP. We implemented PLA, APCA and CP by
C++, and conducted the experiments on a Pentium IV PC
3.2GHz with 512M memory. All the experimental results
are averaged over 50 runs.

Data Sets Dim. Size Length

Stocks 1 500 6480
ERP 1 496 6396
NHL 2 5000 256
Slips 3 495 400
Kungfu 3 495 640
Angle 4 657 640
Trace 1 200 278
Chlorine Concentration 1 4310 166
Mallat Technometrics 1 2400 1024
Posture 2 200 128
Muscle Activation 1 400 256
Generated 3 10000 720

Table 6: 11 Real Data Sets and 1 Synthetic Data Set

6.1 Effectiveness of PLA vs. APCA and CP
In this subsection, we evaluate the effectiveness of PLA

with our proposed PLA lower bound distance over 12 tested
data sets in Table 6, compared with two state-of-the-art
dimensionality reduction methods, APCA and CP. Specifi-
cally, we measure the pruning power of each reduction tech-
nique during the kNN search, which is the fraction of time
series that can be pruned in the reduced space. Note that,
the pruning power can indicate the query performance of
a reduction approach, which is free of implementation bias
(e.g., page size, thresholds, etc.) [30, 6, 7]. We only report
the experimental result with k = 10 in the sequel, because
the results, when k is varied from 1 to 20, showed similar
effects.

Figure 6 illustrates the pruning power of APCA, CP, and
PLA over six real data sets (in [4]). Note that, for the sake
of fair comparisons, in our experiments, the number, m, of
segments for either PLA or APCA is always set to half that
of the reduced dimensionality 2m in CP. For all the three
methods, when we increase the reduced dimensionality, the
pruning power also becomes high. Note that, although high
pruning power can be achieved with very high reduced di-
mensionality, the query performance on high dimensional
indexes is poor, compared to linear scan, due to the “di-
mensionality curse”. Thus, it is the common practice to
choose small value as the reduced dimensionality for fast re-
trieval. From figures, although APCA and CP outperform
each other over different data sets, it is clear that PLA is
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(a) 1D Stocks (b) 1D ERP

(c) 2D NHL (d) 3D Slips

(e) 3D Kungfu (f) 4D Angle

Figure 6: Effectiveness of APCA, CP, and PLA (6 Real

Data sets)

always the best, in terms of the pruning power. As an ex-
ample, for 1D Stocks data sets, when m increases from 4 to
20, the pruning power of PLA is increased from around 57%
to 75%; that of CP only from around 34% to 68%; and that
of APCA is even worse (i.e. from 7% to 30%). Furthermore,
even if CP uses 10 reduced dimensions or APCA 20 dimen-
sions, PLA still has the highest pruning power with only 4
dimensions. In order to show the improvement of PLA, we
consider the average pruning power with 8 reduced dimen-
sionality over six real data sets. The average pruning power
of PLA is greater than CP by 7% and APCA by 30%, which
shows the potentially good query performance of PLA as a
dimensionality reduction tool.

Similarly, Figure 7 illustrates the same set of experiments
on the other five real data sets from Keogh’s CD [14] and
one synthetic data set Generated [4]. We can see that PLA
again outperforms APCA and CP significantly, in terms of
the pruning power.

Furthermore, we also conducted comparisons among APCA,
CP, and PLA over 24 benchmark data sets as well, which
covers time series in a wide spectrum of applications [30,
32, 6, 7]. From the experimental results in Figure 8, PLA
is still the best among the three, in terms of the pruning
power. Note that, the x-axis in figures is the No. of 24
benchmark data sets arranged in the alphabetical order.

(a) 1D Trace (b) 1D Chlorine Concen-

tration

(c) 1D Mallat Techno-

metrics

(d) 2D Posture

(e) 1D Muscle Activation (f) 3D Generated

Figure 7: Effectiveness of APCA, CP, and PLA (5 Real

Data Sets and 1 Synthetic Data Set)

6.2 Efficiency of Query Processing
Up to now, we have compared the effectiveness of APCA,

CP, and PLA, in terms of the pruning power, whose results
show that PLA outperforms the other two over both real and
synthetic data sets. Note, however, that high pruning power
does not necessarily result in an efficient search through the
index, due to the searching cost and pruning ability of the in-
dex. Therefore, as a second step, we demonstrate the query
efficiency of the similarity search over the R-tree index [10],
comparing APCA and CP with PLA. Specifically, we use the
wall clock time to measure the query efficiency of the kNN
search, which consists of two parts, CPU time and I/O cost,
where we incorporate each page access (i.e. I/O) into the
wall clock time by penalizing 10ms. Since the previous 12
data sets as well as 24 benchmark data sets are a bit small,
we use two large (50K) real and synthetic data sets, sstock
and randomwalk, respectively, to evaluate the efficiency of
kNN search over the constructed indexes.

Specifically, for each time series, we reduce it to a lower di-
mensional point with three different techniques PLA, APCA,
and CP, and insert the reduced data into an R-tree [10].
Next, we randomly select time series in the database as our
query time series and issue a kNN query. Here, we set the
page size to 4KB. Figure 9 illustrates the wall clock time of
the kNN search using three methods over both sstock and
randomwalk data sets, by varying the value of k from 6 to
14, where the data size N is 30K and the reduced dimen-
sionality 2m is 12. Note that, the vertical axis in figures
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Figure 8: Effectiveness of APCA, CP, and PLA (24

Benchmark Data Sets)

is in log-scale. In particular, when k increases, the wall

clock time also increases, for all the three reduction meth-
ods APCA, CP, and PLA. From figures, PLA has the small-
est wall clock time among all the three techniques, followed
by CP. For APCA, since it has to bound segments of dif-
ferent lengths in MBRs of R-tree, the resulting minimum
distance between a query point and an MBR node is loose.
Thus, APCA incurs the worst performance. Therefore, PLA
with our proposed lower bound distance function as well as
the indexing approach shows much better performance than
APCA and CP.

Finally, we test the scalability of PLA over both sstock
and randomwalk data sets, with respect to the data size N ,
compared with APCA and CP, where k = 10 and 2m = 12.
For both data sets, when the data size N increases from 10K
to 50K, the wall clock time of three approaches also becomes
higher. However, PLA always performs better than either
APCA or CP, which confirms the scalability of our proposed
PLA lower bound distance and PLA indexing approach.

In summary, we have demonstrated through extensive ex-
periments of PLA reduction technique together with our
proposed lower bound distance function and indexing method,
in terms of both pruning power and wall clock time for query

(a) sstock (b) randomwalk

Figure 9: Efficiency of Query Processing (wall clock time

vs. k)

(a) sstock (b) randomwalk

Figure 10: Scalability Test of APCA, CP, and PLA (wall

clock time vs. N)

processing, compared with two state-of-the-art techniques
APCA and CP.

7. CONCLUSIONS AND FUTURE WORK
Similarity search in the time-series database encounters

a serious problem in high dimensional space, known as the
“curse of dimensionality”. Many dimensionality reduction
techniques have been proposed to break such curse and speed
up the search efficiency, including two state-of-the-art reduc-
tion methods APCA and CP. Based on the initial study of
comparing PLA with other indexable dimensionality reduc-
tion techniques such as DFT, DWT, PAA, APCA, and CP,
PLA shows good query performance in terms of MMD and
reconstruction accuracy. Motivated by this, in this paper,
we re-investigate the PLA reduction technique which was
previously used to approximate time series with linear seg-
ments, however, considered as “non-indexable” due to the
absence of tight lower bound distance function in the re-
duced space. In this paper, we propose a novel distance
function between any two reduced data by PLA, and prove
that it is indeed a lower bound of the true Euclidean dis-
tance between two time series. Therefore, we can insert the
reduced PLA data into a traditional R-tree index to facil-
itate the similarity search. As a second step, we propose
an efficient search procedure on the resulting PLA index
to answer similarity queries without introducing any false
dismissals. Extensive experiments have demonstrated that
PLA outperforms two state-of-the-art reduction techniques,
APCA and CP, in terms of both pruning power and wall
clock time.

While considering Euclidean distance as the underlying
similarity measure in this paper, it would be interesting to
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apply our PLA to other distance functions in the future.
For example, under Lp-norm, we can use our PLA index
to retrieve candidate series by increasing the search radius
[29]. Moreover, this work focuses on the whole matching

[1]. One interesting future direction is to explore the sub-

sequence matching [9] with query series of variable lengths.
In particular, similar to [9], we can extract sliding windows
of small size, w, from time series, reduce the dimensional-
ity of each sliding window using PLA, and construct a PLA
index over the reduced data for similarity search. For any
range query with a query series and a similarity threshold ε,
we can divide the query into m disjoint windows of size w,
reduce the dimensionality of each window to a query point
with PLA, and issue m range queries over PLA index cen-
tered at m query points, respectively, with smaller radius

ε√
m

. Thus, the retrieved series are candidates of the query

results. Finally, although we only discuss similarity search
with PLA over static time-series databases, another possible
future extension is to apply our proposed PLA lower bound
to the search problem in streaming environment.
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