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ABSTRACT 

Time series motif discovery has emerged as perhaps the most used 
primitive for time series data mining, and has seen applications to 
domains as diverse as robotics, medicine and climatology. There 
has been recent significant progress on the scalability of motif 
discovery. However, we believe that the current definitions of 
motif discovery are limited, and can create a mismatch between 
the userủs intent/expectations, and the motif discovery search 
outcomes. In this work, we explain the reasons behind these 
issues, and introduce a novel and general framework to address 
them. Our ideas can be used with current state-of-the-art 
algorithms with virtually no time or space overhead, and are fast 
enough to allow real-time interaction and hypotheses testing on 
massive datasets. We demonstrate the utility of our ideas on 
domains as diverse as seismology and epileptic seizure 
monitoring. 
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1 INTRODUCTION 
The last decade has seen time series motif discovery become a 
prominent primit ive for time series data mining. It has been 
applied to diverse domains such as climatology, robotics [11], 
medicine [23] and seismology [24]. Recently there has been 
significant progress on the scalability of motif discovery, and 

datasets with lengths in the tens of millions can be routinely 
searched on conventional hardware [24]. Paradoxically, the ease 
with which we can now perform motif discovery has revealed 
some weaknesses in the traditional definition of motifs; there are 
many situations in which the results of motif search do not align 
with the userủs intent. Below we discuss several examples to help 
develop the readerủs intuitions for this fact. This section is 
unusually long for a paperủs ỪIntroductionừ, but is warranted by 
the fact that we are introducing unfamiliar and unintuitive issues.  

1.1 Stop-Word Motif Bias  
In some datasets, the most interesting repeated patterns may be 
rare, and Ừswampedừ by more frequent patterns. By analogy with 
text, we can ask what is the most common Ừmotifừ (i.e. word) in 
Poeủs famous poem, The Raven? One might imagine that it is the 
eponymous bird; however that is only the 13th most common 
word, with 13 occurrences. The most frequent words with their 
number of occurrences are Ừtheừ (56), Ừandừ (38), ỪIừ (32)Ỵ  

In retrospect, this finding is not surprising, and we recall that   
stop-words are removed before any text analytics are performed. 
A similar problem occurs in time series. Consider the snippet of 
ECG data shown in Figure 1. Note that the signal begins with a 
slightly noisy saw-toothed wave (called the calibration signal), 
which is how the ECG apparatus indicates that it is switched-on, 
but not detecting a biological signal. Unsurprisingly, the saw-
tooth Ừstop-wordừ is the best motif in this dataset.  

 

Figure 1: blue/fine: A snippet of ECG data from the LTAF -
71 Database [13] . The top motifs come from regions of the 
calibration signal because they  are much more similar than 
the motifs discovered if we searc h only data that contains 
true ECGs. 

One might imagine that this issue only affects the beginning 
of signals, and thus could be easily addressed by manual 
inspection and truncation. Unfortunately, this is not the case. It is 
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very common for sensors to temporarily lose the signal due to 
poor contact or patient motion, and this issue shows up dozens of 
times in this 25-hour trace. 
 It is important to note that the issue of stop-word motifs is not 
limited to machine artifacts from the recording process. The issue 
shows up even within Ừpureừ data sources. Again, by analogy, 
note that a set of text stop-words is context dependent. For 
example, in a general text search the word Ừcomputerừ is not a 
stop-word, but for a search within the ACM portal, it is a stop-
word. The exact same situation occurs with time series. Consider 
the snippet of ECG data shown in Figure 2. The eye is drawn to 
the repeated ventricular contractions highlighted in red, but the 
best motifs by the classic definitions are a pair of normal 
heartbeats.  

 

Figure 2: A snippet of ECG data from BIDMC Congestive 
Heart Failure Database (chf02). The top motif pair are the 
two highlighted normal heartbeats. However, a 
cardiologistẮs eye is drawn here to the two repeated 
ventricular contractions [13] . 

Even if the rare motifs are more strongly conserved than the 
background motifs, we should still expect the background motifs 
to be discovered first. The reason is essentially a real-valued 
version of the birthday paradox. Consider again the pair of 
ventricular contractions shown in Figure 2. They are better 
conserved (under the Euclidean distance) than most pairs of 
normal beats. However, there are fourteen normal beats, therefore 
there are 91 pairwise combinations that could match. With so 
many possibilities, it is unsurprising that the closest pair will be 
reported as the best motif.   

The toy problem in Figure 2 can be solved by visual 
inspection, but with time series motif discovery now scaling to 
datasets of length one-hundred million [24], a more general and 
automatic solution is required. Finally, we note that this problem 
is not confined to ECGs or other periodic data. For example, in 
industrial data the top-K motifs may all correspond to patterns 
caused by calibration runs or shift changes. These 
known/uninteresting patterns may obscure a much rarer and 
unexpected repeated pattern.  

1.2 Simplicity Bias in Motif Search  
Imagine that we have {C1,C2}, a pair of subsequences that are 
Ừcomplicatedừ (informally for now, this means having many peaks 
and valleys [1]), and {S1,S2}, a pair subsequences that are Ừsimpleừ. 
Further imagine that, to your eyes, each pair itself is equally 
similar. In spite of this imagined subjective equality of similarity, 

                                                                 
1 We note that many of the issues we address were reported to us over the 
last decade by users of motif discovery tools from academia and industry.  

it is almost certain that D(C1,C2) is greater than D(S1,S2) under 
Euclidean distance, Dynamic Time Warping or any other effective 
distance measure [1]. The practical upshot of this is that it will be 
difficult to find such complicated motifs, as the top-K will be 
swamped by many simple motifs. To see this, consider the top 
motif discovered in the EEG snippet shown in Figure 3. 

 

Figure 3: A snippet of an EEG time series in which two 
motion artifacts were deliberately introduced by the 
attending physician  [16] . Surprisingly, the top -motif does 
not correspond to the motion artifacts, but to simple 
regions of ằdriftẲ. 

The result is visually jarring. The two motion artifacts are 
visually similar and do have a small Euclidean Distance, yet they 
are not discovered as the top motif. Instead, two regions of 
vaguely rising trends are the top motif. The reason for this 
mismatch between our expectation and the results is understood, 
but not in this context. In [1], it was demonstrated that the 
Euclidean Distance has a bias toward simple shapes. Quoting [1], 
Ừpairs of complex objects, even those which subjectively may seem 
very similar to the human eye, tend to be further apart under 
(Euclidean) distance measures than pairs of simple objects.ừ 

This issue is perhaps the most reported complaint of users of 
motif discovery tools1. Almost all large time series datasets have 
low complexity regions, which are often uninteresting to the 
analyst, yet it i s virtually certain that all the top-K motifs will 
come from there. 

1.3 Actionability Bias  
In many cases a domain expert wants to find not simply the best 
motif (as defined as the subsequence pair that minimizes their 
mutual distance), but regularities in the data which are exploitable 
or actionable in some domain specific ways. Such constraints have 
been explained to us by various domain experts1 with statements 
such as ỪI want to find motifs in this web-click data, preferably 
occurring on or close to the weekendừ, or ỪI want to find motifs in 
this oil pressure data, but they would be more useful if they end with 
a rising trendừ, or ẾI want to find motifs in this PPG time series data, 
but it would be better if they happened about five to ten minutes 
after the accompanying RR time series data was relatively highừ.  

There is currently no way to support such arbitrary 
constraints/preferences in motif search. Note that by their very 
nature, many of these constraints will need to be adjusted in real-
time interactive sessions. For example, the user with a preference 
for a motif that happens near a weekend may be inspired by the 
quality of the results and wish to sharpen her focus to Ừstrictly on 
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a weekendừ, or she may have been disappointed by the sparse 
results and reluctantly weaken her constraint to Ừpreferably not on 
a Tuesday or Wednesdayừ.  As we will show, we can support this 
need interactively with almost no overheard of time or space.  

1.4 Summary and Outline  
We have seen several reasons why classic motif discovery can 

fail to produce the expected or desired results. The contribution 
of this work is to produce a single, real-time, intuitive framework 
that can handle all the above, and many other domain specific 
constraints that have yet to occur to us. The basic idea behind our 
approach is to produce a vector that is Ừparallelừ to the original 
time series and annotates it with the userủs constraint(s). As the 
motif discovery algorithm finds candidate motifs, this annotation 
vector (AV) is used to re-rank them, allowing the motifs that best 
balance the fidelity of conservation with the userủs constraints to 
rise to the top.  

This only leaves the question of how do we create such 
annotation vectors? We introduce a generic framework that 
allows a user to create such vectors, typically with just a few lines 
of code in a scripting language. For concreteness, we explicitly 
show the annotation functions that allow us to address all the 
examples above, and illustrate their utility with detailed case 
studies. Furthermore, our framework is simple and flexible 
enough to support domains and constraints that have yet to be 
explored. Despite the flexibility and expressiveness of our system, 
we will show that it requires an inconsequential overhead of time 
and space complexity, relative to the state-of-the-art motif 
discovery [23][24].  

The rest of the paper is organized as follows. In Section 2, we 
review the related work and introduce necessary notations. In 
Section 3 we discuss our proposed framework together with 
several case studies. Section 4 includes a comprehensive 
quantitative comparison with other motif discovery algorithms in 
the literature. Finally, we arrive at conclusions and future research 
in Section 5.   

2 RELATED WORK AND NOTATION  
We begin with a brief review of related work before introducing 
the notations needed to understand our proposed framework. 

2.1 Related Work  
The literature on general time series motif search is large and 
growing. We refer the reader to [2][7][23] and references therein.  

This section is brief. While there are many papers on 
exploiting motifs, and scaling up motif search, to the best of our 
knowledge there are no research efforts that even explicitly note 
the issues we tackle, much less address them.  

Saria and colleagues noted a limitation of the standard motif 
definition in that it may not readily discover motifs that have 
significant temporal warping [14]. Similarly, Yankov et al. noted 
that in some domains we may need to allow uniform scaling to 
enable meaningful motif discovery [22]. However, both of these 
issues are largely orthogonal to the issues at hand. In any case, 

Mueen has argued that these issues are mostly an artifact of 
searching small datasets, and as we search larger datasets, these 
issues simply go away (see Section 4.3.2 of [12]). 
 We do note that in the context of text information retrieval, 
there is significant work in query-biased (or user-directed) 
summaries [18]. Such work is in the same spirit as our work, 
directing the results of a query toward an arbitrary informational 
need or away from an undesired outcome [10]. 

2.2 Notation  
We begin by defining the data type of interest, time series: 

Definition 1 : A time series Ὕᶰᴙ  is a sequence of real-valued 
numbers ὸᶰᴙḊὝ  ὸȟὸȟȢȢȢȟὸ  where ὲ is the length of Ὕ. 

We are typically not interested in the global properties of a time 
series, but in the local regions known as subsequences: 

Definit ion 2 : A subsequence Ὕȟ ᶰᴙ  of a time series Ὕ is a 
continuous subset of the values from Ὕ of length ά starting 
from position Ὥ. Formally, Ὕȟ  ὸȟὸ ȟȣȟὸ . 

The particular local property we are interested in in this work is 
time series motifs: 

Definition 3 : A time series motif is the most similar 
subsequence pair of a time series. Formally, Ὕȟ  and Ὕȟ is the 

motif pair iff ὨὭίὸὝȟȟὝȟ ὨὭίὸὝȟȟὝȟ  ᶅ ὭȟὮɴ

ρȟςȟȣȟὲ ά ρ  where ὥ ὦ and Ὥ Ὦ, and ὨὭίὸ is a 
function that computes the z-normalized Euclidean distance 
between the input subsequences [2][5][12][22][23][24]. 

We store the distance between a subsequence of a time series with 
all the other subsequences from the same time series in an ordered 
array called distance profile. 

Definition 4 : A distance profile Ὀᶰᴙ  of a time series Ὕ 
and a subsequence Ὕȟ  is a vector stores ὨὭίὸὝȟȟὝȟ  ᶅ Ὦɴ

ρȟςȟȣȟὲ ά ρ, where Ὥ Ὦ. 
One of the most efficient ways to locate exact time series motifs is 
to compute the matrix profile [23].  

Definition 5 : A matrix profile ὖᶰᴙ  of a time series Ὕ is 
a meta time series that stores the z-normalized Euclidean 
distance between each subsequence and its nearest neighbor 
where ὲ is the length of Ὕ and ά is the given subsequence 
length. The time series motif can be found by simply locating 
the two lowest values in ὖ (they will have tying values).  

Figure 4 illustrates a matrix profile on a small toy dataset. 

 

Figure 4: A time series T and its self -join matrix profile P. 
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To avoid trivial matches [12] in which a pattern is matched to 

itself, or a pattern that largely overlaps with itself, the matrix 
profile incorporates an Ừexclusion-zoneừ concept, which is a 
region before and after the location of a given query that should 
be ignored. The exclusion zone is heuristically set to άȾς. 

The time complexity to compute a matrix profile ὖ is ὕὲ . 
This may seem untenable for time series data mining, but several 
factors mitigate this concern. First, note that the time complexity 
is independent of m, the length of the subsequences. Secondly, the 
matrix profile can be computed with an anytime algorithm, and in 
most domains, in just ὕὲὧ steps the algorithm converges to 
what would be the final solution [23] (c is a small constant). 
Finally, the matrix profile can be computed with GPUs, cloud 
computing and other HPC environments that make scaling to at 
least tens of millions of data points trivial [23]. Even using 
standard hardware, all the examples in this paper can be 
computed much faster than real-time. For example, 30 minutes of 
ECG sampled at 60Hz takes about four minutes to exactly 
compute the full matrix profile using STOMP [23]. If that was not 
fast enough, STAMP can produce a very high quality 
approximation in under five seconds [23].   
2.1.1   Summary of this section. Before moving on, we wish to 
restate the reason for our detailed explanation of the matrix 
profile. As explained in greater detail in [23], once the matrix 
profile has been computed, all the top-K motifs are available Ừfor 
freeừ. For example, the locations of the top-1 motif is simply the 
(tied) lowest points in the matrix profile. Moreover, all other 
definitions of motifs (range motifs, top-K motifs etc.) can also be 
trivially extracted. Thus, we see the computational aspects of 
motif search largely solved, our contributions are limited to 
Ừnudgingừ the results to be more useful.  

3 GUIDED MOTIF SEARCH 
The basic idea behind guided motif search is to produce a vector 
that is Ừparallelừ to the original time series (and to the matrix 
profile) that encodes the userủs domain-dependent bias(es). This 
vector is then used to modify the matrix profile, changing its 
shape such that the undesirable solutions are more expensive, and 
no longer show up in the top-K motifs. We begin by explaining 
the general domain independent part of our solution in the next 
section, before showing several examples of how to create domain 
dependent bias functions.  

3.1 The Annotation Vector Framework  
The Annotation Vector (AV) plays the role of manipulating the 
motif search. Recall the notation of matrix profile (MP) elucidated 
in Section 2.2. The MP is the current state-of-the-art for motif 
discovery [23][24]. Our main idea is to leverage this MP to 
discover more meaningful motifs. We achieve this goal by 
combining the matrix profile with the annotation vector to 
produce a new matrix profile. We will refer to this as the 
ỪCorrectedừ MP (CMP), as it correctly incorporates the contextual 
bias for the problem at hand. 

The annotation vector AV is a time series consisting of real-
valued numbers between [0 - 1]. A low value indicates the 
subsequence starting at that index is not a desirable motif, and 
therefore should be biased against. Conversely, higher values 
mean the subsequence at that location should be favored for the 
potential motif pool. Note that the AV has the same length as the 
matrix profile MP. In Figure 5 we show the annotation vector that 
encodes the bias: ỪI want to find motifs in this traffic data, 
preferably occurring on or close to the weekendừ. 
 There may be some scenarios in which the annotation vector 
AV consists of just 0s and 1s. For example, this would be the case 
when the desired motifs are strictly limited to within a certain 
period, such as, activities between 8am-10am daily, or at a longer 
time scale, activities that happen only during an Olympic year. For 
such scenarios, we would assign 0 for AV data points in the 
untargeted period, and 1 for targeted ones. However, as shown in 
Figure 5, we allow arbitrary real-number values in the AV, so long 
as they are in the unit interval. 

 

Figure 5: top) Seventeen days from the Dodger Loop dataset. 
bottom) The AV that encodes a preference for motifs 
occurring on or near the weekend.  

Having defined the AV, we can now explain how we use it to 
correct the undesirable results explained above. To do this, we 
simply produce a Corrected Matrix Profile (CMP) by combining 
the annotation vector AV and the original matrix profile MP: 

ὅὓὖ ὓὖ ρ ὃὠ ÍzÁØ ὓὖ 

In the above equation, ὅὓὖ , ὓὖ  and ὃὠ  denote the 
corrected MP value, the original MP value and the AV value 
respectively. The ÍÁØ ὓὖ term denotes the maximum value of 
the original MP. The resulting corrected MP can be interpreted as 
follow: if a region of the time series potentially contains the 
meaningful motifs, its MP values are left untouched. Otherwise, 
its MP values are Ừpushedừ higher (increased) to reduce the 
possibility of any motif in that region appears in the top-K motif 
list.  

In many cases, the annotation vectors can be created by just a 
few lines of code. Moreover, they can be created in a simple 
environment such as MS Excel or a scripting language such as 
Matlab or Python. This is important, since many of the end-users 
of motif discovery are biologists, medical doctors, seismologists 
[23] etc., not computer/data scientists.  

For example, to produce one week of the AV shown in Figure 
5, assuming that the data is sampled once a minute and starts at 
midnight Sunday, we can use a single line of Matlab: 

AV = [(1440:-1:1)/1440 zeros(1,1440*3) (1:1440)/1440 ones(1,1440*2)] 
Which we can interpret as: 
   AV = [MonRampDown TueWedThuConstantLow FriRampUp  WeekendConstantHigh] 

Dodgers Loop data (subset)

m t w t f s su m t w t f s su m t w

Annotation vector
0 5000
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In the following subsections, we will show how the 
annotation vector is used in action to guide motif search with 
several motivating case studies. 

3.2 Case Study: Actionability Bias  
In this section, we discuss two problems brought to our attention 
by medical researchers, and we show that they have trivial fixes 
using our framework.  
3.2.1   Suppressing Motion Artifact. We begin with an example 
brought to our attention by Dr. Gregory Mason of the UCLA 
Medical Center. Clinicians often want to find motifs in medical 
telemetry, for example, in data obtained by brain-imaging 
technique such as fNIRS shown in Figure 6.  
 This example highlights a problem ubiquitous in this domain 
[3] [17]. The motif discovered in Figure 6 corresponds to a motion 
artifact, and has no medical significance. Such motion artifacts 
plague both clinicians and researchers. For example, an eight-hour 
sleep study is likely to have dozens or hundreds of such artifacts, 
as the subject tosses and turns. Note that the example shown in 
Figure 6 is visually obvious for the readerủs benefit; however, 
more generally, it is not always easy to differentiate between 
biologically significant patterns and artifacts. 

 

Figure 6: A snippet of fNIRS searched for motifs of length 
600. The motifs correspond to an atypical region, which 
(using external data) we k now is due to a sensor artifact.  

Nevertheless, we can address this issue for motif discovery in 
a very simple way, by leveraging the fact that many medical 
sensors also include an accelerometer. Figure 7 shows the 
synchronization between the fNIRS data and accompanying 
accelerator data. Given that the motion of the sensors is producing 
spurious motifs, we can use this motion to produce an annotation 
vector to suppress them. 

 

Figure 7: The blue time series is fNIRS data. The red time 
series is the acceleration of the body -worn sensors. This is 
a dramatic and visually obvious example of this issue. The 
problem is typically subtler, but still  negatively effects 
motif discovery.   

 Concretely, we slide a window of length m across the 
acceleration time series. We compare the standard deviation of 
each subsequence with the mean of all the subsequencesủ standard 
deviations, and assign the AV value to be either 0 or 1 accordingly 

(see Figure 8). Our AV data point is 0 if the corresponding 
subsequence has its standard deviation equal or greater than the 
mean, indicating regions of unusually large fluctuation.  

 

Figure 8: Points above the mean of all subsequencesẮ 
standard deviation are well aligned with regions of motion 
artifacts.   

To show how little effort this would be for a clinician or 
researcher, Table 1 contains the full Matlab code used to generate 
this AV. Naturally, a Matlab guru could write even terser code, 
but our point is simply that writing an AV is typically only a 
minuteủs work. 

Table 1: Code to generate the AV for fNIRS example  

1 

2 

3 

4 

5 

6 

 function AV = make_AV(data, subsequenceLength)  

 for i = 1:le ngth(data) ï subsequenceLength + 1  

    stdVector(i) = std(data(i:i+subsequenceLength - 1));    

 end  

 AV(stdVector >= mean(stdVector)) = 0;  

 AV(stdVector <  mean(stdVector)) = 1;  

  
 Figure 9.top displays the original matrix profile along with the 
spurious motifs that are discovered with that MP. Figure 9.bottom 
shows the MP corrected with the annotation vector produced by 
Table 1, enabling medically meaningful motifs from neuronal 
activity -related signal regions to be discovered. 

 

Figure 9: (top to bottom) Motifs in  fNIRS data discovered 
using classic motif search tend to be spurious motion 
artifacts, because the matrix profile is minimized by the 
highly cons erved but specious patterns. If we create an AV 
using the algorithm in Table 1, and use it to correct the MP, 
then that CMP allows us to find medically significant 
motifs.  
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Note that here we created a Boolean AV, which strictly 
prohibits finding motifs during sensor movement. However, we 
could also have created a real-valued AV, which simply bias the 
motif search away from regions where movement was noted, in 
proportion to the magnitude of the motion. As it happens, in this 
case, the Boolean AV was sufficient to solve the problem. In the 
next section we will show an example of an issue that does require 
a real-valued AV. 
3.2.2   Suppressing Hard-Limited Artifacts. Here we consider 
another example of a commonly encountered issue that may 
prevent us from finding meaningful motifs in medical and 
industrial datasets. In Figure 10.bottom we see that the motif 
discovered in this Electrooculogram (EOG) has a perfectly flat 
plateau. This is not reflective of medical reality, but is simply a 
region where the physical process exceeds the 8-bit precision 
available to record it [21]. 

 

Figure 10: top) A snippet of a left -eye EOG sampled at 50 Hz, 
from an individual wi th  sleep disorder. bottom) The top 
motif may be spurious, as it features a region where the 
tim e series indicates only the maximum  value possible. 
However this snippet does have a true motif, with medical 
significance.  

In the many datasets that have this limited precision flaw, we 
can be guaranteed that most or all of the top motifs will feature 
some of these constant regions, as the flat regions produce little 
cost in the Euclidean distance calculation2 that defines motifs. 
However, as shown in Figure 10.bottom.right, the data may be 
replete with more medically meaningful motifs. It is important to 
note that we do not wish to completely exclude the possibility of 
returning motifs with some amount of constant regions.  It is just 
that we want to mitigate the strong bias to finding them 
exclusively.  

 

Figure 11: The upper and lower bound of the EOG data 
indicates the regions where the physical process exceeds 
the 8-bit precision available to record it.  

As the reader will now appreciate after having seen our 
previous examples, we can easily build an AV to suppress these 
spurious matches. We begin by recording the maximum and the 
minimum values of the time series, the constant values touching 

                                                                 
2 Note, we say little cost, not zero cost, because when the subsequences are 
z-normalized, the constant regions may have slightly different heights.  

the red bars shown in Figure 11. We slide a window across the 
time series to extract subsequences, counting the number of 
constant values (from being hard-limited above or below) in each 
sequence. This number over the subsequence length is used as the 
bias function. A higher value hints that the motifs that include this 
subsequence may be spurious, as the overflow/underflow regions 
act like a Ừdonủt-careừ in the motif distance.  

Figure 12 illustrates the results of applying this AV to the 
problematic example shown in Figure 10. Here again the 
annotation vector helps to bias away from spurious motifs, by 
leveraging the original matrix profile with domain specific 
insights.  

 

Figure 12: (top to bottom) Motifs in the EOG domain that are 
discovered using classic motif search tend to include hard -
limited  data, because the matrix profile is minimized by 
having long  constant regions. By creating an AV using the 
algorithm in Table 2 to correct the MP, we can find true 
motifs corresponding to ponto -geniculo -occipital waves 
[6] . 

Once again, for concreteness, in Table 2 we show the full 
Matlab code used to make the annotation vector discussed above. 
As before, this simple fix requires only a minute of coding effort. 

Table 2: Code to generate the AV for EOG example 

1 

2 

3 

4 

5 

6 

7 

8 

 function AV = make_A V(data, subsequenceLength)  

 for i = 1: length(data) ï subsequenceLength + 1  

   s = data(i:i+subsequenceLength -  1);  

   AV(i) = length(s(s == max(data) | s == min(data)));  

 end  

 AV = AV -  min(AV); % zero one normalization  

 AV = AV / max(AV); % zero one norm alization  

 AV = 1 ï AV;       % AV property conformation  

3.3 Case Study: Stop-Word Motif Bias  
We return to the ECG example presented in Figure 1. Recall that 
the top motifs of this time series do not come from a true medical 
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signal, but regions of the electrodeủs calibration signal. These 
signals are much more similar than the Ừgenuineừ medically 
significant motifs, and swamp the top-K motif set.  

Leveraging similar ideas in text processing, we propose to 
treat these spurious patterns as a Ừstop-wordừ motifs. Our goal is 
to design an AV that is capable of discounting such motifs. We 
can make no assumptions about the locations of the stop-word 
motif, given that they can show up anywhere in the signal.  

We assume only that the stop-word motif(s) will be known to 
the users of our framework, as the stop-words are domain specific. 
In Figure 13.top, we show an example of a stop-word motif that 
we are targeting. Figure 13.bottom displays the annotation vector 
that can bias the motif discovery away from that stop-word.    

 

Figure 13: top) We annotated a single stop-word from the 
LTAF-71 Database [13] . middle ) The stop-words distance 
profile to the entire dataset was thresholded to create an 
exclusion zone, which was used to create a AV (bottom).  

 To create the AV here, we measure the similarity between the 
stop-word subsequence to all subsequences in T, by sliding a 
window of the subsequence length across the time series. This 
gives a distance profile (see Section 2.2 Definition 4 ). We 
normalize this distance profile to be in range [0 - 1], as shown in 
Figure 13.middle. To convert the normalized distance profile into 
our final AV vector, we employ a threshold parameter. The 
threshold chosen indicates how similar the corresponding 
subsequences are in comparison to the stop-word motif. If we set 
the threshold to be 0.1, we retrieve the location of subsequences 
that are 90% stop-word-like.  
 Having a threshold is generally undesirable, but recall that our 
framework has completely divorced the computationally trivial 
AV adjustment from the expensive computation of the matrix 
profile. Thus, if the threshold is too aggressive or too lax, the user 
can update it and refresh the results in under a second, even for 
datasets as large as one million data points. 

To generate the final AV vector, we set the stop-word motif 
location, and all the data up to 3m points before and after them to 
0, retaining the original values of other data points. This 3m 
Ừpaddedừ exclusion zone is simply to compensate for the Ừspikeyừ 
valleys of the distance profile.  

 

Figure 14: By correcting the MP to bias away from stop -
word motifs, we can discover medically m eaningful motifs.  

Figure 14.top shows the original MP (left) and the top-1 motif 
that would have been found using that MP (right, highlighted in 
green and cyan). Figure 14.bottom shows the corrected MP and the 
corresponding top-1 motif. 

3.4 Case Study: Simplicity Bias 
The issue of simplicity bias has been reported to us by a dozen 
research groups in the last decade, although not under that name, 
which we coined for this paper. The problem can be very subtle, 
but in Figure 15 below we show a strikingly obvious example. 

 

Figure 15: A short snippet of a time series of the flexion of 
a subjectẮs little finger [9] . Subjectively, most people would 
expect that  two occurrences of consecutive multiple  
flexions to be the top motif  (inset). Instead we find the 
simple ằramp-upẲ pattern to be the top motif.  

The reason why motif discovery fails to match our 
expectation here was discussed in Section 1.2, and at length in [1] 
(in a very different context). Given our guided motif framework, 
the problem is trivial to solve. We just need to create an AV that 
penalizes for simplicity.  
  

 

Figure 16: A visual  intuition of the c omplexity estimation 
of three time series subsequences of different complexity 
levels. 

To do this, we employ the complexity estimation proposed in 
[1], which will be referred as CE. The authors of [1] originally 
embedded CE in a complexity correction factor for the Euclidean 
distance, making this distance measure complexity-invariant. 
This complexity estimation is simple (one line of code), 
parameter-free and has a natural interpretation. Intuitively, time 
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series can be imagined as Ừchainsừ or Ừropesừ, and have their 
complexity measured by Ừstretchingừ them and measuring the 
length of the resulting taut lines, as illustrated in Figure 16. The 
more complex the time series is, the longer its corresponding line 
will be. 

We slide a window across the time series, measuring the 
complexity of each subsequence and store them in a complexity 
vector, as shown by the magenta (bold) line of Figure 17. We 
simply normalize this complexity vector to be in range [0 - 1] to 
obtain the final AV.  

 

Figure 17: The complexity measure ( bold) show in parallel 
to the raw data ( fine ).  

Table 3 contains the Matlab code used to generate the AV. 

Table 3: Code to generate AV for ECoG signal 

1 

2 

3 

4 

5 

6 

7 

 function AV = make_AV(data, subsequenceLength)  

 for i = 1: length(data) ï subsequenceLeng th + 1  

    subsequence = data(i:i+subsequenceLength -  1);  

    AV(i) = sqrt(sum(diff(subsequence).^2));;  

 end  

 AV = AV -  min(AV); % zero one normalization  

 AV = AV / max(AV); % zero one normalization  

 
Figure 18 shows how the real motifs are uncovered, as 

opposed to the Ừramp-upừ patterns that would have dominated if 
we rely on the classic matrix profile.  

 

Figure 18: By correcting the matrix profile with an AV using 
the algorithm in Table 3, we discover the true motifs of 
finger flexion pattern.   

 To show the ubiquity of this issue, and the generality of our 
solution, we searched seismology telemetry [24]. Figure 19 
illustrates how guided motif search correctly discovers two 
earthquakes from the same fault, occurring thirteen years apart, 
in Sonoma Country, CA. The result is impressive given that classic 
motif search ranks 852 other motifs above this true motif; these 
higher-ranked motifs are all sensor artifacts [8] that our AV 
suppresses.   

 

Figure 19: The top motif returned by the classic approa ch is 
not an earthquake, but a sensor artifact . Using guided motif 
search framework, we can avoid such various misleading 
sensor artifacts, which swam p this 17,279,800 data-points 
earthquake dataset. The time series shown was edited for 
visual clarity.  

4 EMPIRICAL  EVALUATION  
To ensure that our experiments are reproducible, we have built a 
website which contains all data/code/raw spreadsheets for the 
results, in addition to many experiments that are omitted here for 
brevity [15]. This commitment to reproducibility extends to all the 
examples the previous sections. We note that we do not need to 
compare to rival algorithms, but a rival definition, the classic motif 
definition used in several hundred research efforts over the last 
decade [2][12][23][24].    

4.1 Preliminary Tests  
 We begin with an experiment that is designed to closely 
model the issue shown in Figure 3, but at a scale that will allow 
statistically significant results. We produced 1,000 datasets as 
follows. We created a random walk of length 20,000, then 
embedded into it two randomly chosen instances from the eight-
class MALLAT dataset from the UCR Archive [4]. Figure 20 shows 
that these synthetic datasets are, at least visually, a good proxy for 
the real motion artifact contamination data. 

 

Figure 20: A snippet of real motion artifact contamination 
data (see also Figure 3) and a snippet of our synthetic proxy 
for it.  

For each dataset, we run motif discovery, and count as a 
success, any answer in which the top-1 returned motifs overlap 
with any part of the embedded motifs.  
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We test the performance of three alternatives: 
¶ Classic motif search, to reflect what is currently done in the 

literature (Classic) [23]. 
¶ Guided Motif Search: In which the AV is created using 

complexity bias, as discussed in Section 3.3 (AVcomplexity). 
¶ Guided Motif Search: In which the AV is created using the 

number of zeros-crossings (AVZeroCrossings) in the 
subsequences. 

We consider two variants of the AV, in order to test the 
following informal claim: Once a practitioner understands the 
issue producing poor motifs, there will almost certainly be many 
simple fixes possible. Table 4 summarizes the results. 

A practitioner that exploited the number of zero-crossings 
would have seen her hit-rate more than double, yet noted there is 
still room for improvement. Perhaps she would have noticed that 
random walk data can sometimes have high zero-crossings by 
chance, and would have turned to a more robust zero-crossings 
extractor [20]. On the other hand, a more sophisticated 
practitioner that was aware of complexity bias [1], would have 
seen essentially perfect results from the first time. In both cases 
we see that the simple correction offered by an annotation vector 
can dramatically improve the utility of motif search. We note in 
passing these results that they support our claim that the time 
overhead for guided motif search is inconsequential. 

Table 4: Comparison between classic mot if search and 
guided motif search over 1000 datasets of length 20,000. 
Both two variants of guided motif search outperform 
classic motif search in terms of accuracy, with extra time 
overhead of just 0.09 second per run, less than a half of a 
percent.  

Appr oach Average success rate Time per run  

Classic 16.3% 22.40 seconds 

AVcomplexity 99.9% 22.46 seconds 

AVZeroCrossings 38.7% 22.49 seconds 

4.2 Guided Motif Search for Event Detection  
Sometimes motif discovery is the endpoint of data analysis, but 
more often motif search is a subroutine in a higher-level 
algorithm. In this section, we show that our framework can also 
be helpful in such scenarios. We are particularly interested in the 
problem of building dictionaries from weakly labeled training 
data. We show that in this case, classic motif search may perform 
poorly and guided motif search can offer significant 
improvements.   

Figure 21 presents an example of a weakly labeled time series. 
While the time series snippet represents a 71 seconds long episode 
of mimicked epileptic seizures [19], the actual seizure is only 
about 30 seconds long, sandwiched in-between states where the 
actor was preparing-for/recovering-from her role. This presence 
of spurious data is what is meant by Ừweakly labeledừ. Using 
classic motif search to find the most conserved pattern in this time 
series returns top motifs in a non-epileptic region, as shown in 
Figure 21.top. However, using the guided motif search framework 

(CMP), employing a complexity bias, discovers the top-1 motif in 
the truly representative seizure region, as shown in Figure 
21.bottom.    

We design the experiment as follows. We first run motif 
search on the weakly labeled training data for subsequence of 
length 16 (1 second) to find the top-1 motif pair. We average this 
motif pair to get the representative pattern for that class. Next, we 
slide the representative motif across the test (unseen) time series, 
measuring its distance to all the subsequences. If the difference 
between a test subsequence and the representative motif is at 
most three times the distance between the train top-1 motif pair, 
we mark that subsequence as epilepsy positive. Our test set 
consists of five recordings of mimicking epilepsy seizure and three 
recordings of walking task concatenated (visualized in Figure 22). 
We divide the test time series into segments of 36 two-second 
regions. If we find any hit within each 2 seconds segment, and the 
ground truth agrees with that, we denote this as a true positive.  

 

Figure 21: A weakly labeled seizure mimicking captured 
with accelerometer x -axis reading. top) Classic motif search 
wrongly finds the top moti fs in non -representative event 
regions whilst CMP correctly uncover the true epileptic 
patterns  (bottom). Figure is best viewed in color.  

We compare the result of the guided motif search approach 
using AVcomplexity with the classic motif search approach. Table 5 
shows the full contingency matrix.   

Table 5: Contingency matrix. left ) The classic motif search 
approach right ) the guided motif search  approach. E 
denotes Epilepsy. NE denotes Not Epilepsy.  

Classic          True class 

 

CMP           True class 

P
re

di
ct

io
n  E NE 

P
re

di
ct

io
n  E NE 

E 1 1 E 52 3 

NE 66 321 NE 15 319 
 

The guided motif search outperforms classic motif search in 
both metrics, accuracy (95.7% vs. 82.78%) and F-measure (82.78% 
vs 2.9%). Figure 22 shows a visualization of classification result. 
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This issue of weakly labeled data could be avoided by having 
an expert manually annotating the dataset, and we acknowledge 
that the experiment is somewhat contrived. However, we do not 
always have the luxury of human expert intervention, and in that 
case, guided motif search with a little insight might take us a long 
way.   

4.3 Time and Space Complexity  
The time complexity of our proposed guided motif search is O(n2), 
which is the same as classic motif search using state-of-the-art 
methods [23]. We need O(n2) for computing the original MP, plus 
O(n) additional work to compute the AV and produce the 
corrected MP [23]. The space complexity is merely O(n). To 
concretely ground these numbers, consider Table 4. It took 22.5 
seconds to process 20,000 data points. Given that the data was 
recorded at 50Hz, this is 400 seconds of wall-clock time, meaning 
we are about eighteen times faster than real-time.  

 

Figure 22: Classification result  with  the dictionary learned 
using classic motif search ( top) and the dictionary built 
using the guided motif search approach ( bottom). 

5 CONCLUSIONS AND FUTURE WORK 
We have shown that direct use of classic time motif search can 
produce unexpected/undesired results in many circumstances, for 
a variety of domain dependent reasons. We have presented a 
novel framework for guided motif discovery, which greatly 
mitigate these issues. In the spirit of reproducible research, we 
have released all the code and data at [15], to allow others to 
confirm, extend and exploit our ideas. 

We plan to produce a crowdsourced website which catalogues 
the issues effecting motif discovery, together with the suggested 
AVs that can fix the issue. We envision that this resource will 
expand as domain experts provide examples, in the manner of: ỪIf 
you are looking for repeating stanzas in Byzantine or Turkish folk 
songs, we suggest you use this AVPitchCorrect, otherwise you may 
findỈừ  

Finally, all the examples that we have given required the 
practitioner to understand the issue, and come up with an AV to 
solve it. In future work, we hope to learn the AV simply by 
observing the user interact with the raw data. 
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