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ABSTRACT

Time series motif discovery has emerged as perhbapsrost used
primitive for time series data mining, and has seen applications to
domains as diverse as robotiecsedicineand climatology. There
has been recent significant progress tre scalability of motif
discovery. However, we believe that the curtedefinitions of
motif discovery are limited, and can create a mismatch between
the wuseruds intent/ expectsadrchon
outcomes. In this work, we explain the reasons behind these
issues, and introduce a novel and general framewarladdress
them. Our ideas can be used with current stafehe-art
algorithms with virtually no time or space overhead, and are fast
enough to allow reatime interaction and hypotheses testing on
massive datasets. We demonstrate the utility of our ideas
domains as diverse as seismology arepileptic seizure
monitoring.
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1 INTRODUCTION

The last decade has seen time series motif discobegomea
prominent primitive for time series data mininglt has been
applied to diversedomainssuch as climatology, robotics [11],
medicine [23] and seismology[24]. Recently there has been
significant progress orthe scalability of motif discovery, and
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datasets with lengths in the tens of millions can be routinely
searched on conventionalahdware [24]. Paradoxically the ease
with which we can now performmotif discovery has revealed
some weaknesses in the traditional definition of matifisere are
many situations in which the results of motif search do nogali

with the userds intent. Below we
devel op t Inwitionsda dhis fagtsThis section is
unusually long for apenus bctiont, ut i s

o D G B e i e e B e

1.1 Stop-Word Motif Bias
In some datasets, the most interesting repeated patterns may be

rare, and Uswampedd® by more frequ
text, we can ask what is the most
Poels f anThaiRavemOmamight imagine that it is the

eponymoushbird; however that is only the 18 most common
word, with 13 occurrences. The most frequent words with their
number of o cthen r( &8nélic & BB J(r,3e2 YUY
In retrospect, this finding is not surprisingnd werecallthat
stop-words areremovedbeforeany text analyticsare performed
A similar problem occurs in time serie€onsider the snippet of
ECG data shown ifrigurel. Note that the signal begins with a
slightly noisy saw-toothed wave(called thecalibration signg|
which is how the ECG apparatugsdicates that it is switcheebn,
but not detecting a biological signal. Ungarisingly, the saw
toot hwitsd@pi s the best moti f i

Top-1 Motif (all data) Top-1 Motif, if we ignore the first 1,000 data points

True ECG Signal

Calibration Signal

0 1000 2000 3000

Figure 1: blue/fine: A snippet of ECG data from the LTAF -
71 Database[13]. The top motifs come from regions of the
calibration signal because they are much more similar than
the motifs discovered if we searc h only data that contains
true ECGs.

One might imagine thathis issue onlyaffects thebeginning
of signals, and thus could be easily addressed by manual
inspectionand truncation.Unfortunately, this is not the case. It is
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very common for sensors to teguorarily lose the signal due to it is almost certain that D(€C) is greater than D($S) under

poor contact ompatient motion, and this issushowsup dozenf Euclidean distance, DynamTime Warping orany other effective
timesin this 25hour trace. distancemeasurd1]. The practical upshot of this is that it will be
It is important to note that the issue of stepord motifs is not difficult to find such complicated motifs, as the tép will be

limited to machine artifacts from the recording process. Traues swamped bymany simple motifs. D see this, considehe top
shows up even within’p ur e ¥ d aAgain, lsymualogy,e s .motif discovered in the EEG snippet shownRigure3.

note that a set of texttep-words is contextdependent. For

examplei n a general text seaa&h {heWoldecdlsomput er v i
stop-word, but for a search within the ACM portal, is a stop Top-1 Motif
word. The exact same situation occurs with time serfésnsider Top-1 Motif
the snippet of ECG data shown Figure2. The eye is drawn to ‘ ‘ Motion Artifact ‘
the repeatedventricular contractionshighlighted in red, but the . 4000
best motifs by the classic definitionare a pair of normal
heartbeats.

Motion Artifact

s
8000

Figure 3: A snippet of an EEG time series in which two
motion artifacts were deliberately introduced by the
attending physician [16]. Surprisingly, the top -motif does

. . Vi icul
Top-1 Motif Top-1 Motif entricular

Contractions not correspond to the motion artifacts, but to simple
WWWWMW regions of adriftA.

L 1 1 1 1 1

0 500 1000 1500 2000 2500 The result is visually jarring. The two motion artifactare
visually similar anddo have a small Euclidean Distance, yet they
Figure 2: A snippet of ECG data from BIDMC Congestive are not discovered as the top motif. Instead, two regions of
Heart Failure Database (chf02). The top motif pair are the vaguely rising trends are the top motif. The reason for this
two highlighted normal heartbeats. However, a mismatch between our expectation and the results is understood,
cardiologistAs eyetheitwo repeated but not in this context. In[1], it was demonstrated that the
ventricular contractions  [13]. Euclidean Distance has a bias toward simple shapes. Qui]ng

(Pairs of complex objects, even those which subjectively may seem
Even if the rare motifs are more strongly conserved than the very similar to the human eye, tend to be further apart under
background motifs, we shoulstill expect the background motifs  (Euclidean distance measures than pairs of simple objécts

to be discovered firstThe reason isessentially a reavalued This issue is perhaps the most reported complaint of users of
version of the birthday paradox. Consider again the pair of motif discovery toold Almost all large time series datasets have
ventricular contractionsshown in Figure 2. They are better low complexity regions, which are often uninteresting to the

conserved (under the Euclidean distance) thawost pairs of analyst, yetit is virtually certain that all the topK motifs will

normal beats. Howevethere are fourteen normal beats, therefore  comefrom there.

there are 91 pairwise€ombinations thatcould match. With so

many possibilities, it is unsurprisinghat the closest pair wilbe 1.3 Actionability Bias
reported as the best motif.

The toy problem inFigure 2 can be solved by visual
inspection, but with time series motif discovery now scaling to
datasets of length orbundred million[24], a moregeneral and
automaticsolution is required. Finally, we notiat this problem
is not confined to ECGs or other periodic data. For example, in
industrial data the topK motifs may all correspond to patterns
caused by calibration runs or shift changes. These
known/uninteresting patterns mayobscurea much rarer and
unexpected repeated pattern.

In many cases a domain expert wants to find not simply the best
motif (as defined as the subsequence pair that minimizes their
mutual distance), but regularities in thdata which are exploitable

or actionable in some domain specific wagsich constraints have
been explained to us by various domain expénith statements

s u c h | warg to ihd motifs in this weblick data, preferably
occurring on or close to the wesekr , | want tdJfind motifs in

this oil pressure data, but they would be more useful if they end with
arisingtrendt, Ebrwant to find motifs i
but it would be better if they happened about five to ten minutes
. - . . after the @companying RR time series data was relativelyrhigh

1.2 Simplicity Bias in Motif Search There is currently no way to support such arbitrary
Imagine that we have {C1,C2}, a pair of subsequences that areconstraints/preferences in motif search. Note that by their very
Uc pini c @ntorendllyrfor now, this means havingiany peaks  nature, many of these constraints will need to be adjusted in-real
and valleygl]),and {3 S}, apars bs equences t ha timedntectikéSessitrs.|IFér bxample, the user with a preference
Further imagine that, to your eyes, eagfair itself is equally  for a motif that happens near a weekend may be inspired by the

similar. In spite of this imagined subjective equality of similarity, qual ity of the results sriotlgonwi sh

1We note that many of the issues we addressevreported to us over the
last decade by users of motif discovery tools from academia and industry

2

t



Matrix Profllg V: A Qengrlc Technique to Incorporate Domain KDD&17, Augus
Knowledge into Motif Discovery

a weekendl , or she may have $bparsen WMiesnahap arguead tthatdthede yssuéshare mostly an artifact of
resultsandre uct ant | y we ak epnefefalyrnot ono n searchig small datasetdfand as we searoheladatasetsthese

a Tuesday or Wednesdays we will show, we can support this issues simply go away (see Section 4.3.214).

need interactively with almost no overheard of time or space. We do note thatin the conext of text information retrieval,
_ there is significant work in querybiased ¢r userdirected)
1.4 Summary and Outline summaries[18]. Such work is in the same spirit as our work,

We have seen several reasons why classic motif discoseny directing the results of a queryoward an arbitrary informational
fail to produce the expected or desired results. The contribution Need orawayfrom an undesired outcomid.0].
of this work is to produce a single, retime, intuitive framework .
that can handle all the above, and many other domain specific 2.2 Notation
constraintsthat have yeto occur tous. The basic idebehind our We begin by defining the data type of interetitne series
approach is to produce a vect oDefintidnd t AtinssedEfwas ila bequerite of rezbldeth € o1 i
time series and annotates it whuinthersotvhaeDYu sody ixfo wheressidthe kegh bfy s ) . A's
motif discovery algorithm finds candidate motifs, this annotation We are typically not interested in the global properties of a time
vector (AV) is used to reank them, allowng the motifs that best series, but in the local regions known asbsequences
balance the fidelity of conser pdibitiion D: A¥libseluerdcd) & s U &f @ finteSeriésdgas t r ai n

rise to the top. continuous subset of the values froitvof lengthd starting
This only leaves the question of how do we createch from position’QFormally,”¥; ok B

annotation vetors? We introduce a generic framework that
allows a user to create such verdptypically with just a few lines

of code in a scripting languag&or concreteness, we explicitly
show the annotation functions that allow us to address all the
examples above, and illustrate their utility with detailed case
studies. Furthermore, our dmework is simple and flexible
enough to support domains and constraints that have yet to be
explored.Despite the flexibility and expressiveness of our system,
we will show that it requires an inconsequential overhead of time
and space complexity, relatv to the stateof-the-art motif

The particular local property we are interested intiis work is

time series motifs
Definiton 3 : A time series motifis the most similar
subsequence pair of a time series. FormdN§;, and”Yj, is the
motif pair iff QQIYG AY; QQI'Yw Ry |
piclBFRE & p where®d @®and'Q 'Q and Q'Qiisoa
function that computes the -mormalized Euclidean distance
between the input subsequenc§[5][12][22][23][24].

We store the distance between a subsequence of a time series with

discovery[23][24]. all the other subsequences from the same time series in an ordered
The rest of the paper is organized as follows. In Section 2, we 7@ calleddistance profile _ .
review the related work and introduce necessary notations. In  Definition 4 : A distance profil©~ 5 of a time serieSY

Section 3 we discssour proposed framework together with and a subsequenc¥; is a vector store®Q Qi"¥p iy, | @
several case studies. Section 4 includes a comprehensive phfBRE & p,where’Q Q

guantitative comparison with other motif discovery algorithms in ~ One of the most efficient ways tocateexactime series motifs is
the literature. Finally, we arrive at conclusions and future research to compute thematrix profile[23].

in Section 5. Definition 5 : A matrix profiled N s of a time serie8Yis
a meta time series that stores thenarmalzed Euclidean
2 RELATED WORK AND NOTATION distance between each subsequence and its nearest neighbor

where € is the length of’Yand & is the given subsequence
length. The time series motif can be found by simply locating
the two lowest values i (they will have tying values).

2.1 Related Work Figure4 illustrates a matrix profileon a small toy dataset.

We begin with a brief review of related work befometroducing
the notatiors needed to understand our proposed framework.

The literature on general time series motif search is large and

growing. We refer theeader to[2][7][23] and references therein
This section is brief. While there are many papeoh

exploiting motifs,and scaling up motif search, to the best of our

knowledgethere areno research efforts that eveexplicitly note
the issues we tackle, much leaddresshem. m
Saria and colleagues noted a limitation of the standard motif P

definition in that it may not readily discover motifs that have P. a matrix profile ____ Top matiflocation ~ IPI=1T-Iml+1
significant temporal warpind 14]. Similarly, Yankov et alnoted 1 600
that in some domains we mayeed to allow uniform scaling to
enable meaningful motif discoverj22]. However, both of these
issues ardargely orthogonal to the issueat hand. In any case,

T, arandom walktime series
with two sine waves embedded

Figure 4: A time series T and its self-join matrix profile P.
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To avoid trivial matche$12] in which a pattern is matched to
itself, or a pattern that largely overlaps with itself, the matrix
profile incorporatesan U'e x ¢ |-zorsl conoept, which is a
region before and after the locatioof a given query that should
be ignored. The exclusion zone is heuristically seft#.

The time complexity to compute a matrix profileis § &

This may seem untenable for time series data mining, but several
factors mitigate this concerrkirst, note that the time complexity

is independent ofn, the length of the subsequencé&econdly, the
matrix profile can be computed with aanytime algorithmand in
most domains, in just & cstepsthe algorithm converges to
what would be the final solution23] (c is a small constant)
Finally, the matrix profile can be computed with GPUs, cloud
computing and other HPC environments that make scaling to at
least tens of millions of data points trivig23]. Even using
standard hardware, all the examples in this paper can be
computed much faster than redlme. For example, 30 minutes of
ECG sampled at 60Hz takes about four minutes to exactly
compute the full matrix profile using STOMR3]. If that was not
fast enough, STAMP can produce a very high alify
approximation in undeffive secondg23].

2.1.1 Summary of this secti@efore moving on, we wish to
restate the reason for our detailed explanation of the matrix
profile. As explained in greater detail i{23], once the matrix
profile has been computed, all the tdépmotifs are availabl&rf o r
freew. For
(tied) lowest points in the matrix profile. Moreover, all other
definitions of motifs (range motifs, tof motifs etc.) can also be
trivially extracted. Thus, we see the computational aspects of
motif search largely solved, our contributions are limited to
Unudginglr the results to be

3 GUIDED MOTIF SEARCH

The basic idea behind guided motif search is to produce a vector
that is Uparallell to the ori
profile) that e n cdemtrdenbiagbgeThis s e

vector is then used to modify the matrix profile, changing its

e x amp | e-1 mdtifisesimplyottea t i

mo

Dauet al.

The annotation vector AV is a time series consisting of +eal
valued numbes between [0- 1]. A low value indicatesthe
sub®quence starting at that index is not a desirable motif, and
therefore should bebiasedagainst Conversely,higher values
meanthe subsequencat that locationshouldbe favoredfor the
potential motifpool. Note that the AV has the same length as the
matrix profile MP.In Figure5we show the annotation vector that
encodes i tvant td find motifs I this traffic data,
preferably occurring on or close to the weekend

There may besome scenarios in which the annotationoter
AV consiss of just Os and 1g:or example, this would bihe case
when the desiredmotifs arestrictly limited to within a certain
period, such asactivities between 8afrfdam dailyor at a longer
time scaleactivities that happen only during any@ipic year For
such scenarigswe would assign 0 for AV data points in the
untargeted period, and 1 for targeted onkwever, as shown in
Figureb, we allow arbitrary reainumber values in the AV, so long
as they are in the uniinterval.

Dodgers Loop data (subset)

r

0

T T T T T T 1

5000

m tiw/ t|f s isg/m tjw t|f|s| s |m t|w

T T T
Annotation vector

t(pmi The' AV that encodef a preference for motifs

occurring on or near the weekend.

Figure 5: top) Seventeen days from the Dodger Loop dataset
Figure 5 top) Sevenoen day

Having defined the AVwe can nowexplain how we use it to
c?rrgct tlrjlesuréd?sﬁqblt_a results explained above. To do this, we
simply producea orrectedMatrix Profile (CMP) bycombining
the annotation vector AV and the original matrix profile MP

p 0w zi A@D

g innthe abqve gguatiogdedd j B & and AGy denoegthe p o
goprestedgMPryalye the original MP value and the AV value
respectivelyThel A @ 0 term denotes the maximum value of

600 00

shape such that the undesirable solutions are more expensive, andthe original MPThe resulting corrected MP can beerpretedas

no longer showup in the topK motifs. We begin by explaining
the general domain independent part of our solution in the next
section, before showing several examples of how to create domai
dependent bias functions.

3.1 The Annotation Vector Framework

The Annotation \ector (AV) plays the role of manipulating the
motif search. Recall the notation of matrix profile (Mét)icidated
in Section 2.2.The MP is the currenstateof-the-art for motif
discovery [23][24]. Our main idea is to leverage this MP to
discover more meaningful motifs. We achieve this goal by
combining the matrix profile with the anotation vector to
produce a new matrix file. We will refer to this as the
UCorrected MP (CMP), as it
biasfor the problem at hand.

follow: if a region of the time series potentially contains the
meaningful motifs, its MP valueare left untouchedOtherwise,
its MP values arelp u s tigheériincreased)to reduce the
possibility of any motif in that region apears inthe top-K motif
list.

In many cases, the annotation vecsaran be created by just a
few lines of code Moreover, they can be created in a simple
environment such asS Excel or a scripting language such as
Matlabor Pythan. This is important, since many of the enders
of motif discovery are biologists, medical doctosgismologist
[23] etc., not computer/datacientists.

For example, to produce one week of the AV showifrigure
5, assuming that the data issgled once a minute and stargt

corr Cc

midnight Sunday, we can use asingle Ii?e of Matgali)]:f 69 text
(514404

A € tidadinh AeRsia Rl 0vaf 1448)A 446hel
Which we caninterpret as:
AV = [MOnRampDomeUeWmThLbonstantLOWFriRampUpWeeken(ﬂ:onStamH‘gﬂ
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In the following subsections, we will show how the
annotation vector is used in actioto guide motif search with
severalmotivating case studies.

3.2 Case Study: Actionability Bias

In this section, we discuss wproblems brought to our attention
by medical researchers, and we show that they have trivial fixes
using our framework.
3.2.1 Suppressing Motion Artifadte begin with an example
brought to our attention by Dr. Gregory Mason of the UCLA
Medical Cente Clinicians often want to find motifs in medical
telemetry, for example, in data obtained by braimaging
technique such as fNIRS showmnFigure6.

This example highlights a problem ubiquitous in this domain
[3] [17]. The motif discoveredh Figure6 corresponds to a motion
artifact, and has no medicalignificance. Such motion artifacts
plagueboth clinicians and researchersofexample, anight-hour
sleep study is likely to have dozens or hundreds of such artifacts,
as the subjectosses and turns. dte that the example shown in
Figure 6 is visually obvious for the read r Begefit; fowever,
more generally, it is nbalways easy to differentiate between
biologically sigiificant patterns and artifacts

Functional near-infrared spectroscopy (fNIRS) data
690 nm intensity (subset of record fNIRS3)

I I | I
0 4000 8000 12000

Figure 6: A snippet of fNIRS searched for motifs of length
600. The motifs correspond to an atypical region, which
(using external data) we k now is due to a sensor artifact.

Neverthelesswe can address this issue for motif discovery in
a very simple way, by leveraging the fact that many medical
sensors also include an acceleromet&igure 7 shows the
synchronization between the fNIRS data andaccompanying
accelerator dataGiven that themotion of the sensors igroducing
spurious motifs, we can use this motion to produce an annotation
vector to suppresthem

1 25000

Figure 7: The blue time series is fNIRS data. The red time
series is the acceleration of the body -worn sensors. This is
a dramatic and visually obvious example of this issue. The
problem is typically subtler, but still negatively effects
motif discovery.

Concretely, we slide a windo of length m across the

KDDé 17, Augus

(see Figure 8). Our AV data point is 0 if the corresponding
subsequence has its standard deviation equal or greater than the
mean, indicating regions of unusugllarge fluctuation.

STD vector —~ M /A/U\/\/\M

__M.V.N\ﬂ A Acceleration time series ~
W |V

AV vector =7 I—l I—'

1 50000

Mean of STD vector ~

Figure 8: Points above the me an of
standard deviation are well aligned with regions of motion

artifacts.

To show how little effort this would be foma clinician or
researcherTablel containsthe full Matlab code used to generate
this AV. Naturally, a Matlab guruwcould write even terser code,
but our point is simply that writing an AV is typically only a
mi nuteldts wor k.

Table 1: Code to generate the AV for fNIRS example

function AV = make_AV/(data, subsequencelLength)

fori=1:le ngth(data) i subsequenceLength + 1
stdVector(i) = std(data(i:i+subsequenceLength

end

AV(stdVector >= mean(stdVector)) = O;

AV(stdVector < mean(stdVector)) = 1;

-1);

o WNBRE

Figure9.topdisplays the original matrix profile aing with the
spurious motifs that are discovered with that MHgure9.bottom
shows the MP corrected with the annotation vector produced by
Table 1, enabling medically meaningful motifs from neuronal
actvity -related signal regions to be discovered.

Motifs discovered the classic approach \'/A\MW
L L

L

)
0 15000

Original matrix profile

L 1 1 J

Domain-specific Annotation vector

L 1 1 J

Corrected matrix profile

L 1 1 J

o (zoom-in of motifs)
Motifs discovered

by the CMP AARAANNA

L 1
0 5000

1 )
10000 15000

Figure 9: (top to bottom) Motifs in fNIRS data discovered
using classic motif search tend to be spurious motion
artifacts, because the matrix profile is minimized by the
highly cons erved but specious patterns. If we create an AV

acceleration time series. We compare the standard deviation of USing the algorithm in - Table 1, and use:it to correct the MP,

each subsequence with the mearatithes ub s equences
deviations, and assign the AV value to be either 0 or 1 accordingly

ghery that P, gllgws us to find medically significant
motifs.
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Note that here we created &ooleanAV, which strictly
prohibits finding motifsduring sensormovement.However, we
could also have created a readlued AV, which simplybiasthe
motif search away from regions where movement was noted, in
proportion to the magnitude ofthe motion. As ithappens, in this
case, he BoolearAV was sufficient to solve the problem. In the
next section we will show an exampbf an issue thadoesequire
areatvalued AV.
3.2.2 Suppressing Hdrnited Artifacts Here we consider
another example of a commonly encountered issue thaty
prevent us from finding meaningful motifs in medical and
industrial datasetsln Figure 10bottom we see that the motif
discovered in thisElectrooculogram (EOQ)as a perfectlyflat
plateau This isnot reflective of medicateality, but is simply a
region where the physical process exceeds thkit8precision
available to record if21].

AN e Y e -

4000 8000
suggestive of
REM sleep >

400 0 200 400

<. True value exceeds
the 8-bit precision

True motif,

0 200

Figure 10: top) A snippet of a left -eye EOG sampled at50 Hz,
from an individual wi th sleep disorder. bottom) The top
motif may be spurious, as it features a region where the
tim e series indicates only the maximum value possible.
However this snippet does have a true motif, with medical
significance.

In the many datasets that have thisnited precision flaw, we
can be guaranteed that most or all thfe top motifs will feature
some of these constant regions, as the flat regions prodittée
costin the Euclidean distancealculatior? that defines motifs
However, as shown irFigure 10bottomright, the data may be
replete with more medically meaningful motifst isimportant to
note that we do not wish to completelgxcludethe possibility of
returning motifswith someamount of constant regionsilt is just
that we want to mitigate the strong bias to finding them
exclusively

i Limit of 8-bit precision

W S My

1000 9000

5000

Figure 11: The upper and lower bound of the EOG data
indicates the regions where the physical process exceeds
the 8-bit precision available to record it.

As the reader will now appreciate after having seen our
previous examples, we can easilyilduan AV to suppress these
spurious matchesVe beginby recordingthe maximum and the
minimum values of the time seriethe constant valuesouching

2Note, we sayittle cost notzero costbecause when the subsequences are
z-normalized, the constant regions may have slightly different heights.

6
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the red bas shown in Figure 11 We slide a window across the
time series toextract subsequences, counting the number of
constant values (from being haidnited above or below) in each
sequence. This numbewrer the subsequence lengthused ashe
bias function. A higher value hints that the motifs that include this
subsequence may be spurious, as the overflow/underflow regions
actl i ke a alfdarmotirdistanbee

Figure 12 illustrates the results of applyip this AV to the
problematic example shown inFigure 10 Here again the
annotation vector helps to bias away from spurious motifs, by
leveraging the original matrix profile with domainspecific
insights.

Motifs discovered the classic approach
AN N S A M Ty

Original matrix profile

Domain-specific Annotation vector

Wl[
1 1 1 1 1 1 1 1 1 0

Corrected matrix profile

. Zoom-in of motifs
Motifs discovered

AT

9000

lO;JO 5000
Figure 12: (top to bottom) Motifs in the EOG domain that are

discovered using classic motif search tend to include hard -
limited data, because the matrix profile is minimized by

having long constant regions. By creating an AV using the
algorithm in Table 2 to correct the MP, we can find true
motifs corresponding to ponto -geniculo-occipital waves

[6].

Once again, for concreteness, Trable 2 we show the full
Matlab code used to make the astation vector discussed above.
As before, this simple fix requires only a minute of coding effort.

Table 2: Code to generate the AV for EOG example

function AV = make_A

V(data, subsequencelLength)
for i = 1: length(data) i subsequencelLength + 1
s = data(i:i+subsequencelLength - 1);
AV(i) = length(s(s == max(data) | s == min(data)));
end
AV = AV - min(AV); % zero one normalization
AV = AV / max(AV); % zero one norm alization
AV=1 i AV, % AV property conformation

0O~NO U~ WNER

3.3 Case Study: StopWord Motif Bias

We return tothe ECG exampleresented inFigurel. Recalthat
the top motifs of this time series do not come from a true medical
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signal, but regions of thee | e c t calibchtéor signal. These
signab are muchmor e simil ar
significant motifs and swamp the tofX motif set
Leveraging similar ideas in text processing, we propose to
treat these spurious patterras al$top-wordirmotifs. Our goalis
to design an AV that icapableof discounting suchmotifs. We
can make no assumptions about the locatiookthe stopword
motif, given thatthey canshow up anywhere in the signal.
We assume only that the steprord motif(s) will be knownto
the users of our frameworlas thestop-words are domain specific.
In Figure 13top, we show an example of a stapord motif that
we are targetingFigure13bottomdisplays theannotation vector
that can bias themotif discovery away from that stogvord.

Stop-word motif
P A

U N T o P P P Y P Y
0 3000
B ® 0

R Threshold

Extended exclusion zone for
each data point below threshold

oo |

0
3000

Annotation vector

b ‘ 1060 2060
Figure 13: top) We annotated a single stop-word from the

LTAF-71 Database[13]. middle) The stop-words distance
profile to the entire dataset was thresholded to create an

exclusion zone, which was used to create a AV (bottom).

To create the AV here, we measure the similarity between the
stopword subsequence to all subsequencesTijrby sliding a
window of the subsequence length across the time eseriThis
gives adistance profile(see Section 2.Definition 4 ). We
normalize this distance profile to be in range {Q], as shown in
Figure13middle Toconvert the normalized distance profilato
our final AV vector, we emipy a threshold parameter. The
threshold chosen indicates how similar the corresponding
subsequences are in comparison to the stapd motif. If we set
the threshold to be 0.1, we retrievlBe location of subsequences
that are 90% stopord-like.

Having a threshold is generally undesirable, bec¢allthat our
framework has completely divorced the computationally trivial
AV adjustment from the expensive computation of the matrix
profile. Thus, if the threshold is toaggressiver too lax, the user
can uplate it and refresh the resulis under a seconcgven for
datasets as large asie million data points.

To generate the final AV vector, we set the steprd motif
location, and all thelataup to 3mpoints before and aftethemto
0, retaining the original values of other data pointsThis 3m
Upaddedir exclusion
valleys of the distance profile.
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Figure 14: By correcting the MP to bias away from stop -
word motifs, we can discover medically m eaningful motifs.

Figurel4topshows the origineMP (left) and the togl motif
that would have been found using that MP (right, highlighted in
green and cyan}igurel4bottomshows the corrected MP and the
corresponding topl motif.

3.4 Case Study: Simplicity Bias

The issueof simplicity biashas been reported to us by a dozen
research groups in the last decade, although not under that name,
which we ®ined for this pape The problem can be very subtle,
but in Figure15below we show a strikingly obvious example.

iMM\W\hw’f\,r'v“fm@JWﬂfWwam

10000 60000

Figure 15: A short snippet of a time series of the flexion of
asubjectAs | i t t[9].sSubfedtively, enost people would
expect that two occurrences of consecutive multiple
flexions to be the top motif (inset). Instead we find the
simple & r a -mpApattern to be the top motif.

The reason why motif discovery fails to match our
expectation here was discussed in Section 1.2, and at ldndtj
(in a very different context)Given our guided motif framework,
the problem is trivial to solve. Wgust need tocreate an AV that
penalizes for simplicity.

Complexity estimation

Figure 16: A visual intuition of the ¢ omplexity estimation
of three time series subsequences of different complexity
levels.

To do this, weemploy the complexity estimation proposed in
[1], which will be referredas CE. The authors df] originally
embedded CE in a complexity correction factor for the Euclidean
distance, raking this distance measure complexityvariant.

zecfar the Uipikeyirs i nTRId YompleXity CeRtimation Bdmple (one line of code),

parametesfree and has a natural interpretation. Intuitively, time
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series canbe imagineda s
complexity measuredy Wtretchingrthem and measuring the
length of the resultingtaut lines as illustrated inFigure 16 The
more complex the time series is, the longer its correspondiimg
will be.

We slide a window across the time series, measuring the

complexity of each subsequence and store them in a complexity

vector, as shown by the magentaold) line of Figure 17. We
simply normalize this complexity vector to be in range{Q] to
obtainthe final AV.

1 60000

Figure 17: The complexity measure ( bold) show in parallel
to the raw data (fine).

Table3 contains theMatlab code used to generate the AV.

Table 3: Code to generate AV for ECoG signal

function AV = make_AV(data, subsequenceLength)

for i = 1: length(data) T subsequenceLeng th+1
subsequence = data(i:i+subsequencelLength -
AV(i) = sgrt(sum(diff(subsequence).*2));;

end

AV = AV - min(AV); % zero one normalization

AV = AV / max(AV); % zero one normalization

1);

~NOoO O~ WNRE

Figure 18 shows low the real notifs are uncovered, as
opposed twptrhpat/tamps that wo
we rely on the classic matrix profile.

el N | W
W N m

60000

Motifs discovered
by the CMP

10000

Figure 18: By correcting the matrix profile with an AV using
the algorithm in Table 3, we discover the true motifs of
finger flexion pattern.

To showthe ubiquity of thisissue, and the generality of our
solution, we searched seismology telemetf4]. Figure 19
illustrates how guided motif search correctly discovers two
earthquakedrom the same faultoccuring thirteen years apart,
in Sonoma Country, CATheresult is impressivgiventhat classic
motif search ranks 852 other motitove this true motif; these
higher-ranked motifs are all sensor artifac{8] that our AV
suppresses.

Uc hai nsandhave théfir 0 p eotsdigkoyered by the CMP,

Dauet al.

Motif discovered the classic approach,

two occurrences of an earthquake a sensor artifact
N

\* * - ”LT

Winm MP
W(ﬁed MP

L 1 1 1 1
1 40000

Figure 19: The top motif returned by the classic approa chis
not an earthquake, but a sensor artifact . Using guided motif
search framework, we can avoid such various misleading
sensor artifacts, which swam p this 17,279,800 datapoints
earthquake dataset. The time series shown was edited for
visual clarity.

4 EMPIRICAL EVALUATION

To ensure that our experiments are reproducibles have built a
website which contains all data/code/raw spreadsheets for the
results, in addition to many experiments that are omitted here for
brevity [15]. Thiscommitment to reproducibilityextendsto all the
examples the mvious sectionsWe note that we do not need to
compare to rivahlgorithms but a rivaldefinition the classic motif
definition used in several hundred research efforts over the last
decadd?2][12][23][24].

4.1 Preliminary Tests

We begin with an experiment that is designed to closely
inodel the igsuesshowm iRigure 3 bug al a gcdle that will allow
statistically signficant results.We produced 1,000 datasets as
follows. We creted a random walk of length 20,000, then
embedded into it two randomly chosen instances from the eight
classMALLAT dataset from the UCR Archid]. Figure20shows
that thesesyntheticdatasets are, at least visually, a good proxy for
the real motion artifact contamination data.

Motion Artifact Contaminated EEG Data

Top-1 Motif
Top-1 Motif Motion
M

otion Artifact
Artifact
1 4000 8000
1 8000

Figure 20: A snippet of real motion artifact contamination
data (see alsoFigure 3) and a snippet of our synthetic proxy
for it.

For each dataset, we run motif discovery, and count as a
successany answer in which thdop-1 returned motifs overlap
with any part of the embedded motifs.



Matrix Profile V: A Generic Technique to Incorporate Domain
Knowledge into Motif Discovery

We test the performance of three alternatives

1 Classic motif search, to reflect what is currently done in the
literature Classiy[23].

1 Guided Motif Search: In which the AV is created using
complexity bias, as discussed inc8en 3.3 (AVomplexity)-

1 Guided Motif Search: In which the AV is created ngithe
number of zerogrossings (AVYeroCrossingg in  the
subsequences

We consider two variants of the AV, in order to test the
following informal claim: Once a practitioner undgtands the
issue producing poor motifs, there will almost certainly be many
simple fixes possiblélable4 summarizes the results.

A practitioner that exploited the number of zewrossings
would have seen her hitate more thardouble, yet noted there is
still room for improvement. Perhapshewould have noticed that
random walk data can sometimes have high zenwssings by
chance, and would have turned to a more robust zemssings
extractor [20]. On the other hand, a more sophisticated
practitioner that was aware of complexity bid$], would have
seen essentially perfect resulti®m the first time. In both cases
we see thathe simple correction offered by an annotah vector
can dramatically improve the utility of motif searchiVe note in
passing these results that they suppartir claim that the time
overhead for guided motif search is inconsequential.

Table 4: Comparison between classic motif search and
guided motif search over 1000 datasets of length 20,000.
Both two variants of guided motif search outperform
classic motif search in terms of accuracy, with extra time
overhead of just 0.09 second per run, less than a half of a
percent.

Appr oach Average success rate | Time per run
Classic 163% 22.40 seconds
AVcomplexity 99.9% 22.46 seconds
AV zerocrossings 38.7% 22.49 seconds

4.2 Guided Motif Search for Event Detection

Sometimes motif discovery is thendpointof data analysis, but
more often notif search is a subroutine in a highdsvel
algorithm. In this section, we show that our framework can also
be helpful in such scenarios. We are particularly interested in the
problem of building dictionaries fromweakly labeled training
data. We show tht in this case, classic motif seanstay perform
poorly and guided motif searchcan offer significant
improvements.

Figure21presents an example of a weakly labeled time series.
While the time series snippet represents a 7dosels long episode
of mimicked epileptic seizurefl9], the actual seizure is only
about 30 seconds long, sandwichedbietween states where the
actor was preparingor/recoveringfrom her role.This presence
of spurious datas wha't i s meant
classic motif search to find the most conserved pattern in this time
series returngop motifs in a nonrepileptic region, as shown in
Figure21top. However,usingthe guided motif searctiramework

bsing UYwe & k
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(CMP), employing a complexity biadiscovershe top-1 motif in
the truly representativeseizure region, as shown inFigure
21bottom

We design the experiment as follows. We first run motif
search on the weakly laded training data for subsequence of
length 16 (1 second) to find the tdpmotif pair. We average this
motif pair to get the representativeattern for that classNext, we
slide the representative motif across the test (unseen) time series,
measuring i distance to all the subsequences. If the difference
between a test subsequence and the representative motif is at
most three times the distance between the train-tbpnotif pair,
we mark that subsequence as epilepgygsitive Our test set
consists ofiverecordings of mimicking epilepsy seizure atidee
recordings ofwalking taskconcatenatedvisualized inFigure22).
We divide the test time series into segments oft@®-second
regions.If we find any hit within each 2 secods segment, and the
groundtruth agrees with that, walenote this as atrue positive

Motifs discovered
the classic approach

LY A e WU S VS

Top-1 Motif

Y

True epilepsy signal |
! 1

16

1 1136

Motifs discovered
by the CMP Top-1 Motif

1 16

MWW"“WWA‘W‘M‘H&T&MMNMWWWM‘w,‘,»\,MwJ”ymw“ww

L J
1 1136

Figure 21: A weakly labeled seizure mimicking captured
with accelerometer x -axis reading. top) Classic motif search
wrongly finds the top moti fs in non -representative event
regions whilst CMP correctly uncover the true epileptic
patterns (bottom). Figure is best viewed in color.

We compare the result of the guided motif search approach
using AVeomplexity With the classic motif search approachable5
shows the full contingency matrix

Table 5: Contingency matrix. left) The classic motif search
approach right) the guided motif search approach. E
denotes Epilepsy. NE denotes Not Epilepsy.

Classic True class CMP True class
c E NE c E NE
5 S
% E 1 1 % E 52 3
NE| 66 | 321 ], & [NE] 15 | 319
oyl o B e }

The guided motif search outperforms classic motif search in
both metrics, accuracy (95.7% vs. 82.78%) andasSure (82.78%
vs 29%)Figure22shows a visualization of classification result.
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This issue of weakly labeled datauld be avoided by having
an expert manuallyannotatingthe datasetand weacknowledge
that the experiment isomewhatcontrived. However,we do not
always have the luxury of human expert intervention, and in that
case, guided motif search with a little insight might take us a long

way.
[1]
[2]

4.3 Time and Space Complexity

The time complexity of our proposed guided motif searctd{s?),
which is the same as classic motif search using stdtthe-art

[3]
methods[23]. We needX(n?) for computing the original MP, plus
O(n) additional work to compute theAV and produce the
corrected MP[23]. The space complexity isnerely O(n). To (4]
concretely ground these numbers, consideable4. It took 22.5 5]
seconds to process 20,000 data poif@s/en that the data was
recorded at 50Hz, this is 400 seconds of sehitk time, meaimg (6]
we are about eighteen times faster than réiate.
[71
(8]
[9]
[10]
[11]
[12]
[13]
[14]
Figure 22: Classification result with the dictionary learned
using classic motif search (top) and the dictionary built [15]
using the guided motif search approach ( bottom). [16]

5 CONCLUSIONS AND FUTURE WORK

We have shown that direct use of classic time motif search can [17]
produce unexpected/undesired results in many circumstances, for
a variety of domain dependent reasons. We have presented a
novel framework for guided motif discoverywhich greatly
mitigate these issuedn the spirit of reproducible researchye
have released alhe code and data afl5], to allow others to
confirm, extend and exploit our ideas.

[18]

[29]

Dauet al.
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