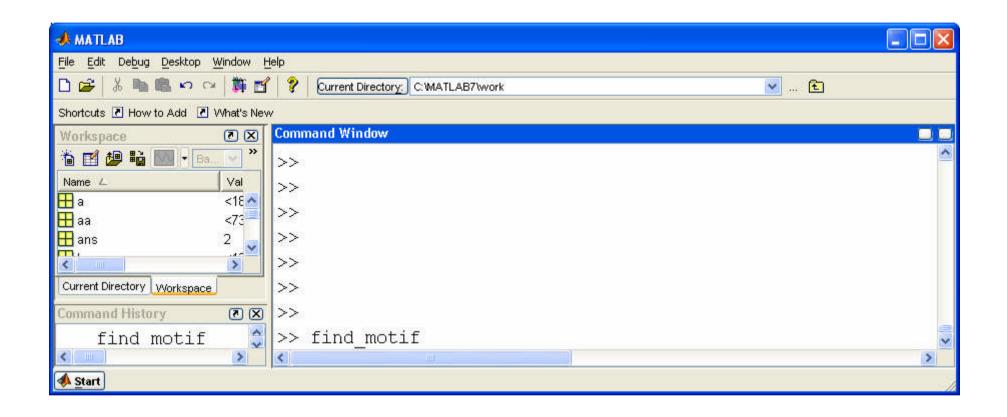
User manual of MK


Prepared by Abdullah Mueen and Eamonn Keogh

The MK Code

- *MK* is coded in C. It is compiled by gcc and executable in any platform. The executable file is also included with this package.
- The code dynamically allocates memory whenever necessary. If it fails to allocate memory it prints an error message in the stdout and stops execution.
- To the best of our knowledge it is bug free as long as the input is in the correct format. Please report bugs if you encounter any.

A Sample Run

- Please read this sample run, then redo it on your own machine (the sample data is provided) before doing anything else.
- Put all the files in the matlab work directory, then boot up matlab..

From the matlab window, type find_motif

📣 MATLAB				
<u>File E</u> dit De	ebug Desktop Window Help			
D 🛩 🕹	🐚 🛍 🗠 🗠 🎁 💕 💡	Current Directory: C:WATLAB7/work	💌 😢	
Shortcuts 🗷	How to Add 🛛 🗷 What's New			
Workspace	com 🗙 🖉	mand Window		
16 🖬 💯	🛍 💽 🖲 Ba 🗹 🎽 >>>	· · · · · · · · · · · · · · · · · · ·		^
Name 4	Select the data file	? 🗙		
⊞a ⊞aa ⊞ans	Look in: 🗀 work	· ← 🗈 👉 📰 ·		
⊞ ans	isf5	a.txt		
<	C shapes Skulls	abnormal_trajectories.txt african_elephant.txt		
Current Direct	🗐 21test.txt	b.txt		
Command H	21test_labels.txt 21train.txt	Balaenoptera musculus.txt		
fin	E Zitrain,txt	🗐 Balaenoptera physalus.txt		~
<	<			>
📣 <u>S</u> tart	File <u>n</u> ame:	<u>O</u> pen		1
	Files of <u>type:</u> *.txt	Cancel		

Point to the time series you want to explore

📣 MATLAB	
<u>File Edit Debug Desktop Window Help</u>	
🗅 🚘 🐇 ங 🋍 🕫 🖙 🞁 撑 Current Directory: C:'MATLAB7'Work	
Shortcuts 🗷 How to Add 🗷 What's New	
Workspace 🕢 🗶 Command Window	
	^
Name 🛆 Val >>	
a aa aa Look in: insect_a.txt	
🗄 ans Look in: 🗁 lsf5 💽 🖝 🖆 🖽 🗝	
insect_a.txt	
Current Directory Workshall 📳 insect_aa.txt	
E tlu.txt	
Command History	
find motif	~
	>
A Start	1
File <u>name:</u> insect_a.txt	
Files of type: *.txt Cancel	

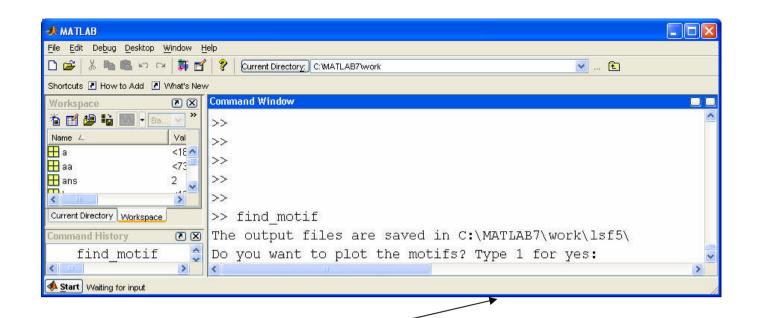
In this case, insect_a.txt

This number should be less than or equal to the full length of the time series. If it is less than the full length, the code truncates off the remainder

The length of the motifs you wish to find. _____

X must be at least 1. As it gets larger, many ____ more time series tend to be in the motif cluster. We suggest you start small (say 2) and increase it a little (say to 3) in the next run.

The number of distinct motifs to find. Use 1 for the first few times.

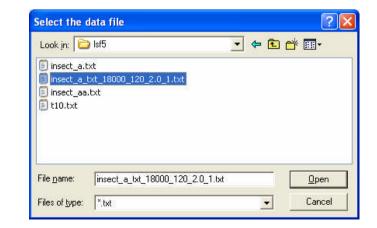

n : Length of the Tim	eseries
18000	
n : Length of the Moti	if
120	
X : Factor of Radius (2	of the Cluster
K : the Number of Clu	ister
1	
R:Number of Refere	nce Points
C. Number of Refere	ALCO FOR LO

Number of reference points. We strongly suggest you use the default value of 10.

When you are ready, click OK

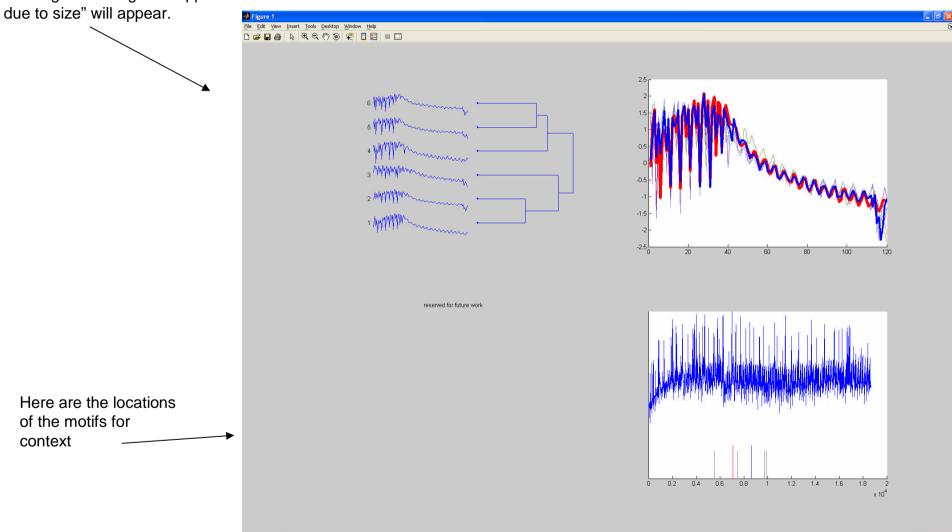
What's happening?

- The code is running. If you have less than a 20,000 length time series, and a motif length less than 500, this should be a few seconds.
- If you have very long time series 50,000+ or very long motifs 1000+, or very noisy data, this could take minutes.
- When the code is done, you will see...



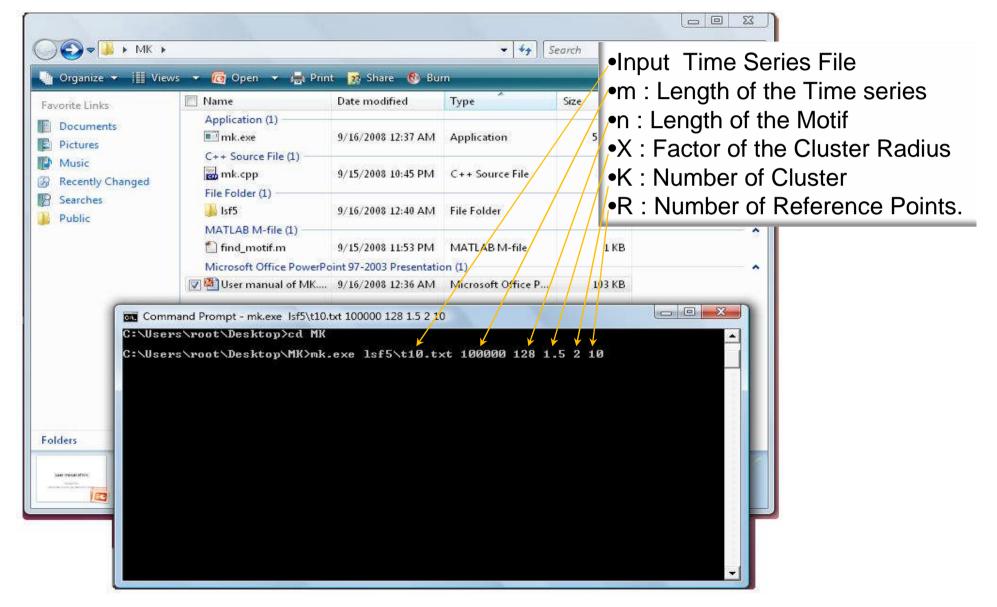
The code is inviting you to plot the output

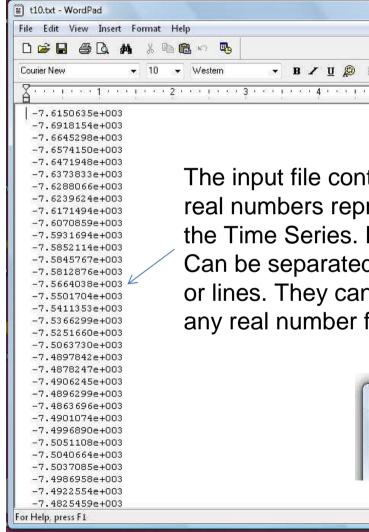
The output file is named such that you can tell which experiment it came from: In this case it is..


insect_a_txt_18000_120_2.0_1.txt

The source time series How long of section you looked at The motif length The radius This is the kth motif Lets say "yes", and plot the output, a dialogue box appears, and we find the file...

Here is a dendrogram (single linkage) of the motifs discovered. Time series "1" and "2" are the "red" and "blue" time series. If too many motifs are returned, a message "dendrogram suppressed due to size" will appear.


Here are the motifs plotted on top of each other. The two "seed" motifs are in red and blue

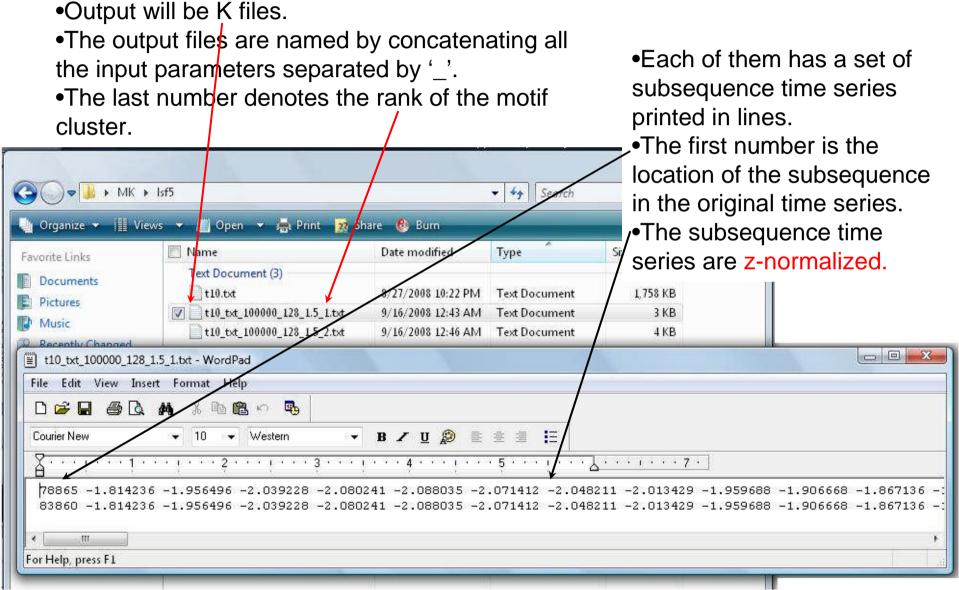

Stand Alone Code

- The previous slides show how to use the matlab "wrapper" we wrote for the main motif finding code.
- The main code is in C.
- If you want to, you can call this code directly, the next few slides tell you how.

Input

Input (Contd.)

The input file contains *m* real numbers representing the Time Series, Numbers Can be separated by space or lines. They can also be in any real number format.


m and n must be positive integer and 4 < n << m. •X can be any real number. Default value is 2 and can be omitted.

The parameters K and R are integers. Default values are 1 and 10 respectively. Can be omitted also. R << m-n

Command Prompt - mk.exe Isf5\t10.txt 100000 128 1.5 2 10

C:\Users\root\Desktop>cd_MK

Output

Ready to Find Motifs?

- All you need to do is read next page and email Eamonn Keogh requesting the password
- Why do we make you request the password?

We want to track how many people are using our code. We want to encourage others to share their datasets (as we have) We want to encourage others to share their code (as we have)

Note: the current code is main memory only, sometime in 2009 we plan to release a disk aware version that can handle 50,000,000+ time series. If you have a pressing need for such scalability now, let us know.

Email to eamonn@cs.ucr.edu

- 1. I am requesting the password for the MK code
- 2. I promise that if I publish a paper the uses the MK code, I will make every effort to make the data I test on publicly available.
- 3. I promise that if I publish a paper the uses the MK code, I will make every effort to make the code I use publicly available.

If you disagree with the above, I will still give you the code, but you need to explain why in detail.